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Abstract 

Detecting and characterizing continuous changes in early forest succession using multi-temporal satellite imagery requires atmospheric 
correction procedures that are both operationally reliable, and that result in comparable units (e.g., surface reflectance). This paper presents a 
comparison of five atmospheric correction methods (2 relative, 3 absolute) used to correct a nearly continuous 20-year Landsat TM/ETM+ image 
data set ( 19-images) covering western Oregon (path/row 46/29). In theory, full absolute correction of individual images in a time-series should 
effectively minimize atmospheric effects resulting in a series of images that appears more similar in spectral response than the same set of 
uncorrected images. Contradicting this theory, evidence is presented that demonstrates how absolute correction methods such as Second 
Simulation of the Satellite Signal in the Solar Spectrum (6 s), Modified Dense Dark Vegetation (MDDV), and Dark Object Subtraction (DOS) 
actually make images in a time-series somewhat less spectrally similar to one another. Since the development of meaningful spectral reflectance 
trajectories is more dependant on consistent measurement of surface reflectance rather than on accurate estimation of true surface reflectance, 
correction using image pairs is also tested. The relative methods tested are variants of an approach referred to as "absolute-normalization", which 
matches images in a time-series to an abnospherically corrected reference image using pseudo-invariant features and reduced major axis (RMA) 
regression. An advantage of "absolute-normalization" is that all images in the time-series are converted to units of surface reflectance while 
simultaneously being corrected for abnospheric effects. Of the two relative correction methods used for "absolute-normalization", the first 
employed an automated ordination algorithm called multivariate alteration detection (MAD) to statistically locate pseudo-invariant pixels between 
each subject and reference image, while the second used analyst selected pseudo-invariant features (PIF) common to the entire image set. Overall, 
relative correction employed in the "absolute-normalization" context produced the most consistent temporal reflectance response, with the 
automated MAD algorithm performing equally as well as the handpicked PIFs. Although both relative methods performed nearly equally in terms 
of observed errors, several reasons emerged for preferring the MAD algorithm. The paper concludes by demonstrating how "absolute­
normalization" improves (i.e., reduces scatter in) spectral reflectance trajectory models used for characterizing patterns of early forest succession. 
© 2006 Elsevier Inc. All rights reserved. 
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1. Introduction 

Landsat has been providing a nearly continuous record of 
global land surface change since 1972. This record represents 
one of the most consistent available archives of recent earth 
history information, and its use has facilitated understanding of 
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earth surface processes across spatial and temporal scales and 
disciplines (Cohen & Goward, 2004). 

In forestry, Landsat imagery has been important in charac­
terizing and mapping frequency and extent of forest fire (Miner 
& Yool, 2002; van Wagtendonk et al., 2004), stand-replacing 
disturbance (Cohen et al., 1998; Cohen et al., 2002; Sader et al., 
2003), partial harvest (Franklin et al., 2000; Healey et al., 2006; 
Nilson et al., 200 I), successional stage (Hall et al., 1991 ; Mausel 
et al., 1993) and vegetation regrowth (Foody et al., 1996; Sabol 
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et al., 2002; Viedma et al., 1997). Studies focusing on the highly 
dynamic process of forest succession have generally relied on 
forest age class information extracted from single image dates to 
make inferences about successional stage attributes (Fiorella & 
Ripple, 1993; Jakubauskas, 1996; Peterson & Nilson, 1993). 
The difficulty with this approach is that the relationship between 
forest age and spectral data can be highly variable, especially for 
young (<20-year) stands with sparse canopy cover (Horler & 
Ahern, 1986). The reasons for this variability are many, but can 
include differences in site quality and location, site preparation, 
planting practices ( density and spacing), and species composi­
tion. Perhaps even more important is that forest age is not di­
rectly remotely sensible in any given date of imagery, as are 
forest structure and composition, both of which are physically 
related to forest succession (Cohen et a1., 1995). 

An alternative use of Landsat for characterizing forest suc­
cession is examination of a multi-temporal image series. For any 
forest stand that has been disturbed since 1972 one could 
theoretically observe its recovery trajectory, and therefore know 
both its age and how its structural and compositional attributes 
have changed over time. However, as described by Song and 
Woodcock (2003), factors such as seasonal phenology, ground 
conditions, and atmospheric conditions can contribute to varia­
bility in multi-temporal spectral responses that may have little 
to do with forest succession. In any multi-temporal analysis 
where the spectral signal is not sufficiently strong to minimize 
the effects of these complicating factors, radiometric correction 
is essential to differentiate real change from noise. With ade­
quate correction it may be possible to examine temporal tra­
jectories of Landsat data for a more dynamic characterization 
of forest succession. 

The objective of this paper is to compare the effectiveness of 
absolute and relative radiometric correction procedures with the 
ultimate goal of producing consistent temporal reflectance tra­
jectories of forests that are recovering from stand-replacing 
disturbance. In the strict sense, fuJI absolute image correction 
involves both application of absolute calibration coefficients for 
sensor and related parameters and atmospheric correction to 
derive estimates of surface reflectance. In this study, however, 
we are also interested in examining results of the intermediate 
step in which calibration parameters are applied, but atmospher­
ic effects are not removed (i.e., at-satellite reflectance). For 
clarity, we refer to this as the partially corrected case with ab­
solute calibration only. On the other hand, relative calibration 
(commonly referred to as normalization) involves image pair 

. radiometric matching, where any number of techniques can be 
employed to select pseudo-invariant features (PIFs) (Ha11 et al., 
1991; Schott et a1., I 988), which are subsequently used to 
empirically calibrate images in a time-series. Depending on the 
application, correction using image pairs need not include 
corrections for atmospheric and sensor related parameters and 
thus derivation of physical units such as reflectance. However, 
when physical surface units are desirable, it is essential that one 
image receives full absolute image correction, and then other 
images can be relatively normalized to it. This combined 
"absolute-normalization" approach may have certain advantages 
over the use of absolute procedures alone. 

The main questions addressed in this paper include: 

1) How do absolute (full and partial) and combined "absolute­
normalization" correction methods compare when used to 
produce Landsat temporal reflectance trajectories for 
coniferous forest stands recovering from stand-replacing 
disturbance- in western Oregon? We compare the partially 
corrected case (absolute calibration only) with several full 
correction methods (absolute calibration plus atmospheric 
correction) and (as suggested in Question 2) two "absolute­
normalization" methods. 

2) Are automated relative correction procedures based on statis­
tical ordination as effective as those based on analyst-selected 
PIFs? The process of selecting PIFs, if done by the analyst, 
can be time consuming, particularly if more than two image 
dates are examined. Thus, an automated procedure could 
have great merit The ordination procedure we use is called 
multivariate alteration detection (MAD). 

3) How do absolute (partial and full) and "absolute-normaliza­
tion" corrections affect the spectral manifestation of forest 
succession in remotely sensed imagery? As the ultimate pur­
pose of a larger study is to characterize temporal spectral 
trajectories in relation to forest succession, it is important to 
determine how the different image correction methods com­
pare in those terms. 

2. Methods 

2.1. Data and study area 

The image dataset used in this study consists of 16 Landsat-5 
TM and 3 Landsat-7 ETM+ images (WRS-2 path 46 row 29) 
from western Oregon ranging between 1984 and 2004 (Table 1 ). 
Only images acquired in summer months (July, August, and 
September) were considered. The available images were further 
screened based on the absence of cloud cover, however when 

Table I 
Landsat time-series used in this study 

Sensor Date 

TM 8/4/1984 

TM 8/26/1986 

TM 7/12/1987 

TM 8/31/1988 

TM 9/3/1989 

TM 717/1991 

TM 8/10/1992 

TM 8/29/1993 

TM 7/31/1994 

TM 8/19/1995 

TM 8/21/1996 

TM 7/23/1997 

TM 8/11/1998 

TM 8/16/2000 

TM 8/25/2003 

TM 7/26/2004 

ETM+ 8/22/1999 

ETM+ 7/26/200] 

ETM+ 7/29i2002 
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multiple cloud free images were available for a given year, the 
image acquired closest to July 31 was selected for inclusion in the 
time-series. All images were resarnpled to a 30-m resolution and 
coregistered using an automated tie-point program (Kennedy & 
Cohen, 2003) to the 1987 image, which had been orthorectified 
by the United States Geological Survey. All images were 
c~registered to the UTM coordinate system (zone 10) with a root 
mean square error ofless than 0.5 pixels per image. 

The study area encompasses portions of three major ecolo­
gical provinces including the Coastal Range (CR), Western 
Cascades (WC) and Willamette Valley (WV) (Franklin & 
Dyrness, 1988), as well as nearly the full elevation and climatic 
gradients present in western Oregon (Fig. 1 ). The area also 
includes a diverse distribution of existing land ownership 
categories (Cohen et al., 2002), therefore the image time-series 
represents the forest disturbance and recovery patterns present 
in response to the land use dynamics of the region. 

2 .2. Calibration and normalization 

In this study we compared the effect of absolute correction 
(both full and partial, as described earlier) and combined 
"absolute-normalization" on temporal reflectance trajectories of 

Elevation (m) 

0 2,500+ #··-1 .. ~~.1 .. · U.S.A. 

123°W 119°W 

Fig. 1. Landsat 46/29 study area (adapted from Cohen et al., 2001). 

recovering conifer forests. Radiometric correction was a multi­
step process. For the final step, atmospheric correction, several 
different methods were used and compared. 

2.2.1. Radiometric calibration 
Radiometric Calibration was a multi-step process that 

involved the use of standard equations to convert 8-bit satel­
lite-quantized calibrated digital numbers (DN) to at-satellite 
reflectance. Landsat-5 images were first converted to at-satellite 
radiance using Eq. (1), 

Lsat = (DN-B)/G (1) 

where Lsat is band specific at-satellite radiance (W m - 2 sr- 1 

µm - 1 
), DN is satellite quantized calibrated digital number, B is 

band specific bias in DN, and G is band-specific gain (m2 sr µm 
W 1 

). The impact of sensor degradation on the gain parameter 
was accounted for using data published by Thome et al. (1997) 
and Teillet et al. (2001 ), while revised gain parameters published 
by Chander and Markham (2003) were used for images acquired 
and processed after May 5, 2003. The biases reported by 
Markham and Barker (1986) were used for all images. 

Landsat-7 images were converted to at-satellite radiance 
1;1sing Eq. (2), 

Lsat = ( (LMAXsacLMIN~t) / (DNMAX-DNMIN)) 

x (DN-DNMIN) + LMINsat 
(2) 

where LMAXsat is band-specific spectral radiance scaled to 
DNMAX (YI m - 2 sr - 1 µm- 1 

), LMINsat is band-specific spectral 
radiance scaled to DNMIN (W m-2 sr- 1 µm- 1

), DNMAX is 
maximum quantized calibrated digital number (255), and 
DNMIN is minimum-quantized calibrated digital number (0 
for LPGS data, 1 for NLAPS data). Eq. (2) accounts for gain state 
(i.e., high/low setting) by using the respective published LMIN/ 
LMAX values (Landsat-7 Science Data Users Handbook). 

After conversion to at-satellite radiance, each image was 
converted to at-satellite reflectance (assuming a uniform 
Lambertian surface under cloudless conditions) using Eq. (3), 

( n *Lsat) 
PAsR = (Eo•cos(e)) (3) 

where PASR is at-sate11ite reflectance, E0 is exoatmospheric solar 
constant (YI m - 2 µm - 1

) ( corrected for solar distance), and e is 
solar zenith angle. By definition, at-satellite reflectance does not 
remove atmospheric effects, thus it is referred to here as the 
partially corrected case. 

2.2.2. Atmospheric correction 
For full absolute correction, at-satellite reflectance was 

converted to surface reflectance (assuming a uniform Lamber­
tian surface under cloudless conditions) using Eq. (4), 

(4) 
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where p is estimated surface reflectance, LP is path radiance (W 
m - 2 sr- 1 µm - 1

), Tv is atmospheric transmittance from the target 
toward the sensor, T2 is atmospheric transmittance in the illumi­
nation direction, and Edown is downwelling diffuse irradiance (W 
m-2 µm- 1

). To derive values of the atmospheric correction 
coefficients Tz, Tv, Edown and LP in Eq. (4)we use three different 
atmospheric correction methods. These methods included dark 
object subtraction (DOS), modified dense dark vegetation 
(MDDV), and second simulation of the satellite signal in the 
solar spectrum (6 s). These methods range in complexity from a 
simple image-based correction procedure (DOS) to a detailed, 
theoretical model based on radiative transfer theory ( 6 s ). 

2.2.2.1. Dark Object Subtraction (DOS). The DOS method 
assumes that within a satellite image there exist features that have 
near-zero percent reflectance (i.e., water, dense forest, shadow), 
such that the signal recorded by the sensor from those features is 
solely a result of atmospheric scattering (path radiance), which 
must be removed (Chavez Jr., 1996). Path radiance, Lp, was esti­
mated using Eq. ( 5), 

4, = G*DNdark +B-0.0I[Eo*cos(B)*Tz +Edown}Tv/n (5) 

where DNdark is the darkest DN value in each spectral band with at 
least one thousand pixels (Teillet & Fedosejevs, 1995). The DOS 
method used here is referred to in Song et al. (2001) as DOS3, 
which estimates Tv as e-n-lcos(E> .. > and T

2 
as e- n-lcos(E>z) assuming 

a Rayleigh atmosphere with no aerosols and one percent surface 
reflectance for the dark object Optical thickness for Rayleigh 
scattering ( -rr) (Kaufman, 1989) was estimated by, 

'tr= 0.008569*r4 (1 + 0.0113 *r2 + 0.00013 * r 4
) (6) 

where A is the band-center wavelength in µm. Edown for a 
Rayleigh atmosphere was estimated as zero aerosol optical depth 

PIFs: 

• =Dune D = Lava 

•=Urban •=Water 

• = Rock • = Forest 

~ = Training Sites 

0 = Testing Sites 

• = AERONET Site 

II= MAD Image Subset 

Forest stands used for spectral 
reflectance trajectory development = A 

at 550 nm using the 6 s radiative transfer code (Vermote et al., 
1997). DOS3 was selected for use in this study in lieu of other 
DOS methods based on its ability to create a consistent common 
scale as evaluated by change detection and classification accuracy 
for part of the Landsat scene under investigation (Song et al., 
2001). 

2.2.2.2. Modified Dense Dark Vegetation (MDDV). This 
approach is based on the dense dark vegetation (DOV) method 
(Liang et al., 1997), which assumes that areas of dense, dark 
vegetation are present in the satellite image in which to use as 
dark objects for Landsat bands 1 (blue) and 3 (red). Since longer 
spectral wavelengths are less affected by atmospheric scatter­
ing, Landsat band 7 at-satellite reflectance is assumed equal to 
its surface reflectance. As in Liang et a}. (1997), dark areas were 
spatially defined for each image where band 7 reflectance was 
~ 0.05 and NDVI was >0.1. The identified dark areas were used 
to estimate band 1 and band 3 surface reflectance based on the 
following relationships with band 7 surface reflectance (Kauf­
man et al., 1997), 

(7) 

where the subscripts of p are Landsat band numbers. LP for each 
image was estimated as the difference between the at-satellite 
reflectance in bands 1 and 3 and the estimated surface 
reflectance from Eq. (7). This approach was first used with a 
"smart moving window" (Liang et al., 1997) to atmospherically 
correct individual pixels, and was subsequently modified by 
Song et al. (2001) to a "fixed" window approach for band-wise 
correction as applied here. The presented MDDV approach 
derives an appropriate aerosol optical depth by iteratively 
running 6 s radiative transfer code until the output surface 
reflectance matches the predicted surface reflectance from Eq. 

Fig. 2. Spatial location of hand-selected training and testing pseudo-invariant features (PIFs), multivariate alteration detection (MAD) image subset, forest stands used 
for spectral reflectance trajectory development and AERONET site in 46/29 Landsat scene. 
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(7). Matching aerosol optical depths were then used in 6 s to 
atmospherically correct the subsequent bands of each image. 

2.2.2.3. Second simulation of the satellite signal in the solar 
spectrum (6 s). The 6 s general radiative transfer code (Vermote 
et al., 1997) was used to estimate surface reflectance using aerosol 
optical depth (AOD) data collected at the AERONET site located _ 
at the HJ Andrews Experimental Forest in Blue River, Oregon 
(Fig. 2). Estimates of aerosol optical depth were acquired at 500 
and 670 run for the day and time closest to satellite overpass for 
the 1994 through 2004 images ( except 2002, no data). The aerosol 
optical depth at 550 run required as input to 6 s was derived for 
these images using Eq. (8), 

(8) 

where T,l is aerosol optical depth at wavelength 1 (nanometers), 
and a and b are empirical parameters (Liang et al., 1997). The 
estimated aerosol optical depth at 550 nm (Table 2) was used 
along with the 6 s midlatitude summer atmosphere and continen­
tal aerosol model to derive surface reflectance for each image. As 
optical depth data were only available for 1994-2001 and 2003-
2004, only images from these years could be corrected with 6 s. 

2.2.3. Absolute-normalization 
For "absolute-normalization", one atmospherically corrected 

image (1994) was chosen as the reference to which all others 
were adjusted, using two separate approaches: analyst selection 
of PIFs and statistical ordination (MAD) (Canty et al., 2004). 
This image was selected because of its high radiometric quality 
and its central location in the time-series. Because we used a 
fully (i.e., atmospherically) corrected reference image (6 s 

Table 2 
Aerosol optical depth (AOD) at 550 nm estimated from HJ Andrews Aeronet 
site and the modified . dense dark vegetation (MDDV) absolute correction 
method 

Image 

1984 
1986 
1987 
1988 
1989 
1991 
1992 
1993 
1994 
1995 
19% 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 

MDDV 

AOD 

0.240 
0.230 
0.380 
0.370 
0.110 
0.400 
0.140 
0.090 
0.150 
0.290 
0.400 
0.110 
0.100 
0.110 
0.130 
0.090 
0.090 
0.130 
omo 

AERONET 

AOD 

0.015 
0.010 
0.036 
0.028 
0.008 
0.032 
0.048 
0.029 

0.093 
0.030 

version) for these procedures, we refer to them as two variants of 
an "absolute-normaliz.ation" approach. 

2.2.3.1. Pseudo-invariant Feature (PIF). Using the criteria for 
manually selecting normalization targets suggested by Eckhardt 
et al. (1990), the image time-series was thoroughly inspected to 
derive a total of63 training PIFs (the same 33 dark and 30 bright 
features in each image) for relative normalization. The bright 
(dune, urban, rock) and dark (water, forest, lava) features were 
hand-selected to be well distributed around the image (Fig. 2), 
and to encompass the full range of spectral brightness values 
(bright, medium, dark) fom1d. Normaliz.ation was accomplished 
on a band-by-band basis using these "training" PIFs with reduced 
major axis (RMA) regression (Canty et al., 2004; Cohen et al., 
2003). An independent setoftestPIFs (13 dark, 13 bright; n=26) 
was also manually selected (Fig. 2) for the purpose of validating 
the common scale produced by the absolute (both full and partial) 
and "absolute-normalization" correction methods. 

2.2.3.2. Multivariate Alteration Detection (MAD). Selecting 
PIFs by hand, as previously described, is a time-consuming task, 
particularly when the time-series consists of several images. An 
attractive and less subjective alternative for selecting PIFs is to 
use statistical methods to locate them automatically (Hall et al., 
1991 ). One such method, multivariate alteration detection 
(MAD) (Canty et al., 2004; Nielsen et al., 1998) uses traditional 
canonical correlation analysis (CCA) (Hotelling, 1936) to find 
linear combinations between two groups of variables (i.e., the 
spectral bands of subject and reference images) ordered by cor­
relation, or similarity between pairs. Differences between such · 
ordered pairs are called MAD variates and these are invariant to 
affine transformations (including linear scaling). This implies 
that linear atmospheric and instrumental effects will not influ­
ence the change/no-change probabilities of the pixels derived 
from the method. In fact, the sum of squares of the standardized 
MAD components (the MAD components divided by their 
standard deviations) is approximately chi-square distributed, 
enabling no-change thresholds to be set easily. The MAD trans­
formation was used here to locate invariant pixels ( chi-square 
threshold 0.99) between each image in the time-series and the 
1994 6 s corrected reference. The selected invariant pixels were 
subsequently used to normalize each image band-by-band to the 
reference scene using RMA regression. 

2.3. Error analysis 

The absolute (full and partial) and relative ("absolute-nor­
malization") correction methods tested here all use linear ad­
justments to convert raw image DN s to units of estimated 
surface reflectance (or at-satellite reflectance in the partial 
correction case). Thus, each image in the time-series ( except 6 s, 
applied only to images with available in situ atmospheric data) 
was converted to estimated surface reflectance using the look up 
table (LUT) approach described by Song et al. (2001 ). 

After applying atmospheric corrections to the image time­
series, a 3 x 3 window was placed over each test PIF (26 in 
number) and the mean spectral reflectance value for each band of 
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corrected imagery (5 methods x 18 images x 6 spectral bands+ 9 
6 s corrected images x 6 spectral bands=594 band images in all) 
was extracted and compared to the mean PIF spectral reflectance 
values of the appropriate reference image. The difference between 
corrected PIF reflectance and the reference PIF reflectance is 
reported as the root mean square error (RMSE). Thus, all rela­
tively normalized images were compared to the 6 s corrected 1994 
reference image, whereas the absolutely corrected images were 
compared to the 1994 reference image corrected with its cor­
responding correction method ( e.g., DOS3 corrected images were 
compared to the DOS3 1994 reference image; 6 s corrected im­
ages were compared to the 6 s corrected reference image, etc ... ). 
To assess robustness of correcting an image time-series, RMSE 
was calculated by image date ( across spectral bands), by Landsat 
band ( across image dates), and overall by correction method 
( across image dates and spectral bands). A typical RMSE for 
detailed absolute correction of Landsat imagety has been 
previously reported at 0.02 (Moran et al., 1992), therefore 0.02 
will serve here as a benchmark for establishing successful image 
correction. 

a 0:05 

0.04 

0.03 
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2.4. Spectral reflectance trajectories 

The development of meaningful spectral reflectance trajectories 
is not solely dependent on the accurate calculation of true surface 
reflectance, but more on a consistent measurement of surface 
reflectance among images, which has previously been referred to 
as "common scale" (Song et al., 2001 ). The consistency of com­
mon scale is based here on the difference in spectral response 
among the corrected images, relative to its respective reference 
image over the set of test PIFs. The absolute (full or partial) or 
relative ("absolute-nonnalization") correction method found to 
have the least amount of spectral difference (lowest RMSE) among 
test PIFs will be used to derive the spectral reflectance trajectories 
of recovering conifer forests. If two methods have similarly low 
RMSEs, the method best lending itself to operational use will be 
selected for spectral trajectory development. 

Forest stands undergoing stand-replacing disturbance between 
1986 and 1987 were visually identified using a multi-temporal 
RGB color composite of spectral band 5. To evaluate the effect of 
image correction on the spectral manifestation of forest 

I 
I I I I 
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Fig. 3. RMSE by image (calculated across spectral bands) for (a) partial correction (absolute calibration only). (b) absolute corrections (absolute calibration plus 

atmospheric correction) and (c) relative corrections (absolute correction plus image nonnalization). 
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Fig. 4. RMSE by Landsat band (across image dates) for all image correction methods. 

succession, twelve forest stands were hand-selected for spectral 
reflectance trajectory development. Of the twelve forest stands 
selected (Fig. 2), six were located in the Coast Range (CR) and six 
in the Western Cascades (WC) ecological provinces. Stand mean 
reflectance values were extracted from the time-series corrected 
with the preferred image correction method, as well as from the 
partially corrected (absolute calibration only) image time-series 
and fit with quadratic polynomial curves. These quadratic poly­
nomial curves, or spectral reflectance trajectories were developed 
for all six Landsat spectral bands, as well as for the tasseled cap 
transformation (brightness, greenness, wetness) and the normal­
ized difference vegetation index (NDVI). Standard error (RMSE) 
and variance explained (R2

) were calculated for each quadratic 
polynomial model, then averaged across the twelve forest stands 
to determine whether the trajectory models were improved (i.e., 
lower RMSE) by image correction. 

3. Results 

3.1. Image correction 

3.1.1. RMSE by image date 
To evaluate the consistency of common scale at the image 

level, RMSE was calculated for each image date ( across spectral 
bands) by image correction method (Fig. 3). Examining RMSE 
for the partially corrected images (Fig. 3a) reveals the sur­
prisingly consistent spectral response of the image time-series 
even with no atmospheric corrections applied. The consistent 
nature of the partially corrected time-series is expressed by seven 
of the eighteen images (1984, 1986, 1989, 1992, 1997, 2000 and 
2004) having less than 0.02 RMSE, with seven others (1993, 
1996, 1998, 1999, 2001, 2002, and 2003) falling just slightly 
above the 0.02 benchmark. Only four images (1987, 1988, 1991, 
and 1995) were considered appreciably different than the refer­
ence image, with RMSEs nearly equal to or greater than 0.03. 

Only nine of the eighteen images in the time-series were 
corrected using all three full absolute correction methods 
(Fig. 3b ), thus reducing the number of observations to assess 
improvements to the common scale of the full time-series. Of 
these nine images, DOS3 had the lowest RMSE in six of the 
images, compared to three for 6 s. The MDDV method yielded 

the highest RMSE of all the absolute correction methods in six of 
these nine images. In order to determine whether the common 
scale was improved by full absolute correction, the partially 
corrected image time-series was used as a standard for com­
parison. Of the nine images that were corrected by all three 
absolute methods, only four (1998, 1999, 2000, and 2001) had 
lower RMS Es than their partially corrected counterparts. Of the 
four images with improved common scale resulting from ab­
solute correction, two were corrected with DOS3 and two with 
6 s. Thus, the least complex DOS3 method proved to be the most 
effective absolute correction method. It yielded the lowest 
RMSE in six of the nine images corrected with all three absolute 
methods, and slightly lowered RMSE from that which was 
observed in the partially corrected images. Even so, the common 
scale of the image time-series was not consistently improved by 
any of the full absolute correction methods. 

On the other hand, the image time,..series relatively normal­
ized with the two "absolute-normalization" methods appears 
consistently improved 'in terms of common scale (Fig. 3c). All 
eighteen images had at least one relative method yield an RMSE 
of 0.02 or less. Compared to the partially corrected time-series, 
fifteen of the images had lower RMSEs after relative nor­
malization. Overall, it appears that the improved common scale 
was achieved nearly equally by both the PIF and MAD methods. 
Though differences in RMSE were slight between the two 
methods, PIF did have lower RMS Es for eleven of the eighteen 
images in the full time-series. 

Partial D0S3 MIDV 6s MAD PIF 

Fig. 5. RMSE by image con-ection method (across all image dates and spectral 
bands). 
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3.1.2. RMSE by Landsat band 
The consistency of the image time-series was also evaluated 

based on RMSE by Landsat band (across images) (Fig. 4). 
Shorter wavelength spectral bands like Landsat bands 1 and 2 
are commonly impacted by Rayleigh scattering. Although 
scattering is likely, bands 1 and 2 do not seem significantly 
impacted here as both have low (<0.02) partially corrected 
RMSEs. On the other hand, band 3 has the highest partially 
corrected RMSE, which may be attributed to atmospheric scat­
tering. Longer spectral regions like Landsat bands 4, 5 and 7 are 
typically influenced by atmospheric absorption, which is likely 
contributing to the elevated (>0.02) partially corrected RMSEs 
observed for these spectral bands. 

If the errors detailed above are truly a result of atmospheric 
scattering and absorption, then it stands to reason that full 
absolute correction would likely account for some of these 
effects, seiving to lower RMSE from that observed in the par­
tially corrected images. Quite the opposite is observed however, 
with all of the absolute methods yielding an increase in RMSE in 
four (I, 2, 4, and 5) of the six spectral bands. In fact, all of the 
absolute methods failed to lower RMSE to <0.02. DOS3 and 6 s 
yielded similar RMSEs in four (1-4) of the six spectral bands; 
two (3 and 4) of which were nearly equal to the error observed in 
partial correction. On the other hand, MDDVyielded the highest 
RMSEs of all the methods tested in five (1, 2, 3, 4, and 5) of the 
six spectral bands. Overall, full absolute correction did not 
improve the consistency of common scale from that observed in 
the partially corrected images. 

Relative "absolute-normalization" on the other hand signif­
icantly improved the image time-series from the spectral 
perspective. Both of the relative correction methods lowered 
RMSE from that observed in partial correction. In fact, after 

Table 3 
R-square and RMSE of quadratic polynomial models averaged across twelve 
forest stands recovering from stand-replacing disturbance for partial and MAD 
"absolute-normalization" image correction methods 

R2 RMSE 

Mean Mean 

Band I Partial 0.62 0.0107 
MAD 0.51 0.0057 

Band2 Partial 0.63 0.0088 
MAD 0.56 0.0054 

Band 3 Partial 0.77 0.0141 
MAD 0.72 0.0105 

Band4 Partial 0.54 0.0379 
MAD 0.84 0.0255 

Band 5 Partial 0.82 0.0217 
MAD 0.77 0.0208 

Band 7 Partial 0.90 0.0124 
MAD 0.91 0.0109 

Brightness Partial 0.36 0.0390 
MAD 0.31 0.0254 

Greenness Partial 0.84 0.0226 
MAD 0.91 0.0181 

Wetness Partial 0.92 0.0138 
MAD 0.93 0.0133 

NDVI Partial 0.92 0.0426 
MAD 0.90 0.0410 

relative normalization five of six spectral bands had at least one 
relative method lower RMSE to <0.02. In terms of lowering 
RMSE from partial correction, band 4 seemed least improved 
by relative normalization whereas band 3 the most. Both of the 
relative "absolute-normalization" methods performed nearly 
equally in all six spectral bands. 

3.1. 3. RMSE by image correction method 
To assess overall effectiveness RMSE was calculated for each 

image correction method ( across all images and spectral bands) 
(Fig. 5). Similar to observations by image and by Landsat band, 
none of the full absolute correction methods reduced the RMSE 
below that observed in the partially corrected data. The MDDV 
method produced the greatest overall error, with the D0S3 and 
6 s methods resulting in slight increases in the error observed in 
the partially corrected images. The relative "absolute-normali­
zation" methods were equally effective, reducing the error 
observed in the partially corrected images by nearly 25%. The 
PIF method produced a slightly lower overall RMSE than MAD. 

3.2. Spectral reflectance trajectories 

Although the PIF method yielded slightly less error than 
MAD, there was very little difference between the two relative 
"absolute-normalization" methods in terms of improving the 
common scale of the image time-series. Given the similarity of the 
two methods, the MAD "absolute-normalization" approach is 
preferred here for several reasons (see Discussion) including its 
utility to operational use. As a result, spectral reflectance trajec­
tories were developed using the MAD "absolute-normalization" 
and the partially corrected image time-series. The parameters (If 
and RMSE) of the quadratic polynomial models used to form the 
spectral reflectance trajectories were averaged across the twelve 
hand-selected forest stands and are presented in Table 3. 

The results indicate that on average, the MAD "absolute­
nonnalization" spectral reflectance trajectories have less residual 
scatter (i.e., lower mean RMSE across stands) than trajectories 
created with the partially corrected time-series. Although MAD 
band I and 2 trajectories yield the lowest post-correction errors, 
they explain a relatively low percentage of variance as expressed 
by R2

• On the other hand, NDVI spectral reflectance trajectories 
explain a high percentage of variation found in the temporal data, 
yet yield high prediction errors. Ideally, models capturing a high 
percentage of variation combined with low prediction error 
would produce the best spectral reflectance trajectories. In this 
regard, trajectories created with MAD "absolute-normalization" 
band 7 and tasseled cap wetness seem promising for character­
izing the dynamic process of forest succession. 

4. Discussion 

4.1. Atmospheric correction versus "absolute-normalization " 

The results indicate that the full absolute correction methods 
tested here were ineffective at correcting satellite images to a 
consistent common scale, a finding similarly reported by Song et · 
al. (2001 ) for a portion of the same Landsat scene. The more 
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complex methods (MDDV and 6 s) attempt to estimate aerosol 
optical depth, which generally rely on various simplifying as­
sumptions. These assumptions have been previously reported as 
ineffective for improving change detection and classification 
accuracies (Song et al., 2001) and have not served to improve the 
common scale of the image time-series presented here. Given the 
relatively stable common scale observed in the partially corrected 
data, it is not surprising that complex theoretical adjustments 
reduced the spectral consistency of the image time-series. While 
simple corrections like DOS3 generally worked the best, none of 
the full absolute correction methods produced a common scale 
more consistent than observed in the partially corrected images. 

The MDDV method· was the least effective absolute 
correction method, and as reported in other studies, tends to 
significantly over-estimate aerosol optical depth (Table 2). This 
over-estimation resulted in a disproportionate amount of dark 
features (water and mature forest) being converted to near zero 
values in bands 1 and 3, yielding over-corrected water and forest 
spectral . signatures. Based on observations in this study it is 
likely that the criteria for defining dark areas (band 7 reflectance 
:::;9.05 and NDVI >0.1) is too liberal. More stringent criteria for 
defining dark areas may improve the performance of this meth­
od, especially for highly vegetated Landsat scenes. Furthermore, 
the partially corrected data also suggests that band 7 may be 
impacted by atmospheric absorption, perhaps invalidating the 
MDDV assumption that band 7 at-satellite reflectance equals 
band 7 surface reflectance. 

Although the most complex method, 6 s was slightly less 
effective than the much simpler DOS3 method at creating a 
consistent common scale. The AOD data used in 6 s were 
collected at the Western .Cascade AERONET site, located at the 
HJ Andrews Experimental Forest. Since Landsat scene 46/29 lies 
adjacent to the Pacific Ocean and covers portions of two 
mountain ranges it is likely, given the highly variable nature of 
aerosol loadings, that AOD estimates recorded in the Western 
Cascades may differ significantly from those observed elsewhere 
in the scene. Since accurate AOD data is often difficult to obtain, 
improving image-based estimates from methods like MDDV 
warrant further investigation. Determining the success of6 s as an 
absolute correction method was further limited by the lack of 
AOD data for the full temporal span of the image time-series. 

Whether analyzed by image date, by Landsat band, or overall 
by image correction method, relative normalization applied in 
the "absolute-normalization" context produced the most consis­
tent common scale for the image time-series. This finding is 
similar to Olsson (1995), who reported that relative normaliza­
tion was to be preferred to absolute correction for accurate 
detection of localized changes in boreal forests. Although the 
PIF method had a slightly lower overall RMSE, there are several 
reasons for preferring MAD. 

First, MAD is easier and more time efficient to implement than 
PIF. Although hand-selecting invariant features has been 
successfully employed in other studies, it is a time consuming 
process that is often subject to analyst interpretation, and poten­
tially limited by scene location. The MAD method however, has 
been automated to statistically locate invariant pixels in a small 
subset (Fig. 2) taken from the subject and reference images. Tests 

(not presented) show that the performance of normalization can 
vary depending on the quality and quantity of invariant pixels 
selected from subsets taken from different areas of the full Landsat 
scene. Selecting a subset that contains large, highly stable (i.e., 
low variance) bright features like sand dtmes and stable dark 
features like water and mature forest should be preferred. Al­
though mature forest is likely to change spectrally from year to 
year due to phenological differences, it seems capturing this 
natural variability in the normalization model will facilitate sepa­
ration of real forest change from noise. A simple test can be 
conducted to locate several suitable image subsets per Landsat 
scene for future implementation ofMAD. In addition, the MAD 
program is currently being modified to integrate invariant pixels 
selected from multiple image subsets into one normalization 
model. 

The second advantage to using MAD is that areas of 
significant change (i.e., disturbance, cloud cover) occurring 
between the subject and reference images do not need to be 
accounted for prior to selecting invariant pixels. Other methods 
for statistically selecting invariant pixels, such as ordination by 
principal components analysis (PCA) have been previously 
suggested (Du et al., 2002). While this method has produced 
favorable results, it typically requires more processing time as 
PCA is not invariant to linear scaling of input data. Hence, 
significant areas of change between the subject and reference 
image (i.e., clouds) must be masked out prior to statistical 
ordination. PCA can also be significantly weighted by a single 
image in the time-series that has high variance. Since the basis 
for MAD is CCA, pixels that significantly change between the 
subject and reference image do not need to be masked prior to 
ordination, offering additional time savings when correcting 
multiple images. 

Although atmospheric correction is not required before run­
ning MAD, it may be useful to have all the images in the time­
series nonnalized to tmits of surface reflectance. Thus, the third 
advantage to using MAD is that since it is invariant to linear 
scaling, all images in a time-series can be corrected for atmo­
spheric effects while simultaneously being converted to units of 
reflectance. This is best achieved by using the "absolute-norma­
lization" approach suggested here, where the selected reference 
scene is first converted to surface reflectance using one of the 
full absolute correction methods, and then all other images are 
normalized to it It is important to note that linear transforma­
tions such as sensor gain/bias adjustments and atmospheric 
corrections are not necessary prior to running MAD. The same 
consistency of common scale will be achieved with MAD with 
or without corrections to the reference image, offering addi­
tional savings in processing time depending on user needs .. 

4.2. Spectral r~fl,ectance trajectories 

The objective of radiometric correction is not primarily to 
improve the percentage of variance explained (R2

) by a spectral 
reflectance trajectory, but rather to reduce the noise associated 
with multi-date data, thus lowering residual scatter (RMSE). Our 
results indicate that for all spectral bands and indices evaluated, 
that '"absolute-normalization" using MAD produced spectral 
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reflectance trajectories with less residual scatter than trajectories 
created with the partially corrected images. Although normal­
ization effectively reduced residual scatter, two factors contrib­
uted to a less than expected magnitude of improvement. First, 
images acquired in western Oregon during the summer months 
already have a high degree of spectral consistency due to sea­
sonally dry conditions. Second, image correction error -is 
evaluated here by comparing atmospherically corrected images 
to images subjected to partial correction (e.g., sun and view 
angle effects), likely reducing the magnitude of improvement 
derived from a comparison against uncorrected images ( e.g., 
DN). We are currently using MAD to normalize images acquired 
in more spectrally diverse forest types (i.e., eastern deciduous) to 
assess the level of improvement "absolute-normalization" can 
make to those types of spectral reflectance trajectories. 

Now that we have determined that "absolute-normalization" 
using MAD effectively improves the development of spectral 
reflectance trajectories, our focus turns ~ using the normalized 
spectral reflectance trajectories to analyze spatial patterns of 
forest succession. Our observations indicate that spectral 
reflectance trajectories developed with MAD normalized band 
7 and tasseled cap wetness seem promising for characterizing 
continuous attributes of forest succession. It should be noted 
however, that spectral reflectance trajectories are built here on 
single variables, while models of successional recovery after 
disturbance will likely include multiple variables. 

5. Conclusion 

An effective and efficient method for atmospherically cor­
recting an image time-series for characterization of forest 
successional patterns, referred to as "absolute-normalization", 
was presented. This method relatively normalizes all images in a 
time-series to an atmospherically corrected reference image. The 
benefits of this approach are the reliance on the more dependable 
relative normalization process to yield an improved temporal 
common scale, while subsequently converting all images in a 
time-series to units of surface reflectance. The results 
demonstrated how converting images in a time-series to 
reflectance using absolute correction alone tends to decrease 
. the consistency of common scale compared to that observed in 
partially corrected images. 

Overall, the MDDV method was the least effective absolute 
method, possibly resulting from the overly lenient spatial 
definition of dark areas. Although the most complex method, 
the 6 s radiative transfer code performed slightly worse than the 
much simpler DOS3 method, with possible shortcomings 
attributed to the extrapolation of point sampled AOD data to 
the full Landsat scene. The image based DOS3 method did the 
best job of all the absolute methods at correcting the image time­
series, supporting the assertion that simpler atmospheric 
correction methods may be preferred when consistency of 
common scale is more important than· accurate estimation of 
surface reflectance (Song et al., 2001 ). 

The best normalization results, in terms of RMSE, were 
achieved nearly equally by both relative "absolute-normaliza­
tion" methods, with correction based on analyst selected PIFs 

generating only a slightly more accurate common scale than 
relative correction based on invariant pixels statistically selected 
by the MAD algorithm. Although the PIF method generated 
slightly lower overa11 errors, several reasons emerged for pre­
ferring the MAD based approach to invariant feature selection. 
These reasons include ease and time efficiency of implementa­
tion and invariance to linear scaling effects. The "absolute­
normalization" approach using MAD as presented here is also 
preferred for the simultaneous correction of atmospheric effects 
during the relative conversion to surface reflectance. While pre­
viously shown to work well in arid environments (Canty et al., 
2004), the MAD algorithm has been shown here to generate a 
temporally consistent, spectrally diverse range of invariant 
pixels for successful normalization of a highly forested Landsat 
time-series. 

To assess the impact of image normalization on the char­
acterization of recovering conifer forests, spectral reflectance 
trajectories were developed for twelve hand-selected forest 
stands undergoing stand-replacing disturbance. For all spectral 
bands and indices evaluated, MAD normalized spectral 
reflectance trajectories had less residual scatter (lower 
RMSE) than trajectories created with the partially corrected 
images. 
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