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ABSTRACT

Aim Climate change threatens to shift vegetation, disrupting ecosystems and dam-
aging human well-being. Field observations in boreal, temperate and tropical eco-
systems have detected biome changes in the 20th century, yet a lack of spatial data
on vulnerability hinders organizations that manage natural resources from identi-
fying priority areas for adaptation measures. We explore potential methods to
identify areas vulnerable to vegetation shifts and potential refugia.

Location Global vegetation biomes.

Methods We examined nine combinations of three sets of potential indicators of
the vulnerability of ecosystems to biome change: (1) observed changes of 20th-
century climate, (2) projected 21st-century vegetation changes using the MCI
dynamic global vegetation model under three Intergovernmental Panel on Climate
Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2).
Estimating probability density functions for climate observations and confidence
levels for vegetation projections, we classified areas into vulnerability classes based
on IPCC treatment of uncertainty.

Results One-tenth to one-half of global land may be highly (confidence 0.80-
0.95) to very highly (confidence > 0.95) vulnerable. Temperate mixed forest, boreal
conifer and tundra and alpine biomes show the highest vulnerability, often due to
potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes
show the lowest vulnerability.

Main conclusions Spatial analyses of observed climate and projected vegetation
indicate widespread vulnerability of ecosystems to biome change. A mismatch
between vulnerability patterns and the geographic priorities of natural resource
organizations suggests the need to adapt management plans. Approximately  a
billion people live in the areas classified as vulnerable.

Keywords
Adaptation, biome change, climate change, dynamic global vegetation model,
natural resource management, vegetation shifts, vulnerability.

INTRODUCTION

Climate change is shifting vegetation latitudinally and eleva-
tionally at sites in boreal, temperate and tropical ecosystems
(IPCC, 2007a,b; Rosenzweig et al. 2008). Changes in climate
alter plant mortality and recruitment by exceeding physiologi-
cal thresholds and changing wildfire and other disturbances.
The resulting replacement of dominant plant species can
entirely change the biome of an area and shift the global

location of biomes. Such fundamental changes can alter
ecosystem structure and the provision of ecosystem services to
people. A lack of spatial data on vulnerability has, in part,
hindered organizations that manage natural resources from
identifying priority areas for adaptation measures (Hannah
et al., 2002; Brooks et al., 2006). Analyses of novel future
climates (Williams et al., 2007) and simulations using dynamic
global vegetation models (DGVMs;Scholze et al., 2006; Alo &
Wang, 2008; Sitch et al., 2008; Jones et al., 2009) have projected

esipp
Text Box
This file was created by scanning the printed publication.  Text errors identified by the software have been corrected: however some errors may remain.



future shifts in climate and vegetation due to climate

change.

Here,  we explore the application of spatial analyses of climate
observations and DGVM projections to the identification of
areas vulnerable to vegetation shifts and potential  refugia. We
examine three sets of potential indicators  of the vulnerabilit  of
ecosystems to biome change: (1) observed changes of 20th-
century climate,  (2) projected 21st-century  vegetation changes
using a DGVM under three IPCC emissions  scenarios,   and (3)
overlap of results from (1) and (2). We  use IPCC uncertainty
criteria to develop a vulnerability classification framework that
natural resource managers could use to identify priority areas
for adaptation measures.

Climatic and ecological evidence supports  the use of observed
climate   change  as a  potential indicator of vulnerability  of   eco-
systems to biome change:
1. Climate exerts dominant control  on the global distribution
of biomes a fundamental basis of plant biogeography  (Wood-
ward et al., 2004). Changes  in temperature and precipitation
shifted global biomes latitudinally across continents in the late
Quaternary (Jackson & Overpeck, 2000; Davis & Shaw, 2001),
demonstrating  the fundamental influence of climate on biomes.
2. Comprehensive meta-analyses (Parmesan  & Yohe, 2003;
Rosenzweig  et al., 2007, 2008) of published ecological research
demonstrate  that climate change in the 20th century has shifted
plant ranges (37 species; and phenology (1161 species) in eco-
systems around the worid. More than 90%  of time series of
ecological data exhibited changes in the direction expected with
warming temperatures.  M1any of the range shifts also changed
the biomes of the ecosystems studied.  The meta-analyses exam-
ined an time series, including those showing no change or
change opposite to the direction expected with warming, and
accounted  for publication  bias that might favour positive results.
3. We conducted a comprehensive search of the published lit-
erature (see Appendix  Sl in Supporting Information) for cases
of field research that examined long-term trends of biomes in
areas where climate (not land-use change or other factors) pre-
dominantly influenced  vegetation and found 15 cases docu-
menting biome shifts in boreal, temperate and tropical
ecosystems in the 20th century  and four cases that found no
biome shift (Appendix S1). The number of biome  changes
observed in the field and attributed to climate change indicates
that 20th-century changes in temperature and precipitation are
altering many ecosystems. Among the cases of observed biome
change, observed temperature or precipitation shifted as much
as one-half to two standard  deviations from 20th-century  mean
values (Gcnzalez, 2001; Penuelas & Boada, 2003; Beckage et al.,
2008; Kullman  & Oberg, 2009).
4. Because vegetation  often responds  slowly to changes in envi-
ronmental conditions, a time lag between a change in climate
and a shift in vegetation can commit  an ecosystem to biome
change long before any response manifests itself (Rosenzweig
et al., 2007; Jones et al., 2009). Slow rates of seed dispersal and
tree growth and long periods for physiological changes in plants
contribute to time lags. Therefore, future vulnerability is par-
tially a function of past climate change.

Observed changes in temperature and precipitation provide
indicators of the potential change of the biome of an ecosystem.

Using  observed  climate  data accounts for the impact  of climate
change that has already occurred. This can provide a more com-
plete assessment  of vulnerability than future projections  alone.
We look at the three methods  - observations  alone, projections
alone  and the overlap  of observations and projections  - in par-
allel, not as mutually exclusive replacements for each other, to
reveal areas where the ensemble of methods ccnsistently iden-
tifies vulnerable  areas or potential refugia.

METHODS

Definitions  and general approach

In quantifying  potential  indicators of vulnerability,  we followed
IPCC definitions of likelihood, confidence and vulnerability,
Likelihood  is the probability  of an outcome  having  occurred or
occurring  in the future  (Schneider  et al., 2007).  We  estimated
likelihoods of observed changes of 20th-century climate from
probability  density functions  of  102 years of observation  data.

Confidence  is the subjective  assessment that any statement
about an outcome win prove correct (Schneider  et al, 2007). We
estimated  confidence levels  of DGVM projections from the
output  of  a set of  different general circulation models (GCMs).

Vulnerability to climate change is the degree to which a
system is susceptible to, and unable to cope with adverse effects
(IPCC, 2007b).  Here, vulnerability is  the susceptibility of an
ecosystem to a change in its biome, where biomes are major
vegetation types that are characterized   the same life-form
Woodward et al.,  2004). Vulnerability  is  a function  of three
components: exposure, sensitivity, and adaptive  capacity. In our
analysis, observed   and projected    climate   changes indicated
degree of exposure. Deviation of climate from long-term mean
values (in the absence of complete spatial data on early 20th-
century  global vegetation) and modelled  changes of future
vegetation  provide  indicators of ecosystem response,  which
combines  sensitivity and adaptive capacity.  An ecosystem with 
low ensitivity and/or   high adaptive capacity would respond
with modest changes, indicating lower vuinerabiliry,

In the IPCC (2007a) treatment of uncertainty,  confidence
spans five levels: very high (at least a 9 out of 10 chance of an
outcome proving correct), high (about an 8 out of 10 chance),
medium (about  a 5 out of 10 chance), low (about  a 2 out of 10
chance)  and  very  low (less than  1 out  of  10  chance).  We  used -~ J -- ---

these levels to divide results into vulnerability  classes.

Equal-area projection of spatial data

All original sets of global climate, vegetation,  fire and population
data were unprojected  rasters in the geographic   reference
system, where the surface area of pixels varied with latitude.  To
accurately calculate land areas, we divided all global files into six
continental files and projected each continent to Lambert azi-
muthal equal-area projection at a spatial resolution of 50 km,
using the parameter  of  the International Geosphere-Biosphere



illcrease with the deviation of climate from the conditions under

which the vegetation of a location developed.
To explore potential impacts of fire, we also calculated trends

in L.1-eglobal fire database of Mouillot & Field (2005) by linear

least squares regression of fire frequency for the period 1900-

2000 versus time.

Projected climate

We used an ensemble of three GCMs to represent  lower (CSIRO
Mk3; Gordon  et  al.   2002), medium   (HadCm3; Johns et al.,

2003) and higher (MIROC 3.2 medres;  Hasumi & Emori, 2004)
temperature sensitivity for the period 2000-2100.  GCM runs for

the three emissions  scenarios used  in the IPCC  Fourth  Assess-
ment  Report  (AR4; IPCC,  2007a,b) represent   lower   (B1),

medium  (A1B) and higher  (A.2) greenhouse gas emissions. The
nine GCM-emissions   scenario   combinations.  bracket  a s ubstan-

tial part of the range of temperature  projections  of the 59 AR4
combinations.  Constraints of funding  and the una..vailability of

vapour pressure  output  (required for the MC1 DGVM) from
some GCMs prevented  analysis of all 59 combinations,  necessi-

tating the use of a bracketing approach.
GCM output came from the World, Climate Research  Pro-

gramme Coupled Model Intercomparison  Project Phase 3
multi-model  dataset  (https://esg.llnl.gov:8443/index.jisp).  We
statistically downscaled GCM output  from 2.5o  latitude  by 3.750

longitude  spatial resolution  to 0.5° spatial resolution in three
steps:  (1) calculation of the difference (temperature)  or ratio
(precipitation, vapour pressure) of a GCM-projected  future
value with the GCM-modelled  1961-90 mean; (2) bilinear inter-
polation of the differences  or ratios at a spatial resolution of 0.5o

with a 2 x 2 kernel, and (3) addition of the temperature differ-
ence to  or multiplication  of the  precipitation  and  vapour   pres-
sure ratios by the 05° spatial resolution 1961-90 observed mean

values (Mitchell  & Jones, 2005).

Projected vegetation and fire

To rnodel potential vegetation and wildfire, we ran the MCl
dynamic global vegetation model (Daly et al., 2000; Lenihan
et al., 2008) on the nine GCM-emissions  scenario  combina-

tions.  MC1 uses five  climate   variables  (monthly  mean,
maximum and minimum temperature; precipitation; vapour

pressure) and five soil variables (soil depth; bulk density; day,
sand and rock fractions) to run interacting modules of bioge-
ography, biogeochemistry and wildfire. The climate variables

required  by MCl limited  the   GCMs that we could use to those
with available output. The biogeography module identifies the

potential vegetation type of a pixel by modelling plant life-form
as distingui  shed   by leaf characteristics. The relative proportion
of different woody life- forms is determined at each annual time

step by position along gradients of    minimum temperature and

growing season precipitation. The minimum temperature gra-
dient runs from evergreen needleleaf dominance (-15°C)

through deciduous broadleaf dominance to broadleaf evergreen

dominance (18 °C).  The relative proportion  of C3 and C4

Programme Global Land Cover Characteristics database (http://
edc2.usgs.gov/glcc).  The data cover the terrestrial area of the
world, except Antarctica.

Observed climate and fire

We calculated observed climate trends in the University of East

Anglia Climate Research Unit TS 2.1 data set (Mitchell  & Jones,

2005) by linear least squares regression of mean annual tem-
perature and annual precipitation versus time for the period
1901-2002.  For the correlation coefficients,we also calculated
the statistical significance (Pr).

Although the biological importance  of a change in climate

will tend to increase as Pr  increases)  Pr, does not give a direct
measure of the magnitude  of the change. In contrast,  the histo-

gram  of 102 annual temperature  or precipitation  values forms a
probability density function and deviation  of the  value of   the
change in temperature  or precipitation in a century (given by

the slope of the regression) from the  102-year mean indicates
the statistical significance of the rate of change.

For each of 58,267 land pixels, we calculated

where the subscript 'climate' denotes temperature or precipita-

tion, Pclimate is the probability that Ctemperature  or   Cprecipitation  falls
within a calculated number of standard deviations of the mean,
erf(x) is the error function)  and  o is the 1901-2002   standard

deviation) such that Pclimate   0.68 at 1o, 0.95 at 2o and 0.99 at

3o.
We classified   pixels  into  five   Vulnerability    classes    (IPCC,

2007a): very high (Pclimate > 0.95), high (0.95 > Pclimate > 0.8),
medium (0.8 > Pclimate > 0.2), low (0.2 > Pclimate > 0.05) and very

low (Pclimate 0.05).  We used  the value of P that was greater
between temperature  and precipitation  because a significant
change in either parameter could cause a change in biome
(Woodward et al., 2004).  Although the absolute magnitude  of or

variation in Ctemperature  or Cprecipitation  that  may  cause a biome
change will differ by ecosystem, the likelihood  of change  will



grasses is determined  by estimating potential  productivity as a
function of soil temperature  during the three warmest consecu-

tive months. The biogeochemistry module calculates the

biomass of trees and grasses for each pixel by modelling net
primary productivity (NPP), organic matter decomposition  and

carbon, nitrogen and water cycling. MCl simulates changes to
plant physiology, nutrient  cycling, water use and biomass due to
changes in atmospheric  CO2•  We modelled NPP trends using the

23% increase  to a doubting of pre-industrial   atmospheric   CO2
(logarithmic biotic growth factor p = 0.60) observed at a broad
range of  sites (Norby et al., 2005). The wildfire module simulates

wildfire occurrence  and behaviour based on fuel loadings  and

fuel and soil moisture and calculates resulting changes in
life-form mixtures and biomass. We modelled  potential fire with

no human suppression. The modelled plant life-form mixture
from the biogeography module together with woody plant and
grass biomass from the biogeochemistry module determine the
vegetation type that occurs at each pixel each year. We combined
the 34 MCl  potential  vegetation types (Kuchler,  1964; VEMAP

Members, 1995) into 13 biomes (FAO, 2001;  Woodward et al.,
2004) and used the biome that MC1 modelled  for each pixel for

the majority of years during each of  two periods (1961-90,
2071-2100) to represent the average vegetation for each period.

To assess the accuracy of MCl, we validated MCl output

against observed global vegetation and fire data. We compared
the areas of forest and non-forest modelled by MCl for 1961-90
climate with areas of forest and non-forest in remote sensing-

derived Global Land Cover 2000 data (Barthoiome  & Beiward,
2005), excluding agricultural and urban areas. We also com-

pared areas of fire rotation  period  < 35 years for 1951-2000

modelled by MCl and derived  from field observations   and
remote  sensing (Mouillot & Field, 2005). We calculated  areas of
agreement and the kappa statistic (Cohen, 1960; Monserud  &
Leemans, 1992).

For each of 54,433 land pixels, we estimated the level of con-
fidence in projections that the biome of an area may change

as the fraction of the nine GCM-emission   scenario

combinations that project the same type of biome  change for a
pixel. The converse of the confidence in projections of biome
change (1-Cprojection)  is the confidence in a projection of no bio-
me change. We classified pixels into five classes of vulnerability
(IPCC, 2007a): very high > 0.95), high (0.95>  Cprojection

OJ}5) and very low < 0.05). \'Ve also estimated the levei
of confidence and vulnerability classes for each emissions
scenario.

Overlap of observed and projected vulnerability

For all nine GCM-emission  scenario combinations and for each
emissions scenario, we determined the overlap  of   the vulnerabil-

ity classes that were separately  derived from observed climate

and projected vegetation by classifying pixels where both Pclimate
and Cprojection fell within the same range into five vulnerability
classes. To avoid under- or overestimation  of the vulnerability  of

certain areas of very high  or  very  low Pclimate or Cprojection we

included two exceptional combinations of medium vulnerabil-

ity (very high Pclimate) and medium Cprojection  very high  Cprojection and
medium  Pclimate) in the high class and two (very low Pclimate and

medium  Cprojection  very low Cprojection and medium Pclimate) in the
low class (Appendix  S2).

Population

To estimate the human population living in each vulnerability

class, we used AD 2000 population from the Center for Interna-

tional Earth Science Information Network Gridded Population
of the World dataset,  Version 3 (http://sedac.ciesin.columbia.
edu/gpw).  We  masked  the population  data by the area of each
vulnerability  class to calculate the total number of people living

in each area.

limitations of the methods

For the analyses of observed climate data, equation  3 assumes a
roughly normal distribution of annual climate values. The use
of mean annual temperature and total annual precipitation

is  a simplification that assumes  approximate correlation to
minimum temperature and other climate parameters that affect

the distribution of biomes. It also assumes that average climate

conditions over long periods more strongly affect biomes than
short-term climate extremes and variability; which can be

for individual species. Although the values  of  Pclimate
are not calibrated to precise magnitudes and timings of biome

change, which may differ by vegetation type, observed tempera-
ture or precipitation shifts of one-half to two standard devia-
tions from 20th-century  mean    values over the course  of

50-100 years have caused changes  in a diverse set of biomes
(Gonzalez, 2001; Penuela  & Boada, 2003; Beckage  et al.,  2008;
Kullman   & Oberg, 2009),

For future emissions scenarios, IPCC has not estimated prob-
abilities of occurrence, so we assumed equal probabilities o-f the
three scenarios that IPCC selected for AR4 (IPCC, 2007a,b). The
scenarios do not include the hottest denned scenario, AlFI. If

actual global emissions exceed emissions under AlFI (Raupach
et al., 2007) then our analysis may
vulnerability than might occur if the world continues unrniti-

gated emissions of greenhouse gases, although it would be pos-

sible to use the A1 results. Precipitation patterns vary across the
three  GMCs more than temperature  patterns.

For future projections, the analysis assumes reasonable accu-
racy of GMCs and  MC1.IPCC (2007a) has validated  GCM skill.
We validated  MC1  output     against observed   global vegetation

(Bartholome   & Belward, 2005) and fire (Mouillot & Field,
2005). Data from only one DGVM  were available for this
research, but future analyses would benefit from output from

several DGVMs The analysis compares   conditions under  stan-
dard 30-year climatology periods, but does not examine the

timing or seasonality of changes.
For the overlap of observed and projected vulnerability

classes) equal weighting of past observations and future projec-

tions is a normative decision, though it reflects the importance



Fire frequency in the 20th century decreased on two-fifths of
global land, slightly greater than the area of increase (Fig. lc,
Table 1). Global average fire frequency (+ SD) was 0.04  + 0.06
year-1,   corresponding to  a rotation  period (+ SD)   of
27 + 17 years. Global average fire frequency increased at a frac-
tional rate (± SD) of 0.004 ± 0.04 century-1.  Decreased fire
across Australia, North America and Russia reveals extensive
suppression, while increased fire across the tropics shows
increased burning to clear agricultural fields (Mouillot  & Field,
2005). Due to these human influences, we used observed tem-
perature and precipitation, but not fire, as potential indicators of
vulnerability.

Projected changes in climate

GCMs project widespread temperature increases and precipita-
tion changes by 2100 (Fig.2a,b, Table 1), including global
average temperature increases of 2.4-4 °C century-1  and global

of both realized and potential impacts of climate change and the
use of one century of data from the past and one century of data
for the future.

RESULTS

Observed changes in climate and fire

Temperature increased on 96% of global land (Fig. 1a) in the
20th century with significant (Pr  < 05) increases on 76% of
global land. Average temperature increased on every continent
(Table 1). The greatest warming has occurred in boreal regions.
Precipitation increased on 80% of global land in the 20th
century (Fig. 1b, Table 1), with significant ina-eases on 28% of
global land and significant decreases on 2%. Global average
precipitation increased at a fractional rate (± SD) of
0.08 + 0.14 century-1. The West African Sahel, the upper Nile
region, and coastal Peru have experienced the greatest decreases
in precipitation.





MCI projects potentially extensive biome changes under the
2071-2100 scenarios (Fig.3b). Areas where all combinations
project the same biome change (Cproj ~1) cover 8% of global land
(fig. 3c). Temperate mixed forest shows the highest fractional
areas of projected change, while desert shows the lowest
(Appendix S3). Projected changes in wildfire frequency (Fig. 2c)
drive many of the projected biome changes. Differences among
GCMs caused more variation in biome projections than differ-
ences among emissions scenarios. The Bl , AlB and A2
ensembles disagree on 25, 32 and 30% of global land, respec-
tively, while the CSIRO, HadCM3 and MIROC emissions sce-
nario sets for each GCM disagree on 17, 17 and 18% of global
land, respectively.

Vulnerability

Observed climate and vegetation projections indicate that one-
tenth to one-half of global land may be highly to very highly

average precipitation increases at fractional rates of 0.03-0.04
century-1.  MCl projects that a third  of global land may  experi-
ence an increase in wildfire frequency (Fig. 2c, Table 1), with
global average increases at fractional rates of 0.21-0.29
century-1.

Projected vegetation shifts

MCl-modelled  1961-90 vegetation (Fig.3a) generally follows
observed patterns of global biomes (FAO, 2001; Bartholome &
Belward, 2005), with modelled forest and non-forest areas cor-
responding broadly (agreement 77%, kappa  = 0.53) to remote
sensing-derived land cover (Bartholome  & Belward, 2005),
excluding agricultural and urban areas. This kappa value is in
the range considered 'fair' (Monserud & Leemans, 1992). MC1-
modelled areas of wildfire rotation period < 35 years for 1951-
2000 correspond less closely (agreement 66%, kappa = 0.34) to
wildfire observations (Mouillot  & Field, 2005).



quarter and one-half greater than under B1 (Table 2, Appen-
dix S5). Among the emissions scenarios, the general patterns  of
vulnerability remain consistent - it is the size of highly vulner-
able patches that expands with increasing emissions.

Temperate mixed and boreal conifer forests show the highest
vulnerability as a fraction of biome area, while tundra and
alpine and boreal conifer forest biomes are most vulnerable in
total land area (Fig. 5, Table 2). Deserts show the lowest vulner-
ability as a fraction of biome area for most cases, while all cases
show tropical evergreen broadleaf forest as least vulnerable in
total land area.

Approximately 3 billion people, or half of the world's popu-
lation, live in areas of high to very high vulnerability under
observed climate only (Table 2). Approximately 800 million to
1.3 billion people, or one-eighth to one-fifth of the world's
population, live in areas of high to very high vulnerability under
the other cases.

vulnerable to biome changes (Table 2). Vegetation projections
indicate low to very low vulnerability of ecosystems to biome
change on up to two-thirds of global land. Patterns of vulner-
ability derived from observed climate alone (Fig. 4a) differ from
the patterns derived from all nine vegetation projections com-
bined (Fig. 4b). The overlap of observed climate and the nine
vegetation projections (Fig. 4c) identifies areas that both indi-
cators identify as highly to very highly vulnerable: the Andes, the
Baltic coast, boreal Canada and Russia, the Himalayas, the
Iberian Peninsula, the Laurentian Great Lakes, northern Brazil
and southern Africa.

Vegetation projections for individual emissions scenarios
show areas of vulnerability under AlB and A2 that are, respec-
tively, one-third and one-half greater than under Bl (Table 2,
Appendix S4). The overlap of observed climate and vegetation
projections for individual emissions scenarios show areas of
vulnerability under AlB and A2 that are, respectively, one-





leading edges, analogous to the upslope leaning of species dis-
tribution curves that shift along an elevation gradient (Kelly &
Goulden, 2008).

Temperate mixed forest shows high vulnerability as a fraction
of biome area due to projected loss of coniferous species and
potential conversion to temperate broadleaf forest. The tundra
and alpine biome shows the greatest total area of high to very
high vulnerability due to elevated rates of both observed and
projected warming. Tropical evergreen broadleaf forest shows
low vulnerability. The resilience of rain forests derives from high
temperature tolerances and mitigation of water stress by
increases in equatorial precipitation (Malhi et al., 2008) as well
as the wide latitudinal extent of woody plant species (Weiser
et al., 2007).

Spatial patterns of change and vulnerability agree substan-
tially with previous analyses at coarser scales. The patterns of
observed climate change agree with analyses (Vose et al., 2005;

DISCUSSION

Global vulnerability

All cases of observed climate, projected vegetation and their
overlap show high to very high vulnerability of a substantial
fraction of global land. Even under the lowest emissions sce-
nario, the indicators identify extensive areas of potentially sub-
stantial ecological change.

Observed climate changes signal high vulnerability for almost
half of the global land area. Vegetation projections suggest
potential latitudinal biome shifts of up to 400 km, consistent
with projections of individual species range shifts (Morin &
Thuiller, 2009). Confidence in vegetation projections shows lati-
tudinal gradients along ecotones and fragmented patterns in
core areas, as previously theorized (Neilson, 1993). Confidence
is higher at the trailing edges of latitudinal biomes than at



We  find that a large part of the world's population Eves in
areas of potential biome changes. This includes up to one-fifth
of the world's population and up to one-quarter of the popula-
tion in Asia and North and South America. Biome changes may
alter the provision of ecosystem services (Schroter et al., 2005),
possibly affecting the livelihoods  of many of these people. For
example, certain biome changes could change  the density of tree
species used for firewood or timber or the density of grass
species preferred for grazing, alter the water retention capacity
in watersheds providing drinking water for human use, or
change patterns of fire and other disturbances integral to eco-
system function.

limitations  of  interpretation

To produce  results at a spatial scale useful for assessing potential
impacts of climate change on vegetation,  we applied empirical
statistical downscaling to the coarse  GMC output. Our method
adjusts GCM output by observed 50- km climate patterns so that
downscaled data exhibit the climate differences of the GCM
projections while retaining the relative spatial  patterns of
observed climate. The continental and global averages of pro-
jected temperature  and precipitation changes of the downscaled
results (Table 1) are dose to the corresponding averages of the
coarse GCM ensembles (IPCC, 2007a), suggesting that our
downscaled climate projections retain broad agreement with the
GCM output. IPCC has confirmed the validity of empirical
statistical downscaling of climate scenarios for impacts analyses
(Christensen et al., 2007). Drawbacks include an assumption of
relative stability of cross-scale climate relationships and
increased uncertainty in spatial changes finer than the coarse
resolution  of the original  GCM  output.  Because the spatial reso-
lution of the original  GCM output is approximately 250) km

(north-south) by 375 km (east-west), conclusions about results
at finer scales are still uncertain.

Use of the biome as a unit of analysis may understate vulner-
ability  because the broad definition of a biome allows for
changes in species composition without conversion  to a differ-
ent biome, Although MCI DGVM projections of potential veg-
etation change will increase at more detailed levels of a
classification hierarchy (Neilson, 1993), the  77% agreement of
modelled with observed forest: cover suggests the use of a level
no lower than the biome for this analysis. Biome change pro-
vides a useful indicator  of vulnerability because climate  changes
severe enough to convert the biome of an area are likely to signal
more serious impacts at lower levels. The analyses do not explic-
itly examine reductions of tree density that may occur in epi-
sodes of forest dieback without changing the biome of an area
(Scholze et al., 2006; Jones et al., 2009). This may further under-
state vulnerability,

The kappa value for MCI is in the range considered 'fair'
(Monserud & Leemans, 1992), suggesting caution in the use of
DGVM output. For this reason, we have examined one case
(labelled PV9 in Table 2) that uses a stringent and restrictive
criterion of unanimous agreement for the very high vulnerabil-
ity class. In addition) we examine four cases (OC-PV9,

Dang et al., 2007; Trenberth et al., 2007) of climate data (Jones
et  al., 2001; Smith & Reynolds, 2005) at a spatial resolution
coarser than the data here by an order of magnitude. MCI
vegetation projections are consistent with results from the Com-

munity Land Model (Alo & Wang, 2008), the HadCM3LC
coupled GCM-DGVM (Jones et al., 2009), the Lund-Potsdam-
lena  (LPJ) DGVM (Scholze et al., 2006) and four other DGVMs
(Sitch et al., 2008), run at spatial resolutions coarser than  the

data here by factors of 3,5,5.6 and 7.5, respectively. The DGVMs
project a shift of boreal forest into tundra at high latitudes and
some forest loss in Amazonia. Both  MCI and LPJ project forest

changes in the southeastern USA and East Asia, although they
disagree  on changes in India. MCI results  are also consistent
with non-dynamic climate and vegetation modelling (Lee. &

Jetz, 2008). MCl and LPJ produce consistent  wildfire results,
projecting increases in the Amazon,  Australia, southern  Africa

and the western USA.   Our vulnerability results agree with a
vulnerability analysis based on potential nove! dimates (Will-

iams et al., 2007) in the African Sahel, the Andes, the northern
Amazon and other areas, but do not agree in some equatorial

and temperate areas because the novel climate index more
heavily weights areas of low inter-annual  variability,



OC-PVA2,  OC-PVAIB, OC-PVBl)   that overlap  vulnerability

results from observed climate and vulnerability  results of veg-

etation  projections to  find where observations  and  projections
might show similar patterns.

DGVMs delineate  potential, not realized, vegetation   distribu-

tions. Survival and dispersal capabilities  of species, human bar-

riers to dispersal, interspecific  competition,  evolutionary 
adaptation, changing  pests and  pathogens  and  other  factors will
lead to biome  changes occurring at varying rates. In some cases,
rates of climate change may exceed  the dispersal abilities of
individual species.  Conditions projected for AD 2100 may reflect

committed changes, but long time-scales of atmospheric equi-

librium  and  ecological  processes  create a  double  transient situ-
ation.  Global terrestrial vegetation  may  continue to change long 

after climate stabilizaton (Jones et al., 2009).
Direct human modification of land cover, which this analysis 

does not explicitly include, and interact  with climate change

(lee  & Jetz, 2008).  Even though our analysis identifies tropical
rain forests  as less vulnerable to climate change, continued 

deforestation  for timber harvsesting and agricultural expansion
would  nullify that advantage.  

The  population  analysis approximates the number of people
living in areas classified as most and least vulnerable to vegeta-

tion  shifts. Although  more complex  analyes could quantify

 negative and positive impacts on ecosystem services and account
for differences due to the extent of agricultural and urban areas)
the estimates indicate the orders of  magnitude  of  the human
population of the different vulnerabiiity classes.

Adaptation of  natural resource management

Adaptation  is an adjustment in natural  or human systems in
response to actual or expected climatic  stimuli or their effects) to

moderate  harm  or exploit  beneficial  opportunities  (IPCC,
2007b).  Analyses  of vulnerability  and prioritization  of locations,

ecosystems or species can guide the planning  of adaptation  mea-
sure, (Hannah et al., 2002). The mismatch between the patterns

of vulnerability identified here and the geographic priorities of
global organizations  (Brooks et al., 2006)  suggests the need to

adapt current management  plans to climate change. We have 
sought  to  develop  a vulnerability  analysis framework  with 

clearly  defined  classes  easily interpreted  by  natural   resource
managers.  Furthermore, we have sought to provide data to help
prioritize existing and future national and regional forests,
parks) reserves and other natural areas for adaptation  measures.  

To  identify geographic priorities under climate change, man-

agers can broadly consider three options:  areas of high, medium
or  low  vulnerability  of ecosystems to biome change.  For   the
acquisition of new areas, it may be prudent to prioritize areas of

potentially greater resilience,     known  as refugia,  and to avoid 
areas of higher vulnerability, all other factors being equal.  Con-
versley, for the management of exisiting areas,  it may be neces-

sary to prioritize places of higher vulnerability  for adaptation 
measures  because those locations may require more intensive 

mamagement,  such as prescribed burning to avoid catastrophic
wildfire and invasive species removal, because  of potentially

greater disturbances and species turnover. Areas of unique  eco-
logical  or   cultural   value   may  continue  to   merit   high priority.  

The  eventual  configuration  of  new  and   existing   nautral   resource

areas may also reveal appropriate  areas for the establishment  of
corridors to facilitate species dispersal and migration.  Although

the coarse scale of our results only provides information appro-
priate for global and regional planning,  application  of our

method  to data  at  fomer spatial scales (Ashcroft et al., 2009),
subject to accuracy limits of downscaling, could make climate

change planning possible for local areas. In addition to adapta-
tion measures, substantial reductions in greenhouse gas emis-

sions could   enable   the world to   avoid   the   most   serious 
consequences of climate  change, which include  global   vegeta-

tion  shifts and potential  impacts on human well-being.
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