Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events

Stephanie K. Moore, Nathan J. Mantua, Barbara M. Hickey, Vera L. Trainer

ABSTRACT

Temporal and spatial trends in paralytic shellfish toxins (PSTs) in Puget Sound shellfish and their relationships with climate are investigated using long-term monitoring data since 1957. Data are selected for trend analyses based on the sensitivity of shellfish species to PSTs and their depuration rates, and the frequency of sample collection at individual sites. These criteria limit the analyses to the shellfish species Mytilus edulis at 20 sites from 1993 to 2007. Blue mussel toxicity is highly variable, but typically exceeds the regulatory limit for human consumption from July to November annually, with most closures occurring early in fall. Using blue mussel data only, we find no robust evidence to suggest that the frequency, magnitude, duration, or geographic scope of PST events in Puget Sound increased between 1993 and 2007. However, there is a significant basin-wide trend for closures to occur earlier in the year. There are no significant correlations between annual indices of mussel toxicity and aspects of the local and large-scale climate. Case studies of daily variations in local environmental factors leading up to exceptionally toxic events identify a combination of conditions that generally precedes most closures from 1993 to 2007. These results suggest that periods of warm air and water temperatures and low streamflow on sub-seasonal timescales may facilitate toxin accumulation in mussels. No relationships were found between water residence times in the surface layer and either streamflow or mussel toxicity.

1. Introduction

Paralytic shellfish toxins (PSTs) are a suite of toxins produced by species of harmful marine dinoflagellates of the genus Alexandrium. PSTs are the most potent being saxitoxin, block the conduction of nerve signals by interfering with the sodium channels of excitatory cells, thus causing neuromuscular paralysis (Narahashi and Moore, 1968). Like many other dinoflagellates, Alexandrium is known to thrive when the water column is vertically stratified and when water temperatures are warm (Nishitani and Chew, 1984). During blooms of Alexandrium, shellfish concentrate the toxins in their tissues from the large volumes of water they filter when feeding. We use the word "bloom" here to describe an accumulation of cells at sufficiently high densities to cause concentrations of PSTs in shellfish tissues to exceed the regulatory limit for human consumption. This could be as few as 10 cells ml⁻¹ (Nishitani and Chew, 1984). A "bloom" can therefore result from hydrographic processes retaining and concentrating Alexandrium cells in a particular location or from in situ growth.

Consumption of contaminated shellfish produces a condition known as paralytic shellfish poisoning (PSP; Gessner and Middaugh, 1995). The first documented cases of PSP in Washington State are from 1942 when the consumption of toxic clams and mussels from the Strait of Juan de Fuca resulted in three fatalities (Quayle, 1969). Nearby on the central coast of British Columbia, four cases of PSP and one fatality were documented in 1793 (Vancouver. 1793). It is generally accepted that blooms of Alexandrium in this region are not recent phenomena and that PSTs have been present in the waters off the northwest coast of North America for centuries (Horner et al., 1997).

The presence of PSTs in Washington State coastal waters, including Puget Sound, has been attributed to the species Alexandrium catenella (Whedon & Kofoid) Balech. Few direct observations of A. catenella cell concentrations exist from this
region to examine trends in distribution and abundance. However, the Washington State Department of Health (WDoH) monitors for PSTs in shellfish tissues as part of their Biotoxin Monitoring Program. These records reliably date back to 1977, representing one of the longest historical records of PSTs in the United States. Observations of shellfish toxicity are useful because they integrate much of the spatial and temporal variations in PSTs in the water column and can indicate some aspects of A. catenella bloom dynamics (Bricej and Shumway, 1998). However, care should be taken to avoid using shellfish toxicity (or PST event) interchangeably with Alexandrium cell density (or harmful algal bloom) as this relationship is complex, largely due to the differing rates of toxin accumulation and depuration by different species of shellfish.

Temporal trends in shellfish toxicity and relationships with climate have mostly been explored on a qualitative level in Puget Sound (e.g., Determan, 1998; Ebbeysmeyer et al., 1995; Erickson and Nishitani, 1985; Nishitani and Chew, 1984; Norris-Nishitani et al., 1979; Postel et al., 2000; Rensel, 1993; Saunders et al., 1982; Trainer et al., 2003). A study of decadal patterns of shellfish toxicity indicated that the frequency, magnitude, and geographical scope of PSTs in Puget Sound have increased since the 1950s (Trainer et al., 2003), concomitant with an apparent worldwide increase in the occurrence of harmful algal blooms (Hallegraeff, 1993).

Other studies suggest relationships between shellfish toxicity and large-scale patterns of climate variability (Ebbeysmeyer et al., 1995; Erickson and Nishitani, 1985). For example, a shift in the Pacific Decadal Oscillation (PDO) from cool to warm phase in 1977 was locally manifested by persistently warmer air and water temperatures and reduced precipitation and streamflow in the Puget Sound region (Ebbeysmeyer et al., 1995; Mantua et al., 1997). This is thought to have contributed to the record levels of PSTs observed in mussels in 1978 and to the spread of A. catenella into Whidbey and Main basins (Erickson and Nishitani, 1985; Trainer et al., 2003). However, recent enumeration of cysts from sediment cores suggests A. catenella was present in Whidbey basin at least 2 decades prior to this incident (Cox et al., 2008). A relationship between warm phases of the El Nino Southern Oscillation (ENSO, hereafter El Nino) and exceptionally toxic events in Puget Sound, the outer coast of Washington State, and the inland waters of British Columbia has also been suggested (Erickson and Nishitani, 1985), and the retention of PSTs by butter clams, Saxidomus giganteus, in an embayment of Puget Sound has been linked to warm/dry climate regimes on decadal timescales (Ebbeysmeyer et al., 1995). Rigorous and quantitative analyses are required to determine the statistical significance of these relationships and to develop predictive models of shellfish toxicity.

The mechanisms for these large-scale climate variations to increase shellfish toxicity in the Puget Sound region have not been clearly identified. One hypothesis was that warmer air temperatures and reduced winds that are generally associated with El Nino events lead to prolonged periods of increased water temperatures and thermal stratification of the water column (Erickson and Nishitani, 1985), favoring blooms of A. catenella other non-flagellated phytoplankton species. However, a recent assessment of climate influences on Puget Sound oceanographic properties found that El Nino events do not typically cause significant warming or stronger vertical stratification of the water column during summer and fall when shellfish toxicity from A. eatenella is most commonly observed (Moore et al., 2008). Aspects of the local climate, such as air temperature and streamflow, were found to be more important in determining oceanographic variability in Puget Sound rather than large-scale climate variations like ENSO (Bos et al., 2005; Moore et al., 2008).

The skill and lead times for forecasting shellfish toxicity will be strongly determined by the robustness of relationships with local environmental factors and certain aspects of the large-scale climate. In our analyses, we define local environmental factors to be specific to the Puget Sound basin and to typically vary on daily to seasonal timescales, whereas large-scale climate patterns are hemispheric-scale variations that typically occur on interannual to interdecadal timescales. If PST events are strongly driven by variations in local environmental factors, then advanced warning of shellfish toxicity will be limited by the same factors that limit the prediction of local weather conditions. In contrast, if large-scale climate variations are well correlated with PST events, then advanced warning of shellfish toxicity may be extended. For example, predictability of ENSO variations is possible at lead times up to at least 1 year (Cane et al., 1986).

This study was driven by the desire to better understand PST variations in Puget Sound shellfish and the influence of climate. Specific aims were to apply quantitative statistics to determine (1) potential increases in the frequency, magnitude, duration, and/or geographical scope of PST events, (2) possible relationships between shellfish toxicity, local environmental factors, and aspects of the large-scale climate, and (3) the capacity for predicting PST events. We use a subset of PST observations from a single shellfish species (the blue mussel, Mytilus edulis) with continuous and long-term records from the same locations to examine temporal and spatial patterns of variability at sub-seasonal to interannual timescales.

2. Study area

Puget Sound is a deep, fjord-type estuary covering an area of 2330 km² in the Pacific Northwest region of the United States (Fig. 1). A double sill at the entrance (i.e., Admiralty Inlet) separates it from the Strait of Juan de Fuca. Whidbey, Main, and Hood Canal basins are the three main branches of Puget Sound (Thomson, 1994). The shallower South Sound is highly branched with numerous finger inlets and is separated from Main basin by a sill at Tacoma Narrows. This study also examines PST variations to the north of Puget Sound in North and Northwest basins; regions encompassing the Sanjuan Islands and part of the Strait of Georgia, and the southeastern boundary of the Strait of Juan de Fuca, respectively.

Flow within Puget Sound is dominated by tidal currents reaching amplitudes of ~1 m s⁻¹ at Admiralty Inlet, and reducing to ~0.5 m s⁻¹ in the Main basin (Lavelle et al., 1988). The sub-tidal component of flow reaches ~0.1 m s⁻¹ and is driven by density gradients arising from the contrast in salty ocean water at the entrance to Puget Sound and freshwater from river inflows (Lavelle et al., 1988), and by surface winds (Matsaura and Cannon, 1997).

Wind-driven flow is strongest in the upper 10 m of the water column, but under weakly stratified conditions can influence currents at depths to 100 m. Annual maxima in freshwater inflows result from periods of high precipitation and snowmelt, with the Skagit River accounting for the majority (Cannon, 1983). The sub-tidal circulation pattern mostly consists of a two-layered flow in Whidbey, Main, and Hood Canal basins, with fresher water flowing northward and exiting the basins at the surface and saltier water flowing southward and entering at depth (Ebbeysmeyer and Cannon, 2001). Upwelling at the Tacoma Narrows sill and the absence of major river inflows results in lesser stratified waters in South Sound compared to the other basins, but surface waters generally continue to flow northward and deeper waters flow southward.

3. Shellfish toxicity data

A Biotoxin Monitoring Program for shellfish was first established by the WDoH in the early 1930s. Monitoring efforts initially focused on commercially important species such as the Pacific
oyster, *Crassostrea gigas*, and were highly concentrated in the North and Northwest basins of Puget Sound. In 1946, the program was temporarily terminated because an annual closure to shellfish harvesting in the Strait of Juan de Fuca and on the outer Washington State coast from April 1 to October 31 was deemed sufficient to protect public health. Monitoring resumed in 1957 in response to increased PST detections in shellfish in British Columbia, and was expanded to include all species of commercial shellfish. In September of 1978, the highest levels of PSTs ever recorded in Washington State were detected in mussels from Whidbey basin. This was the first time that PST concentrations in shellfish from inside Puget Sound exceeded the regulatory limit, prompting a substantial increase in monitoring efforts. In 1986, the WDoH became the official management body for recreational sport harvesting of shellfish and monitoring of these species increased. In 1988, trials of a Sentinel Monitoring Program began at several sites using caged mussels suspended ~1 m below the surface. By 1990, the Sentinel Monitoring Program was in place throughout Puget Sound and mussels were sampled at up to 70 sites at ~2 wk intervals. Fig. 2 shows the number of PST observations per year for the most commonly sampled shellfish species. Table 1 summarizes the distribution of sampling sites in Puget Sound basins.

Testing of PSTs in shellfish is conducted using the standardized mouse bioassay (Association of Official Analytical Chemists, 1990), and is expressed in saxitoxin equivalents (STXeq). This method has essentially remained unmodified since its development in the 1920s. The lower limit of detection of the mouse bioassay is 32 μg STXeq 100 g−1 shellfish tissue (Bricelj and Shumway, 1998), and the regulatory limit for human consumption is 80 μg STXeq 100 g−1.

Monitoring data from the WDoH Biotoxin Program were compiled for the period 1957-2002 by the Northwest Fisheries Science Center Marine Biotoxins Program. This database comprises 59151 observations of PSTs in the tissues of 27 identified species of shellfish at 882 sites in Puget Sound. The most commonly sampled species are *M. edulis*, *S. giganteus*, and *C. gigas* representing 31%, 18%, and 17%, respectively, of the total number of PST observations. Less commonly sampled species include littleneck clam (*Protothaca staminea*), manila clam (*Tapes japonica*), geoduck (*Panopea abrupta*), California mussel (*Mytilus californianus*) and pink scallop (*Chlamys hastata*).

Table 1

<table>
<thead>
<tr>
<th>Basin</th>
<th>Water Bodies</th>
<th>Sites</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>29</td>
<td>217</td>
<td>11521</td>
</tr>
<tr>
<td>Northwest</td>
<td>51</td>
<td>81</td>
<td>6785</td>
</tr>
<tr>
<td>Whidbey</td>
<td>7</td>
<td>28</td>
<td>4952</td>
</tr>
<tr>
<td>Main</td>
<td>25</td>
<td>227</td>
<td>15945</td>
</tr>
<tr>
<td>South Sound</td>
<td>20</td>
<td>133</td>
<td>7442</td>
</tr>
<tr>
<td>Hood Canal</td>
<td>9</td>
<td>60</td>
<td>2846</td>
</tr>
</tbody>
</table>

4. Data selection

Differences in toxin sensitivity and detoxification rates among the most commonly sampled shellfish species determine their usefulness in trend analyses. Shellfish that are sensitive to PSTs, such as *C. gigas*, will exhibit mechanisms such as feeding inhibition to avoid or reduce exposure to the toxins. Because of this, these species do not generally acquire high levels of PSTs in their tissues.
For example, during the time period 1990-2000, only 6% of C. gigas PST observations from Filucy Bay (see Fig. 1 for location) were at or above the detection limit of the mouse bioassay, and only 1% exceeded the regulatory limit for human consumption (Fig. 3). In comparison, 27% of M. edulis PST observations from the same location for the same time period were at or above the detection limit, and 12% exceeded the regulatory limit. Six closures were apparent from examining PSTs in M. edulis. These closures would have gone undetected if C. gigas were the only species of shellfish used to monitor for PST events. Therefore, the already complicated relationship between the presence of A. catenella cells in the water column and shellfish toxicity is even more strongly decoupled for shellfish species that are sensitive to PSTs.

Detoxification rates of shellfish species also influence their usefulness to indicate certain aspects of Alexandrium bloom dynamics. For example, S. giganteus readily acquires high levels of PSTs from the water column, but is a slow detoxifier that may take several months to depurate toxins from its tissues (Bricelj and Shumway, 1998). This is much longer than the duration of a typical Alexandrium bloom. The detoxification timescale of S. giganteus from a site in Sequim Bay (see Fig. 1 for location) is shown in Fig. 4. This was calculated by applying a detoxification rate of 0.7%/d to S. giganteus PST concentrations from 1980 to 1990. If a toxin measurement was made after clams had sufficient time to detoxify to below the regulatory limit, the value was considered to reflect "new accumulation" of PSTs from the water column. From 1980 to 1990, only two observations can be considered to reflect new accumulation, and these two observations occurred after a long gap in the monitoring of the clams at this site. The remaining observations were made while clams still had "residual" PSTs in their tissues and may not actually reflect the presence of A. catenella cells in the water column. The slow detoxification rate of S. giganteus introduces a "toxin memory" effect, such that PSTs may be detected in S. giganteus tissues many months following a bloom of Alexandrium even though cells may not be present in the water column. This toxin memory limits the usefulness of S. giganteus in examining PST trends on timescales shorter than a few years.

By comparison, M. edulis may take only a few weeks to detoxify in the absence of toxic Alexandrium cells (Bricelj and Shumway, 1998). Of the three most commonly sampled shellfish species from the WDoH Biotoxin Monitoring Program, M. edulis is the most suitable for examining PST trends on sub-seasonal to interannual timescales. M. edulis readily accumulates PSTs from the water column, and concentrations of PSTs in their tissues have been shown to exceed the regulatory limit in <1 h of exposure to a toxic strain of Alexandrium in the laboratory (Bricelj et al., 1990). M. edulis also rapidly detoxify in only a few weeks at a rate of 10.6%/d (Bricelj and Shumway, 1998). PST concentrations in M. edulis tissues are therefore a reasonable proxy for A. catenella blooms.

It was these traits that led M. edulis to be chosen as the sentinel species for monitoring PSTs in Puget Sound. However, unlike C. gigas and S. giganteus, which have observational records dating back to the 1950s, M. edulis was not sampled regularly until the WDoH Sentinel Monitoring Program began in the early 1990s. This increase in M. edulis sampling effort introduces a bias for a greater proportion of samples testing positive for toxin. The number of observations of M. edulis is significantly correlated with higher
annual maximum PST values in North, Northwest, Main, and South Sound basins (Table 2). This relationship was only marginally insignificant in Whidbey basin \((p = 0.09) \), but was not observed in Hood Canal; the only remaining basin in Puget Sound that experiences few or no closures. Increased sampling effort introduces a bias that can be overcome either by randomly selecting a consistent number of PST observations from the *M. edulis* database for each year examined, or only including sites with regular and consistent sampling frequency in trend analyses. The latter option was employed in this study because variability in PST levels from the same shellfish species can be high at spatial scales as low as 1-10 km (Nishitani and Chew, 1984; Prakash et al., 1971). Randomly selecting *M. edulis* observations from all available sites could therefore introduce variability that may mask temporal trends or potential relationships with climate. Sites with consistent sampling frequency were identified as those with at least one observation per month for at least 90% of months from 1993 to 2002. This approach reduced the scope of the data considered here to 20 sites, but it ensures an objective and quantitative assessment of PST trends. Sites meeting these selection criteria represent all basins of Puget Sound and comprise a subset of the sites sampled as part of the WDoH Sentinel Monitoring Program. Sampling frequency is generally biweekly for these sites, which is higher than the once per month criterion we specify. PST observations in mussels from these sites from 2003 to 2007 were obtained from the WDoH to extend their time series to 15 years for our analyses, producing the longest historical, most spatially comprehensive, and most consistent time series of PST observations for any shellfish species in Puget Sound.

5. Temporal and spatial variability

PST observations in mussels at the 20 selected sites were interpolated on a daily timescale. In cases where observations were missing for a period of 30 days or more, PST values were set to zero. This avoided interpolating from one closure to the next across data gaps and falsely lengthening periods of closures. Monthly means of the number of closure days for each selected site were calculated for 1993 to 2007. A closure day was defined as any day when the interpolated *M. edulis* PST concentrations exceeded the regulatory limit for human consumption. In general, three seasonal patterns are apparent (Fig. 5). The most common pattern is observed at stations in Northwest, Whidbey, and Main basins, and is for the maximum number of closure days per month to occur during fall. Other sites, particularly in North and South Sound basins, display a bimodal pattern where the number of closure days per month peak twice a year; once during mid to late summer and again during mid to late fall. The remaining sites rarely or never experienced closures from 1993 to 2007 and were mostly located in Hood Canal.

The basin-wide average number of closure days per month for all of the 20 selected sites in Puget Sound was most like the pattern observed for sites in Northwest basin, with PST events typically occurring annually from July to November (not shown). This is fairly consistent with the seasonal pattern documented for all of the western states of North America (i.e., from May to October annually; Homer et al., 1997). However, variability in the number of closure days per month is large among sites in Puget Sound. Sites in Northwest basin experienced closures for up to 20 d mo\(^{-1}\), approximately 10 d mo\(^{-1}\) more than the basin-wide average for the 20 selected sites for the same time of year. Months with the most number of closure days also have high variability. A snapshot comparison of monthly maximum PST concentrations in mussels from the 20 selected sites illustrates the vast interannual variability in the number of closure days per month.
differences in the timing, location, and toxicity of events (Fig. 6). Monthly maximum PST concentrations were categorized as low, moderate, high, and very high corresponding to PST values <80, 80-500, 500-1000, and > 1000 µg STXeq 100 g⁻¹, respectively, and mapped from August through October every other year from 1994 to 2006. Very high toxicity was observed in Northwest basin during September 1994, and in northern Main basin during September and October 1996 and October 1998. High toxicity was also observed in South Sound during October 1998. Widespread very high toxicity was observed in Northwest, Main, and South Sound basins during 2000, and began earlier in the year compared to other years. During 2002, very high toxicity was observed later in the year in Northwest and Main basins, with record levels of 20.8 x 10³ µg STXeq 100 g⁻¹ observed in November.

We used principal component analysis to test for coherent patterns of variability in the number of closure days per month at the 20 selected sites in Puget Sound from 1993 to 2007. The seasonal cycle was removed and anomalies were normalized such that they had a mean of zero and a standard deviation of 1. The first four principal components (PCs) represent 19%, 18%, 12%, and 10% of the total variability in the number of closure days per month, respectively. Loading vectors for each site show that variability represented by PC1 is greatest for sites in South Sound (i.e., Allyn, Filucy Bay, Jarrell Cove, and Zittel’s Marina). PC2 loads most strongly on sites in North basin (i.e., Semiahmoo Marina and Birch Bay) and on Kingston Marina in Main basin; PC3 on Port Orchard Marina, EPA Lab Dock, and Southworth in Main basin; and PC4 on sites in Northwest basin (i.e., Sequim and Discovery Bays). However, eigenvalues for all of the principal components have overlapping 95% confidence intervals and are statistically indistinguishable (North et al., 1982). Therefore, the structures they represent must be interpreted with caution and may in fact hold little meaning. The lack of statistically significant patterns of variability in the number of closure days further highlights the high degree of temporal and spatial variability in blue mussel PSTs in Puget Sound.

To facilitate the detection of temporal trends and possible relationships with climate, "hot spot" sites were identified by calculating cumulative indices of toxicity and the number of closure days for the 20 selected sites from 1993 to 2007. Mussels at Mystery, Discovery, and Sequim Bays, and at Kingston Marina reached distinctly higher cumulative indices of toxicity and closure days compared to all other sites (Fig. 7). In other words, these hot spot sites most frequently had the highest levels of mussel toxicity. Hot spot sites also display high variability of the monthly mean number of closure days from 1993 to 2007 (Fig. 8). We hypothesize that much of this variability is driven by changes in local environmental factors and large-scale climate patterns. As such, any possible relationships between PSTs and climate indices are most likely to emerge from examining hot spot sites.

6. Interannual trends

Daily interpolated blue mussel PST concentrations from 1993 to 2007 were used to develop a range of annual indices of toxicity and to examine interannual trends. In particular, we tested the hypothesis that the frequency, magnitude, duration, and geographic scope of PST events in Puget Sound have increased in recent years. Indices of toxicity were calculated for each site and include the first day of the year that a closure occurred, the number of days annually from the day of the first closure to the day of the last closure (including non-closure days in between); the total

![Fig. 6.](image-url)
number of days annually that closures occurred (not including non-closure days); the day of the year that the maximum PST concentration was observed; the maximum annual PST concentration observed; the annual mean of PST concentrations; and the cumulative annual PST concentration. In some cases, PST events that occurred late in the season resulted in closures that persisted into the following year and the first day of the year that a closure occurred would be January 1. To avoid this carry over effect from the previous year, the first closure of any year had to occur after March 1. Mean values of each of the indices were calculated using hot spot sites only (i.e., Mystery, Discovery, and Sequim Bays, and Kingston Marina) and all of the selected sites and correlated with time (Table 3). For hot spot sites, the number of days each year from the first to the last closure and the total number of closure days each year were negatively and significantly correlated with time, indicating that duration of PST events decreased at these sites from 1993 to 2007. For all of the selected sites, the day of the year when the first closure occurred and the day of the year that the maximum PST concentration occurred were negatively and significantly correlated over time, suggesting a trend for PST events to occur earlier in the year. No other correlations were statistically significant, indicating that neither the duration nor the magnitude of PST events in Puget Sound increased significantly between 1993 and 2007.

Temporal trends in PST events in Puget Sound were examined further by contouring the number of sites where closures occurred for each day of the year from 1993 to 2007 (Fig. 9A). Shaded areas represent periods of closures that typically occurred from July to November each year. If the duration and/or frequency of PST events had increased between 1993 and 2007, the shaded area would widen vertically toward the bottom of the plot. If the geographical

Fig. 7. Cumulative summation of (A) *M. edulis* toxicity values, and (B) days when PSTs in *M. edulis* exceeded the regulatory limit of 80 μg STXeq 100 g⁻¹. Sites at Mystery Bay (MYS), Kingston Marina (KIN), Sequim Bay (SEQ), and Discovery Bay (DIS) reached the highest cumulative toxicity values and cumulative number of closure days after the 15-year period from 1993 to 2007.

Fig. 8. Sums of the anomalies of the number of closure days per month from 1993 to 2007 for each selected site.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Pearson's correlation coefficients for annual indices of toxicity at hot spot sites and for all sites with time from 1993 to 2007 (n=15). Probability values are not adjusted for autocorrelation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual indices of toxicity</td>
<td>Hot spots</td>
</tr>
<tr>
<td>Day of first closure</td>
<td>.08</td>
</tr>
<tr>
<td>Days from first to last closure</td>
<td>-.55*</td>
</tr>
<tr>
<td>Total closure days</td>
<td>-.51*</td>
</tr>
<tr>
<td>Day of max PST</td>
<td>.10</td>
</tr>
<tr>
<td>log(max PST)</td>
<td>.42</td>
</tr>
<tr>
<td>log(1/mean PST + 1)</td>
<td>-.44</td>
</tr>
<tr>
<td>log(1/sum PST + 1)</td>
<td>.45</td>
</tr>
</tbody>
</table>

* p ≤ 0.05.
** p ≤ 0.01.

1 No PSTs were observed in mussels at hot spot sites in 2007; therefore, there are no values for the first day of the year that a closure occurred and the day of the year that the maximum PST level was observed at hot spot sites and n = 14 for correlations from 1993 to 2006.
The scope of blooms had increased, the shaded area would darken vertically toward the bottom of the plot, indicating an increase in the number of selected sites experiencing closures. Neither of these patterns is observed. Contour plots of the number of sites where mussel toxicity exceeds 500 and 1000 µg STX eq 100 g⁻¹ (Fig. 9B and C, respectively) also show no darkening of the shaded area vertically toward the bottom of the plots, indicating that PST events in Puget Sound have not become more toxic between 1993 and 2007. Similar contour plots using PST concentrations at hot spot sites show no consistent darkening of the shaded area vertically toward the bottom of the plots (Fig. 10). Toxicity does appear to have increased at Kingston Marina and decreased at Mystery Bay between 2003 and 2007, but the interannual variability is high. In summary, a combination of quantitative and qualitative analyses suggest a trend toward earlier occurring PST events from 1993 to 2007, but we find no robust evidence for an increase in the frequency, magnitude, duration, and geographic scope of PST events in Puget Sound in this period based on blue mussel data.

Fig. 9. Number of selected sites where PST concentrations in M. edulis exceeded (A) 80, (B) 500, and (C) 1000 µg STX eq 100 g⁻¹ contoured on each day of the year from 1993 to 2007. Light gray, gray, dark gray, and black shading corresponds to 2–4, 4–6, 6–8, and 8–10 sites, respectively.

Fig. 10. PST concentrations in M. edulis at the hot spot sites (A) Sequim Bay, (B) Discovery Bay, (C) Mystery Bay, and (D) Kingston Marina contoured on each day of the year from 1993 to 2007. Light gray, gray, dark gray, and black shading corresponds to PST concentrations 32–80, 80–500, 500–1000, and >1000 µg STX eq 100 g⁻¹, respectively.
7. Relationships with climate

7.1. Interannual timescale: indices of shellfish toxicity and climate

Correlations were conducted to determine any possible relationships between the annual indices of toxicity and annual means of local environmental factors and large-scale climate indices. Local environmental factors examined here are sea surface temperature and salinity, air temperature, precipitation, streamflow, wind-driven coastal upwelling, and local surface winds. Sea surface temperature (SST) and salinity (SSS) at Race Rocks Light, British Columbia, Canada, were obtained from the Department of Fisheries and Oceans, Canada (http://www.pac.dfo-mpo.gc.ca/SCI/osap/data/SearchTools/Searchlighthouse_e.htm). Air temperature (AIR) and precipitation (PRCP) for Port Townsend (station 456678) were obtained from the United States Historical Climatology Network (Williams et al., 2006). Total freshwater inflow was approximated using the Skagit River (STRM), which accounts for over half of the total streamflow to Puget Sound (Cannon, 1983). Data were obtained for the Skagit River at Mount Vernon (site 12200500) from the U.S. Geological Survey Water Resources Division. The coastal upwelling index (UPWL) at 48°N and 125°W was obtained from the National Oceanic and Atmospheric Administration (NOAA) Environmental Research Division. Upwelling indices provide information on the strength of upwelling along the open coast. This is related to the seasonal upward movement of nutrients into the nearshore areas. In particular, nutrient-rich water is drawn into the Strait of Juan de Fuca with inflowing deeper water by estuarine and tidal processes (MacFadyen et al., 2008), and enters Puget Sound at Admiralty Inlet. Upwelling in the Pacific Northwest generally occurs during spring and summer and is indicated by persistent positive values of the upwelling index. In contrast, large negative values of the upwelling index indicate downwelling conditions that are driven by strong southerly winds. Local surface winds in Puget Sound (WIND) were approximated using observations at West Point obtained from the NOAA National Data Buoy Center. Unlike coastal upwelling, local winds do not introduce new sources of nutrients to the Puget Sound basin that could be utilized by A. catenella for growth. However, local winds generally do co-vary with the coastal upwelling index; they are weak with a more easterly component during upwelling conditions and strong with a more southerly component during downwelling conditions.

Large-scale interannual climate variations of interest to the Pacific Northwest are approximated using the North Pacific Index (NPI) and Nino 3.4 index. The NPI provides an index of the strength of the Aleutian Low Pressure System and is based on sea level pressure in the region 30°N-65°N, 160°E-140W. Low values of the NPI indicate an intense Aleutian Low that contributes to a warmer coastal ocean and warmer and drier winter and spring conditions in the Pacific Northwest. The NPI was provided by the Climate Analysis Section, NCAR, Boulder, USA (Trenberth and Hare, 1994). Following Trenberth (1997), we used SST anomalies in the Nino 3.4 region (5°N-5°S, 120°W-170°W) as an index of ENSO. Nino 3.4 data were provided by the NOAA National Weather Service Climate Prediction Center. Annual values of the Nino 3.4 index were based on 12-month averages of July to June values because of high autocorrelation that rapidly declines from June through July. Essentially, this reflects the tendency for individual ENSO events to begin in one summer, peak the following winter, and then fade away in the subsequent spring (see Newman et al., 2003). The Pacific Decadal Oscillation is another large-scale climate variation important to the Pacific Northwest (Mantua et al., 1997), but the 15 years of blue mussel PST concentrations examined here is too short to assess any possible impacts of the PDO given that a typical PDO event lasts 20-30 years (Mantua and Hare, 2002).

We examined potential correlations between the mean values of the annual indices of toxicity (at hot spot sites only and at all selected sites) with climate indices from 1993 to 2007. The number of degrees of freedom used to determine the probability values was adjusted for autocorrelation following Bretherton et al. (1999). If the autocorrelation coefficient at a lag of 1 year was negative, the number of degrees of freedom was set to the default value of n-2. No significant correlations were found between annual indices of toxicity and climate indices when examined on this timescale.

Previous qualitative studies suggest a strong relationship between El Nino and exceptionally toxic PST events in Puget Sound, the outer coast of Washington State, and the inland waters of British Columbia on interannual timescales (Erickson and Nishitani, 1985). This finding was based on the assumption that warmer than usual air and water temperatures and reduced winds during El Nino years create stable, vertically stratified water column conditions favorable for A. catenella bloom development. We found no significant correlations between annual indices of toxicity and ENSO from 1993 to 2007. This could be due to the fact that atmospheric and oceanic teleconnections of ENSO are strongest in the Pacific Northwest during winter and spring, with generally warmer (cooler) conditions experienced during El Nino (La Nina) winters (Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986, 1987). Warmer SSTs during El Nino events can persist into spring and summer, but by late summer and fall, when shellfish in Puget Sound typically become toxic, this SST response breaks down (Moore et al., 2008).

7.2. Daily timescale: local environmental factors preceding highly toxic events

Variations in local environmental factors preceding exceptionally toxic PST events were examined on shorter daily timescales. Mussel toxicity at hot spot sites was used to identify the five largest PST events from 1993 to 2007. These occurred on 7 October 1996, 14 September 2000, 3 November 2002, 2 September 2004, and 4 September 2006, with PST values well above the regulatory limit of 400 μg STX eq/L. We found no significant correlations between annual indices of toxicity and ENSO from 1993 to 2007. This could be due to the fact that atmospheric and oceanic teleconnections of ENSO are strongest in the Pacific Northwest during winter and spring, with generally warmer (cooler) conditions experienced during El Nino (La Nina) winters (Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986, 1987). Warmer SSTs during El Nino events can persist into spring and summer, but by late summer and fall, when shellfish in Puget Sound typically become toxic, this SST response breaks down (Moore et al., 2008).

We examined potential correlations between the mean values of the annual indices of toxicity (at hot spot sites only and at all selected sites) with climate indices from 1993 to 2007. The number of degrees of freedom used to determine the probability values was adjusted for autocorrelation following Bretherton et al. (1999). If the autocorrelation coefficient at a lag of 1 year was negative, the number of degrees of freedom was set to the default value of n-2. No significant correlations were found between annual indices of toxicity and climate indices when examined on this timescale.

Previous qualitative studies suggest a strong relationship between El Nino and exceptionally toxic PST events in Puget Sound, the outer coast of Washington State, and the inland waters of British Columbia on interannual timescales (Erickson and Nishitani, 1985). This finding was based on the assumption that warmer than usual air and water temperatures and reduced winds during El Nino years create stable, vertically stratified water column conditions favorable for A. catenella bloom development. We found no significant correlations between annual indices of toxicity and ENSO from 1993 to 2007. This could be due to the fact that atmospheric and oceanic teleconnections of ENSO are strongest in the Pacific Northwest during winter and spring, with generally warmer (cooler) conditions experienced during El Nino (La Nina) winters (Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986, 1987). Warmer SSTs during El Nino events can persist into spring and summer, but by late summer and fall, when shellfish in Puget Sound typically become toxic, this SST response breaks down (Moore et al., 2008).
time periods precede the five largest PST events that were used to identify them; they also generally precede other closures at hot spot sites (Fig. 12A) and periods when the mean of mussel PST concentrations at all of the selected sites was increasing (Fig. 12B). It is particularly interesting to note that the window of favorable environmental factors for toxin accumulation in mussels was very narrow during 2007, and this was the only year in the 1993-2007 period when no closures were observed at hot spot sites.

An overlap index was developed to assess the performance of the hindcast model for mussel toxicity in Puget Sound. The overlap index was calculated as the number of days that favorable environmental factors coincided with toxin accumulation in blue mussels, divided by the total number of days with favorable environmental factors, and multiplied by 100 (Fig. 13). Days of toxin accumulation in mussels were defined as PST concentrations that were increasing and that exceeded the detection limit of the mouse bioassay. The overlap index therefore assesses the capacity for the combination of local environmental factors to coincide with the initial stages of PST events. The overlap index varied from year to year, but over the entire time period from 1993 to 2007, its mean value was 45 for hot spot sites and 31 for all of the selected sites (Table 5). Perfect overlap was not observed because Puget Sound mussels were not always toxic when environmental factors were favorable. This indicates that additional parameters and processes not considered here, such as macro or micro-nutrient availability (Rensel, 1993), also contribute to PST events in Puget Sound.

Time periods when individual environmental factors were favorable for toxin accumulation in mussels were determined

Table 4
Mean and standard deviations of the local environmental factors observed during the 20 days prior to the five largest PST events observed at hot spot sites from 1993 to 2007.

<table>
<thead>
<tr>
<th>Local environmental factor</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST (°C)</td>
<td>11.23</td>
<td>1.09</td>
</tr>
<tr>
<td>SSS (psu)</td>
<td>31.19</td>
<td>0.41</td>
</tr>
<tr>
<td>AIR (°C)</td>
<td>13.35</td>
<td>3.50</td>
</tr>
<tr>
<td>PRCP (cm d⁻¹)</td>
<td>0.10</td>
<td>0.29</td>
</tr>
<tr>
<td>STRM (m² s⁻¹)</td>
<td>245.76</td>
<td>106.63</td>
</tr>
<tr>
<td>TIDE (m)</td>
<td>3.38</td>
<td>0.44</td>
</tr>
<tr>
<td>UPWL (m² s⁻¹ 100 m⁻¹)</td>
<td>10.35</td>
<td>28.36</td>
</tr>
<tr>
<td>WIND (m s⁻¹)</td>
<td>3.90</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Table 5
Components of the overlap index to assess hindcasts of the number of days when the combination of favorable environmental conditions preceded mussel toxicity in Puget Sound from 1993 to 2007.

<table>
<thead>
<tr>
<th>Year</th>
<th>Hot spots</th>
<th>All sites</th>
<th>Hot spots</th>
<th>All sites</th>
<th>Overlap index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>16</td>
<td>4</td>
<td>78</td>
<td>67</td>
<td>56</td>
</tr>
<tr>
<td>1994</td>
<td>17</td>
<td>16</td>
<td>37</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>8</td>
<td>52</td>
<td>14</td>
<td>43</td>
</tr>
<tr>
<td>1996</td>
<td>19</td>
<td>16</td>
<td>41</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>0</td>
<td>72</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>31</td>
<td>8</td>
<td>75</td>
<td>38</td>
<td>61</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>1</td>
<td>42</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td>2000</td>
<td>9</td>
<td>9</td>
<td>61</td>
<td>66</td>
<td>27</td>
</tr>
<tr>
<td>2001</td>
<td>22</td>
<td>15</td>
<td>78</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>2002</td>
<td>24</td>
<td>25</td>
<td>87</td>
<td>54</td>
<td>79</td>
</tr>
<tr>
<td>2003</td>
<td>11</td>
<td>8</td>
<td>79</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2004</td>
<td>17</td>
<td>15</td>
<td>80</td>
<td>49</td>
<td>40</td>
</tr>
<tr>
<td>2005</td>
<td>28</td>
<td>13</td>
<td>66</td>
<td>53</td>
<td>49</td>
</tr>
<tr>
<td>2006</td>
<td>11</td>
<td>10</td>
<td>75</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALL</td>
<td>228</td>
<td>154</td>
<td>921</td>
<td>676</td>
<td>45</td>
</tr>
</tbody>
</table>
independently from the other factors from 1993 to 2007 (Fig. 14). SST and STRM had the highest individual overlap indices (i.e., 27 and 26, respectively) using periods of toxin accumulation in mussels at hot spot sites. The overlap index for AIR was also relatively high (i.e., 23). SSS, PRCP, TIDE, UPWL, and WIND were commonly within the range that was identified as being favorable for toxin accumulation in mussels (i.e., 74%, 89%, 71%, 63%, and 72% of days from 1993 to 2007, respectively). The overlap index for these environmental factors was <20. These factors may therefore contribute less to PST variability in Puget Sound compared to SST, AIR, and STRM. Nevertheless, the overlap index is greatly enhanced when all of the environmental factors are considered in combination, therefore they should not be discounted.

Climatological monthly means of the number of days when individual environmental factors were favorable for toxin accumulation in mussels were calculated independently from the other factors and expressed as a percentage of the total number of days from 1993 to 2007 (Fig. 15). The percentages of days when SST, AIR, and STRM were favorable for toxin accumulation in mussels show strong seasonal patterns. Favorable SST and AIR conditions tend to occur during summer and fall, and favorable STRM conditions occur late in the fall. Favorable UPWL conditions also tend to occur during summer and fall, but the seasonal pattern is less pronounced compared to SST, AIR, and STRM. In contrast, the favorable conditions specified for SSS, PRCP, TIDE, and WIND did not show strong seasonal patterns. When all of the environmental factors were considered in combination, a very strong seasonal pattern is observed that closely matches the time period when PSTs in mussels typically exceeded the regulatory limit (i.e., from July to November annually; Fig. 15). The percentage of days when the environmental factors occurred in combination is highest in September, and the annual window appears to be strongly constrained by STRM.

8. A revised view of the possible causes of toxic events

It has been hypothesized that A. catenella growth in Puget Sound is favored by the presence of a stable and warm surface layer that forms when large precipitation events are followed by calm and sunny weather (Determan, 1998; Erickson and Nishitani, 1985; Nishitani and Chew, 1984). Large precipitation events facilitate the development of stable water column conditions by delivering large volumes of freshwater to Puget Sound and increasing salinity stratification. If followed by calm and sunny weather, stratification might persist due to warming of the surface layer and reduced wind mixing. Our analysis finds that a large precipitation event with increased delivery of freshwater to Puget Sound (approximated by Skagit River streamflow) is not necessary to trigger mussel toxicity. Instead, the five largest PST events occurred when streamflow conditions were low, but no lower than
usual for that time of year based on the climatological monthly mean values (Moore et al., 2008).

The sub-tidal circulation of Puget Sound is driven by horizontal density gradients (Lavelle et al., 1988), which are influenced by streamflow. We examined the possibility that PST events may be more likely when streamflow is low and residence times in the surface layer are high. Longer residence times could retain *A. catenella* cells within Puget Sound for longer time periods thereby allowing shellfish to acquire higher levels of toxin. Estimates of residence times in the surface layer of Puget Sound were derived from a box model by Babson et al. (2006). The model configuration divided Puget Sound into seven sub-basins, each represented by a surface and deep layer box (total of 14 boxes). We considered the surface layer only because *A. catenella* has been found to reside in the upper 7 m of the water column in Puget Sound during both the day and night (Nishitani and Chew, 1984) and because mussels sampled by the Sentinel Monitoring Program were collected from cages situated in the surface layer. The depth of surface boxes differed for each sub-basin depending on the depth of no motion (where the sub-tidal velocity of exiting fresher water and entering ocean water crosses zero), and ranged from ~9 to 50 m. Residence times in the surface layer of the Main basin were calculated by dividing the volume of the surface box by the sum of the volume fluxes on a daily timescale from 1993 to 2003.

A negative relationship between surface layer residence times and Skagit River streamflow was expected. However, we found that high streamflow was not necessary for fast flushing of the surface layer in Malo basin, with short residence times also occurring when streamflow was low (Fig. 16A). This may reflect the contribution of deep oceanic water intrusions at Admiralty Inlet to residence times in Puget Sound (Cannon et al., 1990). The density of these deep water intrusions determines the displacement of water at depth, drives water exchange, and influences residence times (Leonov and Kawase, in press). We also find no significant

Fig. 14. Days when individual environmental factors were favorable for toxin accumulation in mussels from 1993 to 2007 (A–H; shaded gray), and when they occurred in combination (I; shaded black). The overlap index (OI), calculated using the mean of PST concentrations in *M. edulis* at hot spot sites, is given for each condition. Time periods when the mean of *M. edulis* PST concentrations at hot spot sites exceeded the detection limit of 32 μg STXeq 100 g−1 and were increasing are indicated for comparison (J; shaded black).

Fig. 15. Percentage of days each month when environmental factors were favorable for toxin accumulation in mussels, and when they occurred in combination, from 1993 to 2007. The time period when PST concentrations in mussels typically exceed the regulatory limit is shaded in gray (i.e., from July to November annually).
relationships between residence times and the mean number of closures days per month at hot spot sites only or at all of the selected sites (Fig. 16B).

9. Capacity for prediction

Shellfish growers in Puget Sound have indicated that advanced warning of blooms of toxin-producing algae would be extremely valuable (F. Cox, WDoH, pers. comm.). Such forecasts would allow growers to prevent or mitigate economic losses by harvesting earlier before the shellfish acquire the toxins, or planning ahead for a later harvest after the bloom passes and shellfish have depurated toxins. For example, the long-term economic value of predictions of blooms of *A. fundyense* in the Gulf of Maine is estimated at between $1 million and $11 million (Lin and Hoagland, 2008).

Advanced warning of PST events in Puget Sound will be limited by our ability to predict the combination of favorable local environmental factors that precede them. The prediction timescale of some of these conditions, such as air temperature and surface winds, is approximately 1-2 weeks. This is considerably less than the 1 year of advanced warning that would have been possible if the suggested relationships between PST events and large-scale climate variations, such as El Niño, were quantitatively confirmed.

In the Gulf of Maine, the concentration of *A. fundyense* resting cysts in sediments is a crucial component of the predictive model for blooms of this species and a good indicator of the risk of PST events (McGillicuddy et al., 2005). If we assume that the concentration of cysts in sediments is also a strong driver of blooms of *A. catenella*, there may be value in producing annual cyst maps for Puget Sound to provide advanced warning of the risk of PST events. If this relationship holds, it may also be useful to explore conditions that influence encystment of *A. catenella* and the deposition of cysts to sediments in Puget Sound.

Understanding mechanisms for the termination of *A. catenella* blooms will also be an important component of any predictive model. Our daily analysis of the five largest PST events shows that air and water temperatures decreased, and streamflow and downwelling favorable winds at the coast (indicated by large negative values of the coastal upwelling index) increased in the 20 days following the events (Fig. 11). These changes are consistent with the passage of a storm. Storms may therefore be an important component of the local climate contributing to the termination of *A. catenella* blooms and PST events. Storms could disperse blooms of *A. catenella* by enhancing wind-driven turbulent mixing in the upper water column and disrupting warm and stable surface layers. Nutrient depletion may also contribute to the termination of *A. catenella* blooms, and biological factors may also be important; for example, infection by the parasite *Amoebophrya ceratii* coincided with the demise of a dense bloom of *A. catenella* in Puget Sound in 1981 (Nishitani and Chew, 1984).

10. Future monitoring

Future monitoring in Puget Sound should focus on identifying key ecological factors that influence *A. catenella* population dynamics and/or shellfish toxicity events, and tailoring programs to match the temporal and spatial scales over which these key factors occur. For example, a long-term and ongoing monitoring program conducted by the Washington State Department of Ecology provides monthly profiles of oceanographic properties from an extensive network of stations in Puget Sound (Janzen, 1992; Newton et al., 2002). The data are well suited for identifying environmental processes occurring on seasonal to interannual timescales (e.g., Bricker et al., 1999; Kawase, 2002; Moore et al., 2008; Newton, 1995; Newton et al., 2003). However, higher frequency processes, such as those identified here to precede PST events in Puget Sound, cannot be resolved using monthly sampling. In the Hood Canal basin of Puget Sound, automated observing systems are helping to bridge this gap. The Oceanic Remote Chemical-optical Analyzer (ORCA) is a moored buoy developed by the University of Washington that telemeters hourly profiles of atmospheric and oceanographic properties, including nutrients and chlorophyll concentrations, in near-real time (Dunne et al., 2002). We do not examine nutrients in this study due to the lack of long-term data on appropriate temporal and spatial scales, but concentrations of limiting nutrients are likely to be important for the development and termination of *A. catenella* blooms. To date, the data produced by the ORCA buoys have not elucidated possible mechanisms leading to PST events, primarily because Hood Canal rarely experiences closures due to unsafe levels of PSTs. Expansion of the ORCA and other buoy networks into other areas of Puget Sound, especially at hot spot sites, will considerably improve the ability to identify the high frequency variations in environmental factors that appear to be contributing to PST events on a more localized spatial scale.

Efforts to better understand the relationship between shellfish toxicity and *A. catenella* cell densities in Puget Sound should also be considered in the design of future monitoring programs. This relationship is complicated by biophysical factors, including the vertical migration of *A. catenella* cells making them difficult to monitor, and variable toxin composition of cells making it difficult to assign a standard cellular toxicity for the region. It will be important to decipher this relationship if bloom dynamics are to be inferred from shellfish monitoring programs. In addition to this,
monitoring programs should include automated devices to remotely detect PSTs and/or A. catenella in the water column. Combining platforms such as the ORCA buoys that measure basic physical parameters together with cell and/or toxin detection devices would considerably enhance efforts to provide early warning of PST events over the current approach of monitoring shellfish.

11. Conclusions

A 15-year continuous time series of PST observations in M. edulis at a network of 20 sites in Puget Sound was used to examine temporal trends in toxicity and possible relationships to climate from 1993 to 2007. Our analyses were limited to M. edulis because they continue to feed and rapidly acquire measurable PST levels in their tissues when toxic cells are present in the water column, and also rapidly detoxify over a period of a few weeks following the termination of a bloom. For these reasons, M. edulis is used as the sentinel species in monitoring programs and is the most appropriate shellfish proxy to examine PST variations on sub-seasonal to interannual timescales. Blue mussels typically become toxic between July and November annually, but even within this time period, variability in the timing and location of PST events remains high and little coherence exists among the 20 selected sites in Puget Sound. We find no robust evidence to suggest that the frequency, magnitude, duration, and geographic scope of PST events increased between 1993 and 2007. However, there is a significant basin-wide trend for closures to occur earlier in the year. On interannual timescales, no significant correlations exist between annual indices of mussel toxicity, local environmental factors, and indices tracking large-scale climate variations. PST hot spot sites in Mistery, Discovery, and Sequim Bays, and at Kingston Marina, were used to identify exceptional PST events from 1993 to 2007 and local environmental factors preceding these events were examined on a daily timescale. A combination of warm air and water temperatures and low streamflow appears to be favorable for toxin accumulation in mussels. Advanced warning of PST events may be constrained by the same factors as for weather prediction, and is therefore limited to approximately 1-2 weeks.

Acknowledgments

Shellfish toxicity data are used courtesy of the Washington State Department of Health. We thank N. Adams and S. Day for compiling the shellfish toxicity database used in this research, and A. Babson for providing residence time data. R. Horner, J. Wecell, K. LeFebvre, F. Cox, and J. Borchert provided highly valued comments at various stages of this project. This publication was supported by the West Coast Center for Oceans and Human Health as part of the NOAA Oceans and Human Health Initiative, WWCOHH publication no. 24. The WWCOHH is part of the National Marine Fisheries Service's Northwest Fisheries Science Center, Seattle, Washington. This work was also supported by a grant from the NOAA Climate Program Office to the Center for Science in the Earth System through the joint Institute for the Study of the Atmosphere and Ocean under NOAA Cooperative Agreement NA17J31232. This is joint Institute for the Study of the Atmosphere and Ocean Contribution no. 1424.[SS]

References

