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Abstract: Bayesian belief and decision networks are modelling techniques that are well suited to adaptive-management 
applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks 
(BBNs) can serve many purposes, from illustrating a conceptual understanding of system relations to calculating joint 
probabilities for decision options and predicting outcomes of management policies. We describe the nature and capabil- 
ities of BBNs, discuss their applications to the adaptive-management process, and present a case example of adaptive 
management of forests and terrestrial lichens in north-central British Columbia. We recommend that those unfamiliar 
with BBNs should begin by first developing influence diagrams with relatively simple structures that represent the SYS- 

tem under management. Such basic models can then be elaborated to include more variables, the mathematical rela- 
tions among them, and features that allow assessment of the utility of alternative management actions or strategies. 
Users of BBNs should be aware of several important limitations, including problems in representing feedback and 
time-dynamic functions. Nevertheless, when properly used, Bayesian networks can benefit most adaptive-management 
teams by promoting a shared understanding of the system being managed and encouraging the rigorous examination of 
alternative management policies. 

Rkum6 : Les riseaux bayisiens de decision et d'apprkciation (RBDA) sont des techniques de modklisation bien adap- 
tkes aux applications de l'amknagement adaptatif mais, a ce jour, ils ne semblent pas avoir ktk largement utilids h cet 
effet. Les RBDA peuvent servir B plusieurs iins, depuis l'illustration de la comprihension conceptuelle des relations 
entre systbmes jusqu'au calcul de probabilites conjointes d'options dicisionnelles et il la pddiction de cons6quences de 
dkisions d'amknagement. Nous dkrivons la nature des capacith des RDBA, discutons de leurs applications dans le 
processus d'amknagement adaptatif et prbsentons une itude de cas d'aminagement adaptatif de forEts et de lichens ter- 
r e s m  dans le centre-nord de la Colombie-Britannique. Nous recornmandons ceux qui ne sont pas familiers avec les 
RDBA de commencer d'abord par dkvelopper des diagrammes d'influence avec des structures relativement simples 
pour reprisenter le systkme sous ambnagement. De tels mod2les de base peuvent ensuite Stre rendus plus complexes 
pour inclure plus de variables, les relations rnathimatiques entre elles ainsi que les klkments permettant d'ivaluer 
l'utiliti de stratkgies ou factions alternatives d'aminagement. Les utilisateurs de RBDA doivent Etre conscients de plu- 
sieurs limitations importantes, incluant des probl6mes de repdsentation des ritroactions et des fonctions dynamiques 
dans le temps. Quoiqu'il en soit, les riseaux baybiens bien utilisis peuvent rendre service h la plupart des 6quipes 
d'aminagement adaptatif en favorisant une comprkhension partag& d'un systhme sous amhagement et en encoura- 
geant l'examen rigoureux de politiques alternatives d'amtoagement. 

[Traduit par la Rkdaction] 

lntroductlon oped by citizen groups (Margoluis and Salafsky 1998) to so- 
phisticated mathematical simulations and risk-analysis tools 

In adaptive management (AM), models are commonly developed by scientists (Walters 1986). Depending on their 
used to describe the system being managed and to forecast type, models can serve many important technical purposes in 
expected outcomes of management. Such models take many AM, including documenting the current state of knowledge 
forms, from conceptual "box and arrow" diagrams devel- of the system, clarifying assumptions, identifying key uncer- 
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fig. 1. An influence diagram illustrating the structure of Bayesian belief networks. This diagram represents the influences of environ- 
mental factors and forest management on the abundance of terrestrial lichens that provide forage for woodland caribou (Rangifer 
tarandus caribou) in north-central British Columbia. 

(~errestrial Uchen Forage ~ u p p h  

tainties and thresholds, testing sensitivities, and evaluating 
consequences of alternative decisions. In addition, AM par- 
ticipants often find the process of building a model together 
helps to create a sense of teamwork and a shared under- 
standing (Holling 1978). 

Despite their fundamental place in the origins of AM 
(Holling 1978), models are not universally used in AM pro- 
grams. There are probably two reasons for this: AM project 
teams may not recognize the usefulness of simple concep- 
tual models of systems, or they may not be capable of build- 
ing more complex mathematical or computer models. Doubt 
about the usefulness of modelling may arise for many rea- 
sons, including previous experience with unsuccessful mod- 
els and expectations that models will be complicated or must 
be driven with massive amounts of field data that cannot be 
obtained. The perceived lack of modelling skills or confi- 
dence in some AM teams may derive from the historical em- 
phasis in the AM literature on computer-based simulations 
of populations and systems, which usually require high lev- 
els of modelling expertise (e.g., Lackey 1979). In other 
cases, AM teams may reject simple conceptual or diagram- 
style models because such models lack rigour and provide 
no means for simulating decisions and changes over time. 

Given the proven value of models to AM programs, many 
AM teams could benefit from a powerful yet easily grasped 
modelling approach. We propose that Bayesian belief mod- 
elling is such an approach and is worthy of much wider use 
in AM. Bayesian belief modelling has been used in a wide 
variety of natural resource management fields, including as 
an aid to water-resource planning (Bromley et al. 2005), 
evaluating population viability of salmonids (Lee and 
Rieman 1997; Rieman et al. 2001). and managing Baltic cod 
(Gadus morhua callarim Linnaeus, 1758) (Kuikka et al. 
1999). Kangas and Kangas (2004) identified several ap- 
proaches to developing useful risk-assessment tools for for- 
estry decision analysis, including the use of Bayesian 
methods. Other examples of Bayesian belief modelling in 
natural-resource management are reviewed elsewhere (Ba- 

con et al. 2002; Marcot et al. 2006). Although the use of 
such tools is becoming more common, we found no exam- 
ples of use that fully spanned all steps in the AM process. 

Here we describe the nature of Bayesian belief networks 
(BBNs) and Bayesian decision networks (BDNs), explain 
their benefits in AM applications, illustrate their use in a 
specific case example, and discuss their shortcomings and 
alternatives. We make the distinction here between BBNs 
and BDNs: the latter contain decision nodes and, optionally, 
utility nodes. For simplicity we use BBN to include both 
types of networks, and use BDN when it is necessary to de- 
note a decision network only. 

Nature and benefits of Bayesian belief 
networks 

BBN concepts and software 
BBNs are easy for most people to use, especially when 

constructed with one of the commercially available software 
"shells" such as Netica (Norsys Software Corporation, http:l/ 
www.norsys.corn/netica.html), Hugin Expert (Hugin Expert 
A/S, httpJhvww.hugjn.com/), Bayesware Discoverer (Bayesware 
L i ,  http~/www.bayesware.coml), and Mimsoft Bayesian 
Network Editor and Tooikit (MSBNx) (Microsoft Research, 
http://research.microsoft.com/adapt/MSBN~. 

BBNs (Fig. 1) are constructed as networks of variables 
and their interactions, referred to as nodes and directed 
links, and can represent a very wide array of problems in 
ecological assessment and prediction (McCann et al. 2006). 
In this paper we use "parent" and "'child" to describe the po- 
sitions of nodes in the BBN structure, and "nature", "deci- 
sion", and ''utility" to describe the types of nodes. Below we 
briefly describe the nature and formulation of BBNs; more 
details are provided in Marcot et al. (2006). 

In BBNs, nature nodes represent empirical or calculated 
parameters and probabilities of various states of those pa- 
rameters. Input (or "parentless") nodes (e.g., stand-removal 
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method in Fig. 1) are structured as constants or as categori- 
cal states with associated prior probabilities. Prior probabili- 
ties can be assigned according to known frequencies of 
various states, or based on an assumed statistical distribu- 
tion, a special case being a uniform distribution that repre- 
sents complete uncertainty. Input nodes often are grouped 
into summary child nodes (latent variables) (e.g., terrestrial 
lichen habitat capability in Fig. 1) that use either equations 
or conditional probabilities to merge conditions of their par- 
ent (input) nodes. States associated with final outcome 
node(s) (terrestrial lichen forage supply in Fig. 1) are calcu- 
lated as posterior probabilities using Bayes' Theorem 
(O'Hagan et al. 2004). 

Decision nodes in BDNs represent two or more choices 
that influence the values of other response nodes. Choices in 
a decision node do not have probabilities associated with 
them. For example, a decision node representing whether to 
precommercially thin a forest stand could be linked to re- 
sponse nodes representing resulting tree density and slash 
biomass. Specifying the type of thinning would then trigger 
the response-node states according to the conditional- 
probability tables for those response nodes. 

Utility nodes in BDNs represent the value - cost or 
benefit - of some outcome or decision, and can be linked to 
either outcome nodes or decision nodes. More than one util- 
ity node can be linked to the same node, and utility nodes 
need not be parameterized on the same unit of measure (e.g., 
dollars), although doing so makes it far easier to interpret 
model results. For example, utility nodes linked to the deci- 
sion node for precomrnercial thinning could variously repre- 
sent per hectare operational costs and some social benefit 
(e.g., a scoring index or willingness to pay) of various thin- 
ning options. Utility nodes linked to calculated outcome 
nodes would show costs or benefits of each possible out- 
come state. Once parameterized, BDNs can be queried to de- 
termine the decision pathway (the best choice in each 
decision node) that minimizes-costs or maximizes benefits, 
and the sensitivity of such best decisions to changes in util- 
ity values and prior conditions. The BDN displays expected 
values for each choice in the decision nodes by combining 
all pertinent utilities and their calculated probabilities. 

BDNs are similar to traditional decision-tree analysis but 
are far more flexible in the type of questions and analyses 
they can help answer. For example, one can specify an out- 
come - such as the best ecological response to thinning - 
and then determine the optimal decision pathway with the 
highest likelihood of producing that response. This type of 
backward calculation cannot generally be done with decision 
trees, although some decision-tree software (e.g., DecisionPro, 
Vanguard Software Corp., http://www. vanguardsw.corn/van- 
guard.htm) can display the influence of risk attitudes on de- 
cisions. 

Benefits for AM 
Many formulations of the AM process have been de- 

scribed, most or all of which derive from the initial descrip- 
tion by Holling (1978). Here we follow Nyberg (2004) in 
recognizing a six-step AM sequence: (1) assess the manage- 
ment problem or opportunity at hand; (2) design a manage- 
ment experiment to facilitate learning; (3) implement the 
experiment; (4) monitor system responses; (5) evaluate out- 

comes and learn from them; (6) adapt future decisions on the 
basis of what was learned. 

BBNs work well in this systematic approach to AM for 
two key reasons. Fist, the conceptual basis of Bayesian in- 
ference parallels the concepts behind AM (Holling 1978). 
Both presume that we begin with some understanding of a 
system and then seek to improve and update our understand- 
ing by gathering and interpreting data. Bayesian inference 
uses prior knowledge (represented as the basic BBN struc- 
ture and as prior probability distributions) before data are 
collected in a study, and posterior probability distributions 
that result when new data are accounted for. In a parallel 
fashion, AM frameworks often include "impact hypotheses" 
that are developed early in a project and more refined hy- 
potheses that are developed by evaluating the outcomes of 
management experiments. BBNs can be developed as test- 
able impact hypotheses that are evaluated and refined with 
new information. Second, the software toolbox provided in 
many popular BBN programs provides functionality, such as 
sensitivity testing and incorporation of new case data that 
supports several of the steps in the AM process. 

In the following sections we outline some of the potential 
applications of BBNs to the six AM steps outlined above, 
and discuss techniques that are particularly helpful in AM 
projects. We are not aware of examples in the literature illus- 
trating the use of BBNs throughout a complete AM se- 
quence such as that described here; in fact, there is little or 
no literature on BBN applications beyond step 2. We there- 
fore provide references where possible to applications of 
BBNs in situations that parallel some of the stages of AM, 
such as assessment of policy options during the preparation 
of environmental-impact statements. We also draw on our 
own experience in unpublished AM studies, including the 
case example that appears later in this paper. Table 1 pro- 
vides a summary of potential AM applications. 

AM step 1: Assess the problem or opporlunity 
~ u i l d i n ~  a conceptual model is a valuable first step in 

making the structureand function of any system understand- 
able to all AM project participants. AM teams commonly do 
this when assessing the problem or opportunity confronting 
them, such as when developing hypotheses of effect or im- 
pact-hypothesis diagrams (Jones et al. 1996). Because BBN 
software programs allow the construction of straightforward 
hierarchical models of relations among inputs, actions, sys- 
tem parameters, and outcomes, initial BBNs can be derived 
directly from conceptual or graphical models (or influence 
diagrams; see Marcot et al. 2006). For example, the simple 
conceptual models used in some conservation and develop- 
ment projects that include villagers as active participants 
(e.g., Margoluis and Salafsky 1998, p. 309) could easily be 
built in BBN format. In these and other projects, conceptual 
models could be edited, annotated, and distributed electroni- 
cally using inexpensive BBN software, thus facilitating clear 
documentation and rapid communication (Lynam et al. 2002). 

Other applications of BBNs in the early stages of AM de- 
rive from the mathematical complexity behind the nodes and 
linkages in fully developed networks (e.g., Steventon et al. 
2006). These mathematical relations represent the causal 
factors and functions that drive the system and the outcomes 
of interest to managers (Cain et al. 1999). 
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Table 1. Applications of Bayesian belief networks (BBNs) to steps in the adaptive-management (AM) process. 

Adaptive-management step Pertinent BBN applications 
1. Assess the problem or opportunity Represent graphically the structure of the system being managed, including (i) displaying 

linkages between potential management actions, system components, and outcomes; and 
(ii) defining measurable indicators and outcomes that reflect objectives. Explore the effects 
of alternative actions on outcomes by forecasting explicit indicator responses to a wide 
range of management options. Identify key gaps in understanding (uncertainties). Assess 
the sensitivity of forecasted outcomes to various inputs, actions, variables, and alternative 
hypotheses. Document current understanding of system structure and relations for 
communication among members of project team and to interested stakeholders or public 

2. Design a management experiment Select the management actions to be compared in the experiment by evaluating sensitivities, 
key uncertainties, forecast effect sizes, and utilities, including costs of implementation and 
monitoring 

3. Implement the experiment Use the BBN as a reference for the team and resource manager to maintain focus on 
important questions and selected management policies 

4. Monitor system responses Compare monitoring results with forecast system responses to test whether monitoring effort 
is sufficient to detect important effects; look for more sensitive indicators in the BBN 
structure or, if necessary, increase monitoring effort 

5. Evaluate outcomes and learn Update conditional probabilities using data from monitoring; refine the model to incorporate 
reductions in uncertainties; restructure the model to add system relations and components 
that were not previously recognized or to delete those that are unnecessary 

6. Adapt future decisions Use the revised model to guide future decisions about management practices, including any 
future experiments and monitoring 

Note: The AM steps are as outlined in Nyberg (2004). 

BBNs can incorporate both empirical data and expert 
judgment into the same tool (e-g., Martin et al. 2005). 
Typically, such models are first structured on the basis of ex- 
pert knowledge. Model structure refers to establishing the 
nodes and their discrete states, value ranges, or calculations, 
and the linkages among the nodes. In general, a modeller 
may serve as a "knowledge engineer" by working closely 
with subject-matter experts to build the initial model and 
help test and refine it. The modeller helps the experts articu- 
late their understanding of a system or decision framework, 
and this can be done individually or in expert-panel settings. 
We advocate using peer-review and -refinement procedures 
to craft credible models (Marcot et al. 2006). 

Although "rule-induction" algorithms exist that can help 
build or refine the model structure from case data, we advo- 
cate building the initial structure at least in part from human 
expertise. Artificially induced BBN model structures tend to 
be very shallow, with many nodes feeding into outcome 
nodes with few intermediate variables; thus they are not in- 
tuitive and are Qfficult to understand and parameterize with 
conditional probabilities. Also, rule-induction algorithms 
generally are incapable of identifying decision and utility 
nodes, which are best denoted through collaboration of ex- 
perts and stakeholders (Failing et al. 2004). Instead, empiri- 
cal (or even modelled) case data can be used later once the 
primary model is built, to further test the model, refine the 
node states, and update the prior and conditional probabili- 
ties (see below and Marcot et al. 2006). 

Some BBN models require use of mathematical equations to 
determine values and conditional-probability tables (CPTs) for 
a node. An example of an equation to specify the state values 
of a node is the use of a continuous-diffusion equation to deter- 
mine population persistence of marbled mmle ts  
(Brachyramphus mannoratus (J.E Gmelin, 1789); Steventon 

et al. 2006). An example of an equation to specify CPT val- 
ues is the joint probability function for determining capture 
likelihood for northern flying squirrels (Glaucomys sabn'nus 
(Shaw, 1801); Marcot et al. 2006). If equations are used to 
determine state values or CPTs, then to run the BBN model 
the node first must be "discretized", that is, turned into dis- 
crete states. This is because BBN calculations of posterior 
probabilities use discrete conditions. Node discretization is a 
standard BBN process that is handled in most of the BBN 
modelling shells, and some BBN modelling shells can han- 
dle fully continuous probability values under specified prob- 
ability distributions such as the normal distribution. 

BBNs usually are designed to immediately calculate and 
display the results of any changes made to parent node 
states. With BBNs that posit cause and effect relations 
within a system, AM teams can explore "what if' questions 
by compiling the network and then entering different sets of 
findings (evidence) for the parent nodes. As explained 
above, these findings can be based on either expert knowl- 
edge or &ta (Raphael et al. 2001). The resulting changes in 
the states of the child nodes reflect the team's modelled un- 
derstanding of the system and the interactions among its 
variables (i.e., the probability structure of the model). This 
ability to forecast outcomes or "game" with management op- 
tions is a crucial step in assessing AM opportunities and de- 
signing management experiments. 

Another approach to forecasting outcomes and sorting 
among decision options is to run simulations of changes in 
the system outside the BBN. Then the states of simulated 
variables (e.g., vegetation parameters) at selected time steps 
can be fed as inputs to a BBN that translates them into sum- 
marized outcomes, expressed as indicators relevant to man- 
agement. This approach can be used for modelling habitat 
changes over large areas and long time periods, as in Ra- 
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phael et al. (2001), Sutherland (2005), McNay et al. (2006), 
and Steventon et al. (2006). With this approach, a series of 
workshops is usually required, with simulations being run in 
the intervals between workshops. 

Once a model is built, it can be tested with historic data 
and used to guide further collection of validation data sets. 
Validation refers to determining the accuracy, precision, or 
bias of predictions or forecasts. It also can refer to determin- 
ing the correctness of the statistical or causal model used to 
generate those predictions or forecasts. Historical (including 
retrospective) data can be used in various ways, such as with 
bootstrapping by randomly splitting the data set into two 
parts, one for model parameterization and the other for test- 
ing results. This tests how well a model performs given a set 
of known outcomes. Another approach to validation is to use 
new observations that would be gathered as part of the AM 
experiment under conditions that are expected to be similar 
to those under which the model was devised and intended 
for use. 

Sensitivity analysis plays a central role in many stages of 
BBN model development, testing, and application (see dis- 
cussions and formulae of sensitivity analysis in Marcot et al. 
2006). At this first AM step it can help guide and determine 
appropriate model structure (Marcot et al. 2001). 

Our experience and that of others (Lynam et al. 2002; 
Heemskerk et al. 2003) have shown that most who partici- 
pate in building BBNs find the process to be stimulating and 
enjoyable, especially in team workshops. The cross- 
discipline communication that is required (Heemskerk et al. 
2003) and the collaborative focus on the BBN product help 
to form strong and committed teams with a thorough under- 
standing of each member's views and knowledge. We rec- 
ommend constructing and refining the network using a BBN 
program on a computer run by one team member who is fa- 
miliar with the software, and who can extract and represent 
knowledge and experience from the experts. With the net- 
work projected on a screen visible to all, participants can 
follow each change as the workshop proceeds, first building 
a simple network structure and then elaborating the relations 
behind it, including constructing conditional-probability ta- 
bles. One of the most powerful advantages of this approach 
to AM modelling is that it allows any participant - resource 
manager, scientist, or stakeholder - to contribute ideas or 
data and almost immediately see them represented in the 
outcome of the BBN. We also advocate building multiple or 
competing (and testable) BBN models if experts disagree on 
model structure; this too can be done with relative ease. 

AM step 2: Design a manugement experiment 
Regardless of whether an actively adaptive (deliberately 

experimental) or passively adaptive approach to AM 
(Walters 1986) is preferred, a decision-maker must select 
one or more management policies or regimes to put into ef- 
fect. A BBN can be used to suggest policy options from the 
full set tested in the previous step that meet speci£ied perfor- 
mance criteria such as low cost or a high level of effective- 
ness, especially if decision or utility nodes have been 
included in the model (Rieman et al. 2001). It can help guide 
the design of management experiments by highlighting areas 
of uncertainty and sensitivity where better information is 
needed (Cain 2001). Sensitivity analysis can identify the 

more influential input variables for prioritizing validation 
data collection and designing the monitoring program based 
on those input nodes (e.g., environmental-condition attrib- 
utes) that most influence the model predictions. 

AM step 3: Zmphent  the experiment 
Step 3 is the most straightforward stage of AM, when the 

management policy is carried out. At this step, BBNs are of 
most value in maintaining the commitment of the AM team 
and the resource manager to the goals and design of the pro- 
ject. The BBN can serve as a touchstone for the team, keep- 
ing everyone focussed on the selected management policy or 
policies and on the importance of staying the course until 
system responses are known (Salafslq et al. 2001). 

AM step 4: Monitor system responses 
Often the AM team's understanding of the system can 

change during the monitoring phase, leading to changes in 
the BBN. This can result when new information is acquired 
as interim monitoring results or from sources outside the 
AM project, such as academic research. This pattern of re- 
peated "tweaks" of a BBN is likely to be common where the 
implementation and monitoring phases last a long time, as is 
often the case in forest management and some other fields. 
Documenting and archiving each BBN update can help pro- 
vide an administrative record. A BBN can be informative 
during monitoring if the indicators being measured prove to 
be relatively insensitive to the implemented management 
policies. Examination of the BBN may point to other vari- 
ables (nodes) that are more closely linked to the policies and 
thus more informative as monitoring indicators. New data 
may alter the sensitivity structure of the model and also in- 
fluence the prioritization of variables for further data collec- 
tion. 

AM step 5: Evalwte outcomes and ham 
When monitoring results are in hand, the BBN usually 

will need to be updated to reflect the new information. 
BBNs calculate posterior probabilities of the output nodes, 
given specific conditions of the input nodes. This essentially 
solves the BBN model for a specific case, and does not 
change its basic construction or probability structure (CITs). 

Updating is also used in BBN modelling to refer to im- 
proving the values of the CPTs by incorporating a case file 
of known examples. Several methods are used in BBNs to 
update CPTs, one of the more popular of which is the expec- 
tation maximization algorithm (Watanabe and Yamaguchi 
2003). In expectation maximization updating, a set of exam- 
ples is compiled typically from field surveys or studies, but 
the examples also could be developed from simulated data. 
The examples contain information on some or all values of 
the input nodes and the resulting state of the output node, 
such as forest stand conditions and associated known pres- 
ence or absence of some rare species. The BBN is fed the 
examples, and the expectation maximization algorithm up- 
dates the underlying CPT values to better fit the known data 
by integrating over missing variables. CPT updating can be 
very important in the AM process, the prediction models be- 
ing incrementally improved with collection of new data. 

A third kind of updating can be done by using case files 
of known (or simulated) examples to improve the very con- 

8 2006 NRC Canada 



Nyberg et al. 31 09 

Fig. 2. Location map of site 1 (of three sites) of the terrestrial lichen adaptive management project in the Williston Reservoir area of 
north-central British Columbia. 

struction of the BBN model itself, that is, its specification of 
nodes, states, and linkages. There are automated algorithms 
that can specify model structure, but we suggest defining 
and updating BBN model structure manually or based on ex- 
ternal statistical analysis to best conform with ecological 
concepts, the statistical structure of the data, and appropriate 
decision structures. Automated structure updating can result 
in unwieldy and shallow BBN models with no summary in- 
termediate nodes and with many input nodes feeding di- 
rectly into output nodes; such model structures can be 
difficult to understand. 

AM step 6: Adapt future decisions 
In this step, decision-makers will revise management poli- 

cies, if necessary, based on learning that occurred in the pre- 

vious steps. BBNs will almost certainly need to be updated 
or even completely rewritten. Once the BBNs have been 
made current with new knowledge, they can again be used 
to evaluate new policy options, determine key uncertainties, 
and guide experiment and monitoring designs. 

Appllcatlon of BBNs to AM: terrestrial 
lichen and caribou case study 

To illustrate the value of BBNs in AM, we describe our 
experience with a project investigating responses of terres- 
trial lichens to forest management in the Williston Reservoir 
area of north-central British Columbia (Fig. 2). This project 
is one component of the study of woodland caribou 
(Rangifer tarandus caribou (Gmelin, 1788)) habitat and 
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population described by McNay et al. (2006). The goal of 
the project is to determine whether forest-management tech- 
niques can be used to maintain or promote terrestrial lichens, 
principally Cladina spp., that supply critical winter forage 
for caribou in the area. 

Caribou forage lichens grow abundantly on the forest 
floor on dry, nutrient-poor sites, with overstory vegetation 
dominated by 70- to 140-year-old lodgepole pine (Pinur 
contorta Dougl. ex Loud. var. latifolia Engelm.). Many of 
the key wintering sites for caribou are also part of the land 
base used to supply timber to local mills, but terrestrial li- 
chens are known to decline following logging in many parts 
of Canada (Rowe 1984) and often remain depressed for de- 
cades. Evidence from north-central British Columbia, how- 
ever, suggests that development of terrestrial lichen 
communities may occur more rapidly than in other parts of 
the country (Sulyma 2001), and that appropriate forestry 
practices may allow terrestrial lichens to be maintained at 
levels suitable for providing forage for caribou. The AM 
project described here arose from this issue. 

Project development and progress 
Concerns about caribou and their winter forage supply in 

the Williston Reservoir area were highlighted during devel- 
opment of the regional land use plan for the Mackenzie area 
(Province of British Columbia 2000). These concerns were 
further intensified in 2000 when the Committee on the Sta- 
tus of Endangered Wildlife in Canada listed the local cari- 
bou population as threatened. As a result, government agencies, 
forest companies, and local communities were motivated to 
explore means of sustaining caribou while continuing forest 
harvesting on a large part of the forested land base. 

Preliminary work on a BBN model for caribou population 
and habitat in the area brought together a core team of biolo- 
gists, foresters, and government resource managers. This 
team, supported by scientific advisors, recognized that there 
might be combinations of forest-harvesting and silviculture 
techniques that could maintain or restore terrestrial forage li- 
chens following logging on caribou winter ranges. Impacts 
of forestry practices on lichens in the area were, however, 
not well documented, through either formal research or 
monitoring programs. The core team recognized that active 
or experimental AM (Walters 1986) offered an approach that 
could help them resolve uncertainties and learn about oppor- 
tunities for maintaining lichens. 

The team constructed an initial BBN linking environmen- 
tal conditions, fire, logging, and silvicultural practices with 
terrestrial lichen abundance. This became one of the 
submodels in the early development of the Caribou Habitat 
Assessment and Supply Estimator (CHASE) package 
(McNay et al. 2006). It was also recognized as the potential 
basis for planning and guiding an active AM approach to 
managing forest stands for both lichen and timber produc- 
tion. The core team, recognizing that it needed to draw on a 
wider range of expertise, ideas, and involvement, organized 
a small workshop that followed the principles and approach 
of adaptive environmental assessment and management 
workshops (Holling 1978; Taylor and Nyberg 1999) (see 
AM step 1; Table 1). 

The workshop took place over 2 days in January 2001 and 
was led by a trained facilitator who solicited expert opinions 

from the attendees according to their respective areas of 
knowledge and expertise (Failing et al. 2004; also see other 
methods such as those described by Geneletti 2005; 
Sheppart and Meitner 2005). When used correctly - partic- 
ularly in combination with empirical data - incorporating 
expert opinions into BBN and statistical models can provide 
great value (Holthausen et al. 1994; Pearce et al. 2001; Mar- 
tin 2005; McCarthy and Masters 2005). Seoane et al. (2005) 
found that combining expert opinion with independent data 
yielded more accurate predictions of bird presence. 

The core team was represented by the senior CHASE bi- 
ologist, a local lichen expert, a forester with Slocan Forest 
Products, and a wildlife-habitat ecologist with the British 
Columbia Forest Service. Others present included three 
other foresters and managers from local forest companies, an 
Alberta biologist, a biometrician, a forest ecologist, and the 
senior author. The facilitator and the senior author had expe- 
rience with AM workshops and had designed the agenda, the 
facilitator and two members of the core team were experi- 
enced with BBN software. All BBNs were implemented in 
Netica (version 2.17). 

After discussing the basics of the caribou-lichen issue, the 
workshop team discussed and confirmed by consensus the 
scope of the issue in space and time, the management ac- 
tions that could be employed, the indicators that could be 
tracked to judge success, and the key uncertainties they 
faced. Throughout the workshop, the draft terrestrial lichen 
BBN was displayed on a poster on the wall and on a com- 
puter projection. As the discussion proceeded it was used to 
illustrate linkages between environmental conditions (eco- 
logical unit, stand age, stand composition, site index, 
aspect); disturbance effects, including wildfire and forest- 
harvesting options (season of logging, whole-tree vs. cut-to- 
length harvesting); and silviculture options (site-preparation 
techniques and regeneration methods). Using the BBN soft- 
ware, the team was able to quickly illustrate new ideas by 
adding or deleting nodes and states within nodes. Condi- 
tional probabilities for some key child nodes were entered 
during the workshop by drawing on the judgement and 
knowledge of those present, following the BBN modelling 
principles outlined by Marcot et al. (2006). 

The initial BBN for terrestrial lichens (Fig. 1) included 
three categories of data input: site ecology, stand structure, 
and growing-medium condition. The site ecology inputs 
(i.e,. aspect, stand percent pine, ecological unit, and site in- 
dex nodes) were an important component of the CHASE 
model framework used to predict where lichen types would 
occur on the landscape. The growing-medium inputs (i.e., 
debris loading and organic matter characteristics nodes) and 
stand-structure inputs (i.e., stand age and stocking nodes) are 
site-level factors used to define the condition of a terrestrial 
lichen community on a given site (Sulyma 2001; Sulyma 
and Coxson 2001). All inputs were summarized to produce a 
single value that represented the capability of a site to pro- 
vide terrestrial lichen winter range for caribou (terrestrial li- 
chen forage supply node). The full BBN further elaborates 
the value of a site for caribou by including nodes for sea- 
sonal requirements and potential influence of predation 
(McNay et al. 2006), but for simplicity those nodes are omit- 
ted from Fig. 1. 

In the AM experiments that the team proposed, all activi- 
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ties were intended to promote an understanding of what 
would happen to lichen productivity under different distur- 
bance and stocking regimes. Key study questions were fo- 
cussed on determining the response of terrestrial lichens to 
various levels and combinations of mineral soil and forest- 
floor disturbance (affected by stand treatment and season of 
treatment), debris loading (affected by the stand-removal 
method), and insolation levels (affected by the development 
of the regenerating stand). 

The site ecology conditions (summarized in the terrestrial 
lichen habitat capability node in Fig. 1) were specified in the 
model to predict the capability of pine-lichen sites from in- 
put (parentless) data sources. The draft conditional probabil- 
ities had been formulated prior to the workshop, based on 
other work in the Williston Reservoir area (Sulyma 2001) 
and were presented to participants in the form of maps. 
Based on personal experience in the study area, participants 
provided feedback regarding their level of satisfaction with 
the model for predicting the location of pine-lichen wood- 
lands. This portion of the model was used to help delineate 
potential study sites for replication of the AM trials. 

The stand-structure and growing-medium components 
(summarized in the stand characteristics and forest-floor 
characteristics nodes in Fig. I )  were configured to provide 
management choices whereby site conditions could be ma- 
nipulated to assess effects on lichens. The model included 
choices of stand-removal method, site-preparation method, 
removal season, and stocking level (stemslha). The state values 
created for these nodes correspond to typical forestry opera- 
tions in the region. The CPTs for these components were 
more expert-based than those for the site-ecology compo- 
nent. As with the site-ecology component, however, the CPTs 
were drafted by a lichen expert prior to the workshop and 
then presented for review and updating by all participants. 

After reaching consensus about appropriate forestry re- 
gimes that could be tested, the participants proposed sites 
where field trials could be conducted and forest company 
representatives stated whether they would be willing to im- 
plement the trials (AM step 2; Table 1). Following the work- 
shop, two divisions of one major forest company agreed to 
participate in an active AM project to study nine different re- 
gimes of treatments. Regimes were selected to represent a 
range of soil organic matter disturbance, debris loading, and 
stocking. All treatments were incorporated into the BBN as 
state values (i.e., the conditions or factors expressed in a sin- 
gle node) for the child nodes feeding the debris loading, or- 
ganic-matter characteristics, and stand characteristics nodes 
(Fig. 1). The workshop team considered forest harvesting 
and site preparation to be primary disturbance events that 
would cause the greatest site change. Forecasts of outcomes 
for three time intervals following stand disturbance by log- 
ging or wildfire, represented by the stand age node, were de- 
rived using the BBN. The forecasts indicated that the 
probability of a beneficial lichen response was highest with 
a combination of winter harvesting, a whole-tree ground- 
based harvest system, no site preparation, and natural regen- 
eration, and lowest with summer harvesting, a cut to length 
ground-based harvest system, drag scarifying, and regenerat- 
ing by planting more than 1200 seedlingdha. 

The field AM project used a randomized incomplete block 
design (Sulyma and Alward 2004). Three treatment sites 

were established (AM step 3; Table 1) beginning in 2001 
with a site near Williston Reservoir (98-Mile site; Fig. 2). 
Preharvest measurements were undertaken at all sites to doc- 
ument undisturbed stand conditions. 

The forest floor vegetation community at each treatment 
site was sampled using modified Daubenmire transect meth- 
odology (Daubenmire 1959; Stohlgren et al. 1998). Visual 
estimates and photographic-image analysis were completed 
to produce a summary of percent cover and distribution for 
all species encountered. Coarse woody debris was evaluated 
following procedures outlined by Marshall et al. (2000) and 
standard forest mensuration activities were used to charac- 
terize the forest overstory. 

Treatment activities were undertaken at all sites, and 
remeasurements of the vegetation community and coarse 
woody debris have been completed. A modified mineral soil 
disturbance survey (British Columbia Ministry of Forests 
2001) was applied to characterize disturbance of the forest 
floor. Post-treatment sampling was scheduled for years 1, 3, 
and 7 following harvesting and silviculture activities. At the 
site in the Wdliston Reservoir area, the first set of post- 
treatment measurements has been completed (AM step 4; 
Table 1). 

In the original development of the model, debris loading 
was summarized from the harvest method and denoted as a 
parent node to forest-floor characteristics. The concept ap- 
plied by the project team was that soil disturbance should be 
summarized in one child node and debris loading in another, 
and that the two nodes were independent. Experience during 
post-treatment monitoring, however, revealed that the critical 
factor of concern was disturbance to the microsites for li- 
chen growth, and that soil disturbance and debris loading 
were therefore best represented as different states of a single 
node rather than as separate nodes. This led to an update of 
the model, producing a more explicit structure with state val- 
ues that had defined measurables ,(Fig. 3; AM step 5; Ta- 
ble 1). 

The project team updated the organic matter characteris- 
tics node (now called organic-matter disturbance) to include 
states of organic-matter accumulation: organic matter undis- 
turbed, removed, buried, or reduced (ie., partially burned 
but not exposing mineral soil). The CPT for that node was 
likewise updated to reflected the findings from the initial 
field surveys. The forest floor characteristics node and corre- 
sponding CPT were then updated to reflect only the influ- 
ence of time (succession processes). The representation of 
succession was based on other work completed in the 
Williston Reservoir area (Coxson and Marsh 2001). The new 
model better represented ecological functions, with distur- 
bance to the terrestrial lichen community summarized at one 
node and succession of lichen communities at another. Thus, 
this is an example of how field testing under AM resulted in 
new understanding, which led to improvement of the BBN 
model structure. 

Management usm of the BDN 
The updated BBN included three decision nodes and three 

utility nodes (Fig. 3), thus creating a BDN. The utility val- 
ues in this BDN example represent initial estimated costs per 
hectare of the various forestry treatments (Table 2). 
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Fig. 3. Bayesian decision network model illustrating the most favourable combinations of forestry treatments and ecological conditions 
for terrestrial lichens. For a description of regeneration methods see Table 2. 

a b l e  2. Values (cost, in 2005 Canadian dollars) underlying the utility nodes shown in the Bayesian de- 
cision network (BDN) model (Fig. 3). 

Input (management) Utility value 
Utility node node Input node choicea (cost, $ha)b 
Logging cost Stand removal Whole tree 5500 

Cut to length 6050 
Wildfie 0 

Regeneration cost Regeneration method Natural 0 
Flant LT1200 400 
Plant GT1200 640 

Site-preparation cost Site preparation None 0 
Bum 600 
scarify 400 
Pile bum 900 

Note: Utility values ace smed by the modeller. 
"Tlant LT1200" refers to planting of 4200 seedlings/ha and ''plant GT12W to planting of >I200 sdingdha; 

planting costs are based on an estimated $0.40 per planted tree. ''Whole tne" refers to ground-skidding the entire tree 
and processing at a local landing or roadside, with costs based on $2Wm1 and "cut to length" to processing trees at 
the stump or log bunch within the stand, then yarding the cut or processed logs to the local lauding or roadside, with 
costs based on $22/m3; both options assume a harvestable timber volume of 275 m3/ha. 

"Estimates of costs were confmed by T. Lszaruk, Registered Professional Forester (personal communication). 

The structure and performance of well-specified, tested, 
and calibrated BDNs can be explored to reveal much about 
influence of alternative decisions and to help determine best 
decision pathways (AM step 6; Table 3). The simplest ap- 
proach is to specify choices in each decision node and com- 
binations of choices in multi-decision-node models, and 
record the probabilities associated with the output variables. 
One or more choices or combinations of choices may result 
in acceptable probability levels of outcomes. In our example, 

the BDN predicted that a regime of winter whole-tree har- 
vesting with no site preparation would result in about a 50% 
probability of abundant terrestrial lichen forage (lichen 
abundance index = 0.218; Table 3) once lodgepole pine 
stands on favourable sites reach 70-140 years of age 
(Fig. 3). This probability is largely unaffected by regenera- 
tion method, but it drops to 36% under a cut-to-length har- 
vesting system. By varying the combinations of management 
activities and site and stand conditions, the decision-maker 
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'Igble 3. An example of the use of the BDN model (with site conditions as specified in Fig. 3) to determine the 
overall expected value (cost, in 2005 Canadian dollars) of winter stand management and abundance of terrestrial li- 
chen forage (bottom node in Fig. 3). given 24 combinations of forestry treatments. 

Stand-removal Site-preparation Regeneration-method Expected value Terrestrial lichen 
options options optiona (cost, $ma) abundance index 
Whole tree None Natural 5500 0.218 

Plant LT1200 5900 0.210 
Plant GT1200 6140 0.192 

Bum Natural na na 
Plant LT1200 na na 
Plant GT1200 na na 

Scarify Natural 5900 0.112 
Plant LT1200 6300 0.103 
Plant GT1200 6540 0.087 

Pile bum Natural na na 
Plant LT1200 na na 
Plant GT1200 na na 

Cut to length None Natural 6050 -0.054 
Plant LT1200 6450 -0.058 
Plant GT1200 6690 -0.069 

Burn Natural 6650 0.169 
Plant LT1200 7050 0.169 
Plant GT1200 7290 0.171 

Scarify Natural 6450 -0.002 
Plant LT1200 6850 -0.004 
Plant GT1200 7090 -0.009 

Pile bum Natural 6950 0.067 
Plant LT1200 7350 0.052 
Plant GT1200 7590 0.041 

Note: Expected values of costs and the lichen abundance index are calculated by the model. The expected value is the total costs 
of stand removal + site preparation + regeneration method. Because the removal season is specified as winter, the wildfire option of 
stand removal does not pertain; na, not applicable (burning and plle and burning is not done with whole-tree stand removal). The li- 
chen abundance index is the expected value of terrestrial lichen forage abundance where 1 = abundant, 0 = moderately abundant, 
and -1 = scarce; na, not applicable. 
"For a description of options see Table 2. 

can explore and compare the implications of providing li- 
chens derived from various other decision pathways. This is 
a simple form of risk management. 

Another, more sophisticated use of BDNs is to specify 
utility nodes and values and compile the model to determine 
the decisions with lowest costs or highest values. Utility 
nodes can be specified with values representing costs, such 
as dollars per hectare of forest-thinning operations (Table 2); 
or with benefits, such as dollars per hectare of resulting 
commercial-grade timber; or with other values and units, 
such as social costs or benefits of forest condition outcomes 
or maintaining rare species. Unlike decision-tree and linear- 
programming models, different utility nodes in the same 
BDN model do not even need to use the same unit of mea- 
sure, such as dollars. 

When a BDN is compiled, joint values of all utilities are 
summed and shown as expected overall utility values next to 
each pertinent choice in the decision nodes. The manager 
could then select as the best decision pathway those choices 
with the lowest overall costs or highest overall benefits, de- 
pending on how the utilities were specified. This is similar 
to the backward calculations of expected values of decisions 
in traditional decision-tree analysis, except that BDNs are 
far more flexible in being able to specify a particular state in 

an output node and determine best decision pathways to 
achieve that state, and in being able to handle missing infor- 
mation. Also, expected utility values associated with each 
choice in BDN decision nodes can change depending on the 
specification of conditions (and of the underlying probability 
structure) in the model. This can be a useful way to deter- 
mine how decisions may be sensitive to external conditions 
(and alternative model structures, such as those developed 
by different experts or from different data sets), and which 
conditions should first be determined in order to make ap- 
propriate decisions. 

Our example showed that, with no site preparation and 
natural regeneration, the expected cost of whole-tree harvest- 
ing ($5500/ha) is less than that of cut to length harvesting 
($6050ha) (Fig. 3, Table 3). Then, if whole-tree harvesting 
and natural regeneration are specified, the expected cost with 
no site preparation ($5500/ha) is less than that with scarify- 
ing ($5900/ha); also, the expected abundance of terrestrial li- 
chens is greater with the lower cost option. In this way the 
manager can identify a sequence of lowest cost decisions, 
given particular site and stand conditions, and the optimal 
decisions that would best balance forestry costs and lichen 
abundance. 

When BDNs contain decision nodes with preconditions, 
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that is, with other nodes that feed into a decision node, then 
solving the network can involve finding a decision value for 
each possible set of conditions of the parent nodes. This is 
akin to a contingency plan whereby choices are made on the 
basis of prior conditions, such as deciding on a particular 
stand-management option on the basis of forest stand struc- 
ture and intensity of a recent fue. Solving the BDN in this 
way yields a "decision function" for each decision node, 
which shows the joint utility values for each decision given 
the input node values. If there are multiple decision nodes in 
a BDN, then the set of decision functions for all decision 
nodes becomes what is known as a decision policy. This is a 
conditional plan that specifies actions (multiple or sequential 
decisions) for each possible contingency (Table 3). 

In our case example, if stand-removal and site-preparation 
activities are specified, the BDN then displays expected val- 
ues for the options concerning regeneration method. 
Changing the choice of stand removal or site preparation af- 
fects the expected values for regeneration and thus the over- 
all expected costs. In this way, the BDN can be queried for 
alternative decision pathways given all combinations of prior 
decisions (and states of the site and stand), thus collectively 
determining the overall decision policy. 

Shortcomings of BBNs 

BBNs are useful for displaying interactions of variables, 
implications of conditions for optimal decisions, effects of 
decisions on expected outcomes, and influence of utilities on 
decision structures. BBNs in general, however, have several 
shortcomings. BBNs do not strictly permit feedback func- 
tions either within a node or from response (output) vari- 
ables back to predictor (input) variables. Feedback can be 
important in many systems such as density-dependent 
survivorship and reproduction in wildlife populationmodels 
and consumer performance in economic models. 
Discretizing continuous-variable distributions, as is neces- 
sary in most BBNs, might oversimplify state responses. 
Some of these shortcomings may be better handled by mod- 
elling constructs other than BBNs; for instance, graph theory 
and loop analysis are able to depict feedback functions (e.g., 
Dambacher et al. 2003; Allesina et al. 2005), and some 
fuzzy logic or rough set theory approaches are better able to 
depict continuous-response variables (e.g., Berger 2004; 
Iliadis 2005). Although these were not drawbacks for the 
case-study model presented here, they may be important 
considerations for other adaptive forest management models 
using BBNs. 

Also, BBNs handle timedynamic functions poorly. Feed- 
back loops and time functions can be depicted in BBNs by 
replicating a model structure and linking specific nodes be- 
tween the replicates. This is called time expansion, which re- 
quires time-delay links. However, this can be a cumbersome 
way to depict functions that other modelling approaches 
could represent more elegantly. 

BDNs, like other decision models, can oversimplify crite- 
ria affecting a decision and fail to depict subtle variations of 
decisions and changing conditions that so often occur in 
real-world situations. For these and other reasons, we sug- 
gest that BDNs be viewed as decision-aiding tools to help 
inform and advise the decision-maker who, ultimately, must 

weigh the &cations of decisions that can be far more 
subtle and complex than any model can depict. 

Conclusions and recommendations 

Many AM projects follow a loosely defined process that 
lacks much of the structure recommended by AM'S original 
proponents, including Holling (1978) and Walters (1986). 
Modelling is often not used effectively, which can limit AM 
teams' understanding of system structure, relations, and po- 
tential responses to management (Walters 1997; Salafsky et 
al. 2001; Gray 2002). In many cases these teams would ben- 
efit from the learning and communication that are promoted 
when BBNs are developed early in projects, as is described 
in our terrestrial lichen case example. 

We recommend that AM practitioners consider using 
BBNs or other models that depict causal relations among 
variables, including effects and utility values of alternative 
decisions, as basic elements of their projects. They are tools 
that can serve multiple purposes in various AM steps (Ta- 
ble 1). 

BBNs must be used with appropriate knowledge of their 
strengths and weaknesses. Marcot et al. (2006) provide use- 
ful guidance on development and application of BBNs and 
caveats concerning their use; introductory references on 
BBN construction are available in the literature (e.g., Jensen 
2001; Neapolitan 2003) and with the commercial BBN soft- 
ware shells. 

Those unfamiliar with BBNs should begin by developing 
influence diagrams with relatively few nodes and links, as a 
simple representation of the system of interest. Once a basic 
BBN structure is in place, the AM team or a smaller group 
can specify conditional probabilities, further elaborate the 
model by adding more nodes, depict effects of management 
options by including decision and utility nodes, and explore 
the effects of changing inputs and management choices. In 
our experience this incremental process, when supported by 
committed team members, quickly leads to learning and ex- 
ploration of alternative management policies that are the 
foundation of AM. 
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