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Introduction

Abstract

Population genetics plays an increasingly important role in the conservation
and management of declining species, particularly for defining taxonomic units.
Subspecies are recognized by several conservation organizations and countries
and receive legal protection under the US Endangered Species Act (ESA). Two
subspecies of spotted owls, northern (Strix occidentalis caurinai and Mexican
(S. o. lucida) spotted owls, are ESA-listed as threatened, but the California (S.
o. occidentalisi spotted owl is not listed. Thus, determining the boundaries of
these subspecies is critical for effective enforcement of the ESA. We tested the
validity of previously recognized spotted owl subspecies by analysing 394 spot-
ted owls at 10 microsatellite loci. We also tested whether northern and Califor-
nia spotted owls hybridize as suggested by previous mitochondrial DNA
studies. Our results supported current recognition of three subspecies. We also
found bi-directional hybridization and dispersal between northern and Califor-
nia spotted owls centered in southern Oregon and northern California. Surpris-
ingly, we also detected introgression of Mexican spotted owls into the range of
northern spotted owls, primarily in the northern part of the subspecies' range
in Washington, indicating long-distance dispersal of Mexican spotted owls. We
conclude with a discussion of the conservation implications of our study.

Population genetic theory and methods play an important
role in the conservation of threatened, endangered and
declining species. There arc many different applications of
genetics in conservation (Frankham et al. 2002a; Allen-
dorf and Luikart 2007), and these applications continue
to grow as new techniques and theory are developed.
These applications include, but are not limited to, estima-
tion of demographic parameters, such as effective popula-
tion size, changes in population size, and gene flow
(Roman and Palumbi 2003; Schwartz et al. 2005; Goos-
sens et al. 2006); forensic identification of protected spe-
cies (Baker ct al. 1996); characterization of hybridization
(Spruell et al. 2001; Funk et al. 2007a); predicting the
effects of small population size and inbreeding depression
on fitness and population viability (Newman and Pilson
1997; Saccheri et al. 1998); individual identification using
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noninvasive samples (Mills et al. 2000) and characterizing
the effects of habitat fragmentation on population con-
nectivity (Jump and Penuelas 2006). Genetics does not
replace the fundamental role of natural history and eco-
logical studies in conservation. When used and inter-
preted appropriately, however, genetics can provide
critical insights into the biology and management of
declining species. One of the most important and com-
mon uses of genetics in conservation is to define taxo-
nomic and conservation units, including species,
subspecies, evolutionary significant units (ESUs; Ryder
1986; Waples 1991; Moritz 1994), and management units
(MUs; Moritz 1994; Palsboll et al. 2007).

Definition of subspecies has become an increasingly
contentious issue in recent years. Subspecies are incipient
species (Darwin 1868; Frankham et al. 2002b) and have
been defined as 'a collection of populations occupying a
distinct breeding range and diagnosably distinct from
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other such populations' (Mayr and Ashlock 1991).
Although defining subspecies was originally the concern
of evolutionary biologists, this problem has become of
interest to a larger audience because many conservation
organizations and countries recognize subspecies, includ-
ing the World Conservation Union  IUCN) Red List of
Threatened Species, appendices of the Convention on
International Trade in Endangered Species of Wild Flora
and Fauna (CITES), TRAFFIC (wildlife trade monitoring
network), Brazil's Lista Nacional das Especies de Fauna
Brasileira Amenacadas de Extincao, Canada's Species at
Risk Act, Australia's Environmental Protection and Biodi-
versity Act, and South Africa's Biodiversity Act. The US
Endangered Species Act (ESA) allows listing (i.e., legal
protection) of subspecies and other groupings below the
species level as threatened or endangered (US Fish and
Wildlife Service 1978). Approximately, one-quarter of all
ESA-listed taxa are subspecies, and 43% of all listed birds
arc subspecies (Haig et al. 2006). However, uncertainty
regarding which criteria should be used for defining sub-
species has hampered listing 'and delisting decisions. Sub-
species have been defined based on phenotypic (e.g.,
morphological, ecological, and behavioral) and genetic
criteria (Mayr 1942; Amadon 1949; Futuyma 1998; Patten
and Unitt 2002; Haig et a1. 2004a; Zink 2004). Thus, part
of the controversy over subspecies definitions stems from
conflicting morphological and genetic results (Zink 1989,
2004; Ball and Avise 1992; Zink et al. 2000; Phillimore
and Owens 2006) and disagreement over which genetic
markers (mitochondrial versus nuclear DNA) and analy-
ses are most appropriate for defining subspecies (Zink
2004; Phillimore and Owens 2006).

There is a long-standing interest in determining the
number and boundaries of spotted owl (Strix) subspecies
because of ESA-listing of northern (Strix occidentalis
caurina) and Mexican (S. o. lucida) spotted owls as threa-
tened (US Fish and Wildlife Service 1990, 1993), and lack
of listing for the California subspecies (S. o. occidentalis).
The northern spotted owl is found from southwestern
British Columbia to northwestern California; the Califor-
nia spotted owl in the Sierra Nevada Mountains, Coastal
Mountains of California, and northern Baja California,
Mexico; and the Mexican spotted owl in isolated moun-
tain ranges from southern Utah and Colorado south into
the Sierra Occidental and Sierra Oriental of Mexico
(Fig. 1). Northern spotted owls were listed as threatened
because of declines stemming from harvest of the subspe-
cies' old forest habitat in the US Pacific Northwest.
Despite dramatic reduction of timber harvest under the
Northwest Forest Plan in 1994 (Stokstad 2005; Noon and
Blakesley 2006), recent field studies indicate that northern
spotted owls have continued to decline at an average rate
of 3.7% per year and that declines are most severe in
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Washington state (Anthony et al. 2006). One possible
cause for continued decline is competition and hybridiza-
tion with invasive barred owls (Strix vuria) which have
rapidly expanded into the range of northern spotted owls
from their historic range in eastern North America (Kelly
et al. 2003;  Haig et al. 2004b; Kelly and Forsman 2004;
Olson et al. 2005; Anthony et al. 2006; Flink  et al. 2007a).
Genetic factors, such as inbreeding depression or loss of
adaptive genetic variation, may also playa role in declines
(W. C. Funk, E. D. Forsman, T. D. Mullins, and s. M.
Haig, unpublished manuscript). Determining the distinct-
ness of spotted owl subspecies and their geographic
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distributions is essential for enforcing their protection
under the ESA.

Historically, spotted owl subspecies have been recog-
nized based on body size, plumage coloration, and geo-
graphic range (Gutierrez  et a1. 1995). Genetic work based
on mtDNA suggests that the boundary between northern
and California spotted owls is in northern California in a
region of low density (Fleischer er al. 2004; Haig et al.
2004a;  Barrowc1ough  et al. 2005). These studies have also
documented the presence of California spotted owl haplo-
types in the range of northern spotted owls, and vice
versa, indicating hybridization and/or long-distance dis-
persal. However, it is not possible to distinguish these
alternatives with mtDNA alone because both leave the
same genetic signature (Fleischer et al. 2004). Microsatel-
lite loci and other nuclear markers, in contrast, should be
able to distinguish hybrid from nonhyhrid (immigrant)
owls as long as allele frequencies vary significantly among
subspecies. Microsatellites have also proven useful for
defining several other avian subspecies (Chan and Arcese
2002; Punk  et al, 2007b; Draheim and Haig, unpublished
manuscript). As of yet, however, there are no published
microsatellite studies that have tested the validity of spot-
ted owl subspecies and the extent of introgression
between northern and California spotted owls.

The goal of the present study was to define spotted owl
subspecies and test for introgression among subspecies
using microsatcllite loci to allow effective protection of
these subspecies under the  ESA. More specifically, our
three main questions were: (i) Do microsatellite data sup-
port currently recognized subspecies? (ii) Is there intro-
grcssion between northern and California spotted owls?
and (iii) If so, what is the geographic extent of introgres-
sion?

Materials and methods

Sampling
We collected blood samples from 352 northern spotted
owls from 15 study areas from across the subspecies'
range in Washington, Oregon, and California; 23 Cali-
fornia spotted owls from two areas in the Sierra Nevada;
and 19 Mexican spotted owls from four areas in south-
eastern Arizona from 1990 to 2006 (Fig. I). Samples
were collected from all regions over multiple years, so
there  was no systematic spatial pattern of collection over
time. Study areas were bounded by landscape features
such as mountain ridges, rivers, and non forested habitat.
Our choice of study area boundaries, however, does not
affect our conclusions as many of our analyses were
individual-based and thus do not require a priori
definition of sampling units. No known close relatives
(parent-offspring or siblings) were included. Samples

(c)  2008 The Authors
Journal compilation  (c)     2008 Blackwell  Publishing Ltd 1 (2008) 161-171

Spotted owl subspecies and introgression

were collected following the protocol of the American
Ornithologists' Union (Gaunt and Oring 1997). Blood
was stored in cryogenic tubes containing a buffer solu-
tion (100 mM Tris-HCl, pH  8.O; 100 mM EDTA, pH
8.0; 10 mM  NaCl; 0.5% SDS) and  frozen at -80°C  until until
analysis.

Microsatellite genotyping

DNA extraction, PCR, and fragment analysis were per-
formed as described previously (Funk et al. 2007a). All
owls were genotyped at 10 variable microsatellite loci
developed for Mexican spotted owls (loci: 6H8, 15A6,
13D8, and 4E10.2; Thode et al. 2002),  Lanyu scops owls
(Otus elegans botelensis: loci: Oe37, Oe53, Oe128, Oe129,
and Oc149; Hsu et al. 2003, 2006), and ferruginous
pygmy-owls (Glaucidium brasilianum; locus: FEPO5;
Proudfoot et al, 2005). One of these loci (Oe128) and an
additional microsatcllite marker (Bb126; Isaksson and
Tegelstrom 2002) are diagnostic of spotted versus barred
owls (Funk et al. 2007a) and were genotyped to assure
that no spotted owl-barred owl hybrids were included in
the analysis. PCR conditions and annealing temperatures
were the same as those described in the original primer
notes.

Standard population genetic analyses

We calculated exact probabilities for Hardy-Weinberg
proportions, genotypic disequilibrium, and genic differen-
tiation using GENEPOP 3.4 (Raymond and Rousset 1995).
Weir and Cockerham's (1984) FST values among study
areas and subspecies were also calculated in GENEPOP.
Critical  x values for pairwise tests of allelic differentiation
were determined using a sequential Bonferroni adjust-
ment (Rice 1989). Expected heterozygosities were calcu-
lated with MICROSATELLITE  ANALYZER 2.39 (Dieringer
and Schlotterer 2003). MICROCHECKER(van Oostcrhout
et al. 2004) was used to test for null alleles. California
and Mexican spotted owls were each treated as a single
population for these analyses to increase sample sizes
(which gives  n = 17 study areas after pooling). We also
tested for isolation-by-distance among individuals using a
Mantel test implemented in ALLELES IN SPACE (AIS;
Miller 2005). Isolation-by-distance was tested using all
spotted owl samples, as well as just northern spotted
owls.

Subspecies and introgression analyses

We used a Bayesian clustering approach implemented in
STRUCTURE 2.0 (Pritchard et al. 20(0) to test whether
subspecies grouped into distinct population clusters and
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to determine the zone of introgression between northern
and California spotted owls. This approach estimates the
number of populations (K) in a sample by minimizing
deviations from Hardy-Weinberg proportions and linkage
equilibrium within populations and then assigns individu-
als to one or more of these populations (k). The estima-
tion procedure consists of running the program for
different trial values of the number of populations, K,
and then comparing the estimated log probability of the
data under each K, ln[Pr(X/K)], called In P(D) in STRUC-
TURE. We used the admixture model that assumes gene
flow among populations and correlated allele frequencies.
The admixture model assigns a proportion of each indi-
vidual's genome to each population (qk). We performed
20 runs .for 'each K, from K = 1-10, and calculated the
mean In P(D) across runs for each K (e.g., Waples and
Gaggiotti 2006). For each run, we used a burn-in of
30 000 and a total length of 100 000 which gave consis-
tent results across runs in a pilot study. Typically, the
correct value of K is taken to be the value with the high-
est In P(D) (Pritchard et a1. 2000). However, Pritchard
and Wen (2003) warned that incremental increases in
In P(D) with increasing K can lead to overestimation of
K. Therefore, we chose between the two values of K with
the highest values of mean  ln P(D) by calculating  ^K, a
parameter which takes into account the shape of the log-
likelihood curve (Evanno et al. 2005). Once the number
of genetic clusters was estimated, we calculated mean
membership of each individual to each cluster across
runs.

We then used GENECLASS2 (Piry et al. 2004) to identify
potential migrants, or offspring of migrants, from the
range of one subspecies to that of another. This method
uses Bayesian techniques to calculate the probability of
individual assignment to, source and nonsource popula-
tions. We chose the partially Bayesian classification
method (Rannala and Mountain 1997) paired with a
Monte Carlo re-sampling method for computation of
assignment probability to each subspecies (Paetkau et al.
2004) using 10 000 simulated individuals. This method is
the most accurate of the frequentist assignment methods
(Cornuet et al.  1999). Mis-assignrnents with high proba-
bilities (>95%) were genotypes unlikely to occur from a
random combination of alleles, and thus were interpreted
as migration events. This assignment test has been shown
to be accurate in a study of individuals of known origin
(Berry er al, 2004), as well as in simulation studies (Pae-
tkau et al. 2004).

Finally, we used analysis of molecular variance (AM-
OVA; Excoffier et al. 1992) to test the proportion of vari-
ance explained by: (i) the four clusters identified by
STRUCTURE (treating northern spotted owls north of the
Columbia River as cluster I and northern spotted owls
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south of the Columbia River as cluster 2, as this was the
pattern observed in the S'I'RUCTURE analysis); (ii) cur-
rently recognized subspecies (collapsing the two northern
spotted owl clusters identified by STRUCTURE  into a single
northern spotted owl group); and (iii) north versus south
of the Columbia River (only including northern spotted
owls) to test the validity of the two northern spotted
owl clusters. AMOVA was performed in ARLEQUIN 3.01
(Excoffier et al. 20(5). We used 10 000 permutations to
determine the significance of variance components. Mexi-
can spotted owls from Graham and Cochise counties
(study areas S  and U, respectively; Fig. 1) were combined
for this AMOVA as there was only one individual  from
Graham County.

Results

Standard population genetic analyses
Genotypic frequencies within study areas generally corre-
sponded to expected Hardy-Weinberg proportions. Only
8 out of 170 tests for deviation from Hardy-Weinberg
proportions were significant at the  x = 0.05 level. This is
less than the value (3.5 = 0.05 x 170) expected to deviate
by chance. No loci had a consistent excess of homozyg-
otes. Moreover, MICROCHECKER only found evidence  for
low frequency null alleles at three loci in three different
study areas (locus Oe149 in study area N, 4E10.2 in K,
and 13DS in L). Similarly, 33 out of 745 possible tests
for departure from linkage equilibrium were significant,
less than the 37.25 tests expected to be significant by
chance. No pairs of loci consistently departed from link-
age equilibrium across study areas, indicating that loci
were independent. Expected heterozygosity (HE) was
similar across study areas, ranging from 0.685 to 0.764
(mean = 0.736).

Pairwise FST values among northern spotted owl study
areas ranged from 0.001 to 0.061 (Table 1). Allelic diller-
entiation was significant at the x = 0.05 level for 61 out
of 105 (58.1%) of these pairwise comparisons after cor-
recting for multiple tests. Pairwise FST values between
northern spotted owl study areas and California spotted
owls ranged from 0.062 to 0.130. Between northern spot-
ted owl study areas and Mexican spotted owls, pairwise
FST values were  0.082-0.131. When all northern  spotted
owl study, areas were lumped into a single group, pairwise
FST values between northern and California, northern and
Mexican, and California and Mexican spotted owls were
0.084, 0.095, and 0.141, respectively. All pairwise tests for
allelic differentiation among subspecies were significant.
Correlation coefficients of Mantel tests of isolation-by-
distance were r = 0.297 (P < 0.001) and r = 0.089
(P < 0.0(1) for all spotted owls and just northern spotted
owls, respectively.
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Subspecies and introgression

In  the STRUCTURE analysis, the number of populations
(K) with the highest mean  ln P(D) was 5
[In P(D) = -12529.36]. However, mean  ln P(D) was only
46.38  lower for K = 4 and  ^K was higher for K = 4 than
K  = 5 (^ K=  8.5 and 3.3, respectively). Therefore, we
chose  K = 4 as the most appropriate value for the num-
ber of spotted owl population clusters. Our conclusions

regarding subspecies delineations and introgression, how-
ever, were qualitatively the same for K = 5 and 4.

The STRUCTURE analysis supported current subspecies
designations. In 16 out of 20 runs, two clusters (clusters 1
and 2; Fig. 2) were almost completely restricted to
northern spotted owls, whereas California spotted owls
had high membership in cluster 3 (mean membership of
88.6%) and Mexican spotted owls had high membership
in cluster 4 (mean of 95.3%). Individuals from north of
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the Columbia River in Washington state had higher mean
membership in cluster 1 than those from south of the
river (47.1% vs 29.9%), while the pattern of membership
in cluster 2 north and south of the river was opposite
(26.6% vs 44.3%).  In the other  Four runs,  STRUCTURE
lumped California and Mexican spotted owls into a single
cluster. Thus there was four-times as much support for
current recognition of separate California and Mexican
spotted owl subspecies as there was for lumping these
subspecies into a single cluster.

Introgression between northern and California spotted
owls was detected and was centered in northern Califor-
nia and southern Oregon, with relatively high member-
ship in the California spotted owl cluster (cluster 3)
found in the range of northern spotted owls in the Siski-
you Mountains (study area K; mean membership in clus-
ter 3 = 52.9%; Fig. 2), Klamath National Forest (area N;
mean = 28.0%), and Humboldt and Del Norte counties
(area O; mean = 38.7%). Two individuals  from the range
of California spotted owls in Lassen National Forest
(study area P) had high membership in northern spotted
owl clusters (clusters I and 2), suggesting gene flow from
northern to California spotted owls as well. Surprisingly,
there was also evidence for substantial introgression of
Mexican spotted owls into the range of northern spotted
owls (Fig. 2). This was most pronounced in Cle Elum
(study area C) with a mean membership of 29.1 % in the
Mexican spotted owl cluster (cluster 4).

The assignment test performed in GENECLASS2 identi-
fied 10 individuals as migrants from other subspecies.
Out of these 10 migrants, seven were identified as Califor-
nia spotted owl migrants in the range of northern spotted
owls (one in Clc Elum, three in the Siskiyou Mountains,
one in the Klamath National Forest, and two in Hum-
boldt and Del Norte counties; refer to Fig. 1); two were
northern spotted owl migrants in the range of California
spotted owls (both in Lassen National Forest); and one
I-I';\S a Mexican spotted owl in the range of northern spot-
led owls (in the Klamath National Forest),

AMOVA also supported current subspecies recogni-
tions. The percent variation explained by the subspecies
grouping (8.64%) was highly significant and over four-
times greater than the percentage of variation explained
by study areas within subspecies (2.09%; Table 2). AM-
OVA also suggested that northern spotted owls represent
a single population, rather than two clusters as estimated
by STRUCTURE. First, grouping study areas into four clus-
ters (including both northern spotted owl clusters)
explained much less variation (3.83%) than grouping  by
subspecies (in which northern spotted owls were treated
as a single group). Second, although clusters  1 and 2
identified by STRUCTURE were unevenly distributed on
either side of the Columbia River, suggesting possible
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genetic differentiation, only 0.58% of the varrat Ion was
explained in the AMOV A by grouping northern spotted
owls into two groups found north versus south of the
Columbia River.

Discussion

Spotted owl subspecies and introgression
Analysis of our microsatellite data with pairwise FST val-
ues Table 1), STRUCTURE (Fig. 2), and AMOVA
Table 2) all supported current recognition of three spot-
led owl subspecies (Fig. 1). Our results therefore  agree
with previous mtDNA analyses that support current sub-
species designations (Barrowclough et al. 1999, 2005; Haig
et al. 2004a), but disagree with a RAPD study which
failed to find a distinct boundary between northern and
California spotted owls (Haig et al. 2001). Our results
also support the currently recognized porous houndury
between northern and California spotted owls in northern
California (Gutierrez et al, 1995; Fig. 1). A similar loca-
tion for this boundary was found using mtDNA (Haig
et al. 2004a; Barrowclough et al. 2005). A limitation of
our study was the relatively small sample sizes of Califor-
nia (n = 23) and Mexican (n = 19) spotted owls, but this
should not affect our conclusions regarding subspecies
boundaries and introgrcssion. If anything, additional sam-
ples would be expected to increase the power to detect
differences among subspecies.

A limitation of STRUCTURE  is that it sometimes incor-
rectly identifies more population clusters than arc actu-
ally present. Because of this, Pritchard and Wen (2003)
warned that investigators should be skeptical of popula-
tion clusters identified by STRUCTURE  that have no clear
biological interpretation, particularly cases in which the
proportion of the sample assigned to each cluster is
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roughly symmetric (i.e., 1/K in each population). In our
analysis, individuals from the range of California and
Mexican spotted owls were clearly assigned to cluster 3
or 4, respectively, but individuals from the range of
northern spotted owls were assigned fairly evenly to
clusters  1 and 2. Although there was a somewhat higher
mean membership in cluster 1 north of the Columbia
River than south, and vice versa for cluster 2, the AM-
OVA and pairwise  FST values indicated that there was
little genetic differentiation across the Columbia River.
Our data thus suggest that northern spotted owls con-
sist of just one population.

The STRUCTURE analysis revealed substantial introgres-
sion between northern and California spotted owls cen-
tered in northern California and southern Oregon in the
Siskiyou Mountains, Klamath National Forest, Humboldt
and Del Norte counties, and Lassen National Forest
(study areas K, N,  O, and P, respectively; Fig. 2). This
suggests that at least some previous observations of Cali-
fornia spotted owl mtDNA haplotypes in the range of
northern spotted owls (and vice versa; Haig et al. 2004a;
Barrowclough  et al. 2005) represent introgression, not just
long-distance dispersal without mating. This matches the
previously reported geographic distribution of introgres-
sion between these two subspecies. Introgression was
observed in both directions, from California spotted owls
to the range of northern spotted owls, and vice versa.
Moreover, nine first generation northern and California
spotted owl migrants were detected using assignment tests
in GENECLASS2. Seven of these migrants were California
spotted owls found in the range of northern spotted owls;
the other two were in the opposite direction. There was
also limited introgression and dispersal between northern
and California spotted owls over larger distances, includ-
ing one first generation California spotted owl migrant in
Cle Elum, WA. These results indicate that there is a lim-
ited amount of ongoing dispersal alllong subspecies.
Nonetheless, the main area of introgression is restricted
to a relatively narrow zone in northern California and
southern Oregon.

Surprisingly, the STRUCTURE analysis also revealed
introgression of Mexican spotted owls into the range of
northern spotted owls (Fig. 2), indicating long-distance
dispersal of Mexican spotted owls. The highest level of
introgression bet ween these two subspecies was found in
Washington, particularly Cle Elum in the northern por-
tion of the range of northern spotted owls. To reach the
range of northern spotted owls, Mexican spotted owls
would have to fly through the range of California spotted
owls up the Sierra Nevada, or through the Rocky Moun-
tains and/or Great Basin. Higher levels of introgression in
Washington than in Oregon or California suggest that
Mexican spotted owls Illay primarily usc a northern,
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Rocky Mountain dispersal route. Spotted owls have been
reported from the northern Rocky Mountains in north-
western Montana (Weydcmcyer 1927; Hoffman et al.
1959), but these observations were dismissed as mis-iden-
tified barred owls (Wright 1976; Gutierrez et al. 1995;
Holt et al. 2001). However, the observation of a spotted
owl in 1922 by Weydemeyer occurred well before any
previous reports of barred owls in the northwestern USA
or western Canada (Mazur and James 2000). This fact
and our observation of introgression of Mexican spotted
owls in Washington suggest that it is possible that these
birds were migrant Mexican spotted owls. The spatiotcm-
poral patterns and causes of long-distance dispersal of
Mexican spotted owls warrants further study, as among-
subspecies dispersal may have important consequences for
the ecology and conservation of both subspecies.

Implications for subspecies delineation and characteriz-
ing introgression

Analysis of microsatellite data using clustering algorithms
and assignment tests as performed here should prove use-
ful for delineating subspecies in other taxa as well. In the
past, mtDNA has been the workhorse of genetic studies
of subspecies (Fry and Zink 1998; Valliantoes et al. 2002;
Benedict et al. 2003; Bhagabati et al. 2004; Eggert et al.
2004; Idaghdour et a1. 2004; Pirra et al, 2004; Solorzano
et al. 2004), but the limitations of reliance on mtDNA
alone have recently come to the forefront (reviewed by
Ballard and Whitlock 2004), MtDNA is inherited as a sin-
gle locus with unique properties; thus, inferences based
solely on mtDNA may not accurately reflect the evolu-
tionary and demographic history of populations. In addi-
tion, mtDNA. cannot distinguish long-distance dispersal
from hybridization among subspecies (Fleischer et al.
2004), but these alternatives can be distinguished with
microsatellites. In the case of spotted owls, previous
observations of California spotted owl haplorypes in the
range of northern spotted owls, and vice versa, could be
explained by long-distance dispersal or hybridization. Our
microsatellite analyses revealed that both are occurring.
Thus micro satellite data complement mtDNA results and
add additional biological detail regarding the nature of
introgression, Additionally, our study demonstrates the
importance of using large sample sizes to detect unex-
pected patterns of hybridization and long-distance dis-
persal that might be missed using smaller samples sizes.

Conservation implications

Our results have important implications for the conserva-
tion of spotted owls, particularly for ESA-listed northern
and Mexican spotted owls. First, our data indicate that

167



Spotted owl subspecies and introgression

the three traditionally recognized spotted owl subspecies
are valid, distinct subspecies, supporting previous mtDNA
studies. These subspecies thus clearly meet the criterion
of being distinct from the rest of the species as required
for legal protection under the ESA. A practical offshoot
of this result is that spotted owls can be identified to sub-
species using these microsatellite markers. This will be
particularly useful for identifying individual owls as ESA-
protected northern or nonlisted California spotted owls
in the area of introgression in southern Oregon and
northern California. Second, our data show that northern
spotted owls extend at least as far south as Klamath
National Forest and Humboldt County, California, indi-
cating that spotted owls from these study areas are legally
protected under the ESA. Furthermore, the observation of
two northern spotted owls in the traditionally recognized
range of the California spotted owl in Lassen National
forest, California, means that legally protected northern
spotted owls may be going unnoticed and unprotected in
the range of California spotted owls. Once again, the
microsatellite markers used here should be useful for
identifying such immigrant owls.

Hybridization and long-distance dispersal among sub-
species may also have important implications for the con-
servation of spotted owls. On the one hand, naturally
occurring hybridization can increase genetic variation in
declining species, ameliorating inbreeding depression via
genetic rescue (Thrall et al. 1998; Tallmon  et al. 2004)
and increasing potential for adaptation to environmental
variation (Grant et al. 2003). On the other hand, unnatu-
ral or increasing rates of hybridization may break down
local adaptations (Parris 2004) or cause outbreeding
depression (Lynch and Walsh 1998), potentially redu-
cing fitness, causing population declines, and increasing
extinction probabilities. It is not possible to determine
from existing data from this or previous studies whether
the rate or geographic extent of introgression among
spotted owl subspecies is stable, increasing, or decreasing,
or what the demographic and evolutionary impacts of
hybridization are (Fleischer et al. 2004). Moreover, com-
petition and hybridization with invasive barred owls may
also affect the hybridization dynamics between northern
and California spotted owls, further complicating the
problem. Future rnicrosatellite analysis of the northern-
California and northern-Mexican spotted owl hybrid
zones at different time steps will be important for under-
standing the dynamics of these hybrid zones.

Conclusions

This study provides another example of the utility of
genetic studies in the conservation of declining species,
particularly with regards to delineation of taxonomic
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units for conservation. This is one of the largest genetic
studies of any threatened bird species and the first to test
subspecies boundaries in spotted owls and dissect the pat-
tern of introgression among subspecies using microsutel-
lite loci. Our results support recognition of current
subspecies boundaries used for conservation and manage-
ment of northern spotted owls under the US Endangered
Species Act. Moreover, we confirm previous suggestions
based on mtDNA data that northern and California spot-
ted owls hybridize in a narrow zone of introgression in
southern Oregon and northern California, Several first
generation California spotted owl migrants were also
identified in the range of northern spotted owls, and two
northern spotted owl migrants were found in the range of
California spotted owls, indicating ongoing dispersal
between these subspecies. Surprisingly, we also found evi-
dence for substantial levels of introgression between
northern and Mexican spotted owls. This is the first evi-
dence for introgression between northern and Mexican
spotted owls and reveals unexpectedly long-distance dis-
persal of Mexican spotted owls. Our study illustrates the
utility of microsatellite markers coupled with modern
clustering and assignment methods for defining subspe-
cies and characterizing introgression among subspecies,
and provides essential data for enforcement of ESA-
protection of northern and Mexican spotted owls.
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