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Although habitat fragmentation is one of the 
greatest threats to biodiversity worldwide, virtually 
no attention has been paid to the quantification of 
error in fragmentation statistics. Landscape pattern 
indices (LPIs), such as mean patch size and number 
of patches, are routinely used to quantify frag- 

- - -- mentation and are --- - often -- calculated - using -- - -- - remote- -- - - - 

sensing imagery that has been dassified into dif- 
ferent land-cover classes. No classified map is ever 
completely correct, so we asked if different maps 
with similar rnisclassification rates could result in 
widely different errors in pattern indices. We sim- 
ulated landscapes with varying proportions of 
habitat and clumpiness (autocorrelation) and then 
simulated classification errors on the same maps. 
We simulated higher misclassification at patch 
edges (as is often observed), and then used a 
smoothing algorithm routinely used on images to 
correct salt-and-pepper classification error. We 
determined how well classification errors (and 
smoothing) corresponded to errors seen in four 

pattern indices. Maps with Iow misclassification 
rates often yielded errors in LPIs of much larger 
magnitude and substantial variability. Although 
smoothing usually improved classification error, it 
sometimes increased LPI error and reversed the 
direction of error in LPIs introduced by rnisclassi- 
fication. Our results show that classification error is - - . - -- .-- -- -- - - -- -- - - . - - - -- - - - - - - 
not always a good predictor of errors in LPIs, and 
some types of image postprocessing (for example, 
smoothing) might result in the underestimation of 
habitat fragmentation. Furthermore, our results 
suggest that there is potential for large errors in 
nearly every landscape pattern analysis ever pub- 
lished, because virtually none quantify the errors in 
LPIs themselves. 
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Habitat fragmentation is thought to have signifi- 
cant effects on community structure and composi- 
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2003; Cordeiro and Howe 2003; Ferraz and others 
2003). Effects of increasing fragmentation can 
come from an increase in the number of patches, 
the distance between patches (Saunders and others 
199 1 ), and the amount of edge habitat within each 
patch (Brittingham and Temple 1983; Andrkn and 
Angelstam 1988; Laurance and others 2000). 
Landscape fragmentation is commonly character- 
ized using measures of these and other values, such 
as mean patch size. Because software to compute 
these landscape pattern indices (LPIs) is widely 
available, pattern analyses are routinely performed 
for a variety of habitats and for many different 
purposes ranging from habitat conservation to re- 
gional planning (Cardille and Turner 2001; Turner 
and others 2001; McGarigal and others 2002; 
Fahrig 2003). 

Landscape pattern indices are often computed 
over remote-sensing images that have been classi- 
fied into different land-cover classes (Skole and 
Tucker 1993; Peralta and Mather 2000; Griffiths 
and others 2000; Imbernon and Branthomrne 
2001), but errors are always made in classifying the 
pixels of an image into land-cover classes. This lack 
of accuracy raises the question of whether these 
classification errors could lead to substantial errors 
and variation in the LPIs derived from classified 
maps (Hess 1994). Despite its apparent importance, 
virtually no study measures the error in LPIs, much 
less accounts for the error caused by image mis- 
classification. This oversight may have serious 

- - - -  consequences for both science and policy because - 

there is potential for errors of unknown magnitude 
in nearly every landscape pattern analysis ever 
derived from classified images. 

Although a great deal of effort has gone into 
techniques for assessing classification accuracy 
(Congalton and Green 1999; Stehrnan 2001), it is 
generally specified in terms of the percentages of 
rnisclassified pixels, with no reference to the loca- 
tion of the errors. However, higher classification 
errors are often associated with textured areas or 
patch boundaries (Edwards and Lowell 1996; Plo- 
urde and Congalton 2003). Several authors have 
examined other causes of error in LPIs (Turner and 
others 1989; Cardille and Turner 2001; Saura and 
Martinez-Millan 200 1 ) , but the effect of classifica- 

*--of 
landscape structure. 

In this study, we used a series of simulated 
landscapes and classification errors to test the no- 
tion that LPI error is necessarily correlated with 
classification error. Specifically, we addressed the 
following two questions: (a) How do image classi- 
fication errors and levels of smoothing affect LPIs of 
fragmentation? and (b) How do the amount of 
habitat and its clumpiness affect the error in the 
LPIs? 

Unlike previous work, these simulations enable 
us to examine both the magnitude and spread in 
LPI error among landscapes that are strictly con- 
trolled for spatial characteristics that might affect 
the values of the LPIs. Although our simulated 
landscapes and classification errors have elements 
of real applications to them, it is important to note 
that we do not claim to build a predictive model of 
the precise amount of expected LPI error for any 
particular classified map. 

Overview 

We created a set of 10,800 simulated landscapes 
designed to represent specific aspects of the vari- 
ability seen in real landscapes, as well as aspects of 
the remote-sensing image classification process. We 
first created 270 simulated "correct" base land- 
scapes with two land-cover classes: habitat and 
background. These__correct base- maps represented ._ -- --- 

images where every pixel has been classified as 
either habitat or background with no error. These 
maps were designed to vary systematically in the 
proportion and clumpiness of habitat. We also 
created "incorrect" rnisclassified maps from the 
correct base maps, representing images that have 
been incorrectly classified to some degree, rnim- 
icking two types of common classification errors. 
We smoothed the images using a process routinely 
applied to correct salt-and-pepper errors on images. 
Afterward, we determined the impact of classifica- 
tion errors and smoothing on several LPIs derived 
from the simulated maps. Finally, we determined 
whether classification errors were related to the 
magnitude of and spread in LPI error. 

tion errors on LPIs has rarely been addressed di- 
rectly. When it has been addressed (Hess and Bay Measuring Classification Error 

1997; Wickham and others 1997; Brown and oth- We refer to two commonly used measures of das- 
ers 2000; Shao and others 2001), different conclu- sification error: producer's error and user's error, 
sions have been reached. The conflicting both measured on a per class basis, as opposed to 
conclusions may be due in part to the fact that each the total error for all habitat or land-cover classes. 
of these studies was based on a single image or We chose these measures of classification error 
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cation errors in this way. The producer's error (e,) 
is the probability that a true land-cover class will be 
incorrectly mapped and measures the errors of 
omission. It represents the classification errors that 
we systematically induced in our maps. In our 
study with two cover types, producer's error refers 
to the percentage of habitat pixels in the "correct" 
map that are incorrectly labeled in the "rnisclassi- 
fied" map (that is, are labeled as background): 

ep = h/ (tp + fn) 
where fn = false negatives, tp = true positives, and 
we treat "habitat" as the positive class. 

We also measure the, resulting user's error (e , )  on 
our maps. It indicates the probability that a pixel 
from a land-cover-map does not match the correct 
(that is, reference or ground-truthed) land-cover 
class. User's error measures the error of commis- 
sion. It is defined as the percentage of pixels that 
are classified as habitat but should be classified as 
nonhabitat, and it is calculated as follows: 

where fp = false positives, and tp = true positives. 
Although both measures are important, we 

examine our results primarily with respect to user's 
error, because it intuitively represents how much 
the user should "believe" that a given pixel is the 
class that the map claims it is. We introduce pro- 
ducer's errors of 20% on patch edges and 10% in 

. . patch interiors_-on--our incorrect _maps-- and- then 
measure the resulting user's error. Thus, the highest 
producer's error possible on the initial (unsmoo- 
thed) simulations is always less than 20°/0, but the 
user's error can vary widely. We chose the 10 and 
20% values primarily so that we could investigate 
the impact of conservative classification errors. Also, 
using identical error rates to those of other studies 
creates a useful basis for comparison (Wickharn and 
others 1997). 

Map Simulation 

Correct Base Maps. We created a total of 270 
correct base maps to represent stationary, isotropic 
landscapes with no classification error (see Figure 1 
for examples). Each of these two class random 
maps was generated using the program RULE 
(Gardner 1999). RULE was chosen for several rea- 
sons. The midpoint displacement fractal algorithm 
used by RULE is particularly useful for generating 
continuous variability in landscape structure be- 
cause both the proportion of habitat and the 
clumpiness of habitat can be varied systematically 

111 v--==%-*. 1J.l 
addition, the behavior of LPIs has been systemati- 
cally examined on landscapes simulated by RULE, 
and much theoreticd work in habitat connectivity 
is based on landscapes generated using this soft- 
ware (With and King 1997), thus further enhanc- 
ing the usefulness of our results. 

We varied the proportion of the landscapes occu- 
pied by habitat from 10-9O0/0 of the landscape in 
10% increments so that we could examine the im- 
pact of habitat loss on LPIs. In addition, we varied the 
Hurst exponent (H), which ranges from 0 to 1, to 
examine the impact of the clumpiness of fragrnen- 
tation on our results. A Hurst exponent of 0 repre- 
sents landscapes that are negatively autocorrelated; 
an exponent of 1 represents landscapes that are ex- 
tremely positively autocorrelated. We examined H 
levels of 0.2, 0.5, and 0.8. Thus, we created nine 
proportions of habitat and three levels of autocor- 
relation, with ten replicates of each, for a total of 270 
initial correct base maps. Although this does not 
mimic every possible aspect of landscape structure, 
varying these two simple parameters created a wide 
range of landscape structure (Figure 1 ) . 

Incorrect and Smoothed Maps. We created incor- 
rect maps from correct maps to mimic two types of 
classification error: (a) randomly located rnisclassi- 
fication (salt-and-pepper error), and (b) increased 
rnisclassification near patch boundaries (as com- 
pared to the interior of patches). Although this is 
not the only error model possible, random error 
and edge error are a part of any classifier's error. 
Moreover, this enor-model creates e-mars-th-armay 
directly influence fragmentation through the gen- 
eration of spurious patches. It also matches the 
error model used in Wickham and others (1 997). 
This was important for our study because we 
wanted to examine whether the same error model 
would lead to different conclusions on different 
landscapes. Other error models - for example, 
those with more spatial autocorrelation - are left 
for future studies. 

Because our maps contained only two classes, we 
induced errors in the classification of individual 
pixels on the correct map by simply changing 
habitat cells to background, or vice versa, with a 
given probability (or error rate). This type of error is 
routinely termed "producer's error." We assumed 
that error rates near patch edges were 10% higher 
than in patch interiors (for example, due to mixed 
pixels Wickharn and others 1997). For inducing 
errors, we defined an edge pixel as any pixel with 
at least one of its four neighbors beIonging to the 
other category. Thus, we set the error rates in the 
patch interiors at 1O0/0, with corresponding edge 
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Figure 1. Examples of simulated "correct" landscapes. Landscapes were designed to represent a range of landscape 
stNctural features: three levels of proportion (20, 40, and 60% remaiging habitat) are shown with vaa@glevels ofspatial - 

autocorrelation (H = 0.2, 0.5, and 0.8). Habitat is shown in white; nonhabitat background is in black. These nine pro- 
portions were used in this study, with three levels of autocorrelation and ten replicates of each scenario, for a total of 270 
correct maps. 

error rates of 20%. We created ten incorrect maps 
from each correct base map, resulting in 2,700 total 
incorrect maps. 

We then removed small, isolated regions as- 
sumed to be in error by applying a smoothing 
technique that removes all regions smaller than the 
size of a designated minimum mapping unit 
(MMU). Any patch smaller than the size of the 
MMU is removed by changing the classification of 
its pixels to the classification of the patch with 
which it shares the longest border. In the case of 
only two classes, that border is always with a fully 
surrounding patch. We employed minimum map- 
ping units of two, four, and nine cells to remove all 
patches below these size thresholds, for a total of 
8,100 smoothed maps. We chose this method ra- 
ther than a majority filter because it is simple to 
implement and because a majority filter tends to 

remove edge complexity. The sizes were chosen to 
roughly correspond to a graduated set of patch 
sizes: a pair of adjacent pixels, a 2 x 2 square, and a 
3 x 3 square. Similar procedures were used in the 
classified WISCLAND land-cover data set, where 
upland land cover categories (excluding URBAN) 
were smoothed to patches no smaller than four 
contiguous pixels using a clump-sieve-fill algo- 
rithm, whereas wetlands were smoothed using a 
minimum mapping unit of two pixels (WISCLAND 
1993). Brown and others (2000) used sieves of size 
1, 3, and 10 ha, as well as majority filters of sizes 3 x 
3 and 5 x 5 .  

Conservative Classification Errors. It is unlikely 
that our simulated errors overestimated classifica- 
tion error rates found in real maps at edges or 
patch interiors. Reported classification error rates 
for some commonly studied data sets vary widely 
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tion, and method of accuracy assessment. For 
example, in the 1992 US National land-cover data 
set, where accuracy assessment was done exten- 
sively and carefully, per class user's accuracies for 
Anderson Level I classifications for the mid- 
Atlantic region range from 35 to 92% correct 
(Stehrnan and others 2003). Values for Anderson 
Level II classifications for the same region range 
from 1 to 92%. There is also evidence for opti- 
mistic bias in the reporting of classification error 
in many studies (Hamrnond and Verbyla 1996; 
Stehman 2001). For the purposes of simulating 
edge-biased classification error, we have assumed 
patch edges to be 1 pixel wide (Wickham and 
others 1997). However, true edge widths may be 
larger in many landscapes (Edwards and Lowell 
1996), especially in heavily textured images. Thus, 
our edge width of 1 pixel is likely to lead to 
conservative edge errors. 

Measuring Fragmentation 

We applied Fragstats 3.0 (McGarigal and others 
2002) to calculate the following LPIs on simulated 
correct, incorrect, and smoothed landscapes: (a) 
Mean Shape Index, (b) Total Edge (m), (c) Number 
of Patches, and (d) Mean Patch Size (ha). (Details on 
the LPIs calculated by Fragstats can be found in the 
Fragstats documentation at: http://www.umass.edu/ 
landeco/research/fragstats/fragstats.h~) . Increasing 
values of mean patch size indicate less fragmenta- 
tion, whereas increases in. the other LPIs are indic-. 
ative of greater fragmentation. We make no claims 
about whether these are ecologically inforrnative 
measures of fragmentation. Rather, we chose these 
LPTs because they are among the simplest to 
understand and the most widely employed measures 
for quantifying habitat fragmentation. They were 
also hypothesized to be among the most affected by 
edge misclassification. 

Analysis of Results 
For simplicity, we considered only binary maps 
(with only two land-cover classes) and examined 
the results for only one class. Although real maps 
may have more than one class, the LPIs of frag- 
mentation we examined are calculated on a per 
class basis (for example, for one habitat type only, 
assuming that all other habitat types are back- 
ground). As long as the LPI of interest does not 
distinguish among the different classes that make 
up the background class, the value of the LPI wiIl 
be identical in the multiclass and the combined 
binary versions of the map. 

on a per class basis rather than computing total 
classification error for the landscape as a whole 
because a classifier can have low accuracy for one 
class of interest, but still have high overall accuracy 
when averaged across all classes. For example, the 
total classification error can be small and mislead- 
ing when a map has low classification errors for 
abundant classes and high classification errors for 
less abundant classes. Thus, examining classifica- 
tion error and LPI error both on a per class basis 
makes the most sense for this study. 

For each LPI on the incorrect and smoothed 
landscapes, we determined the percent error in the 
LPI relative to the correct landscape, which we 
termed " % LPI Error." 

We plotted % LPI Error versus User's Error for the 
initial misclassifications as we11 as for each level of 
smoothing at different minimum mapping units. 
Although we demonstrate the spread in LPI error 
within each user's error value quite clearly using 
these graphs, we do not compute a standard devi- 
ation or variance of LPI errors. This would require 
arbitrarily binning data points (by base landscape, 
proportion, clumpiness, or user's error, and so on) 
when our purpose is simply to examine whether 
for any given user's error, there is a large spread of 
values of-LPI en-or; - -- - - - - - . - -- - - - - 

First, we summarize the general behavior of our 
landscape model and error model by examining the 
relationship between producer's error (which we 
manipulated) and the resulting user's error. Sec- 
ond, we examine the impact of the classification 
errors on the computed LPIs to determine if 
smoothing affected LPI error. We discuss the results 
for each LPI in detail. Lastly, we examine the rel- 
ative impact of landscape structure (clumpiness and 
habitat loss) on LPI error. 

To fully understand our results, it is important to 
explain how our error model and our landscape 
model are related (Figure 2). Even though our 
simulated producer's errors in habitat classification 
were limited to 10 - 20°/0, it resulted in a larger 
range of user's errors, between 0 and 60% (Fig- 
ure 3). User's errors were generally higher in the 
incorrect landscapes (before smoothing) with low 
proportions of habitat. However, smoothing of an 
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Figure 2. Examples of simulated classification errors and 
smoothing. In this example, a "correct" landscape is 
shown (40% habitat, H = 0.5) at the top. The "incorrect" 
map is derived from the correct map but with simulated 
classification errors of 20% at patch edges and 10% in 
patch interiors. Smoothing to remove salt-and-pepper 
error is shown for three minimum mapping units 
( - m u  =-2, &,-and 9); whereby all patches-smallerthan- 
the MMU are reverted to the class of the matrix sur- 
rounding the patch. 

image reduced maximum user's error by roughly 
half, from around 50% in the incorrect images to 
less than approximately 2 5 % when smoothed 
(MMU = 9) (Figure 3).  We have included the full 
range of values for user's and producer's error in 
Figure 3 to show the effects of smoothing on those 
errors. In Figures 4 and 5 though, we have only 
shown values for images where both user's and 
producer's error are less than or equal to 15%. 
Although we computed results for all of the simu- 
lated landscapes that we generated, we have cho- 
sen to show only results for maps with the most 
conservative amounts of classification error. Even 
though classification rates are often higher than 
15 % and our LPI errors for those classification error 
rates were even more extreme, we have done this 
so that we are certain not to display results for 
classification error rates that any users would reject 
as being too high to use in a real application. 

--Him 
Levels of Smoothing Affect LPIs of 
Fragmentation? 

Classification errors often resulted in large errors in 
LPIs, even at classification error rates considered 
low by the remote-sensing community. Although 
the relationship between the values of LPIs on the 
correct versus the incorrect and smoothed maps 
was roughly linear for Total Edge (Figure 4E-H), it 
was not linear for the other LPIs. For Number of 
Patches, the relationship between the correct and 
incorrect values depends on the MMU used for 
smoothing. It was linear only for MMU = 4 and 
MMU = 9. When examining percent error in LPIs 
relative to the correct image, the errors in LPIs were 
extremely high (Figure 5) - in a number of cases, 
higher than 1,000% (Figure 5E, F, I, J, P). User's 
error did not reliably correspond to LPI error for 
any LPI examined; therefore, it was not a useful 
predictor of LPI error. Smoothing did not consis- 
tently reduce the magnitude of errors in LPIs rela- 
tive to the original correct classification. However, 
smoothing using MMU = 9 always reversed the 
direction of error caused by the initial misclassifi- 
cation (overestimation changes to underestimation 
and vice versa) for all the LPIs examined (Figure 5). 
Thus, although smoothing to remove salt-and- 
pepper error improved per class user's error, it 
sometimes increased LPI error (Figure 5). We next 
examine each LPI in greater detail. 

LPI errors for Mean Shape Index were generally 
- less-- than 3 1-0%-in t h e  incorrect landscapes-{Fig- 

ure SA), but they increased to 50% with smoothing 
(Figure 5B-D). The errors were not consistently 
biased in one direction, because the LPI was under- 
estimated for the incorrect landscapes (Figure 5A) 
but overestimated for the MMU=4 (Figure 5C) and 
nine landscapes (Figure 5D). However, the lower 
user's errors in the smoothed landscapes still yielded 
both higher magnitude and greater spread in LPI 
error within a given user's error (Figure 5D). 

For Total Edge, the maximum percentage LPI 
error approached 4000% (Figure 5E). Smoothing 
reduced the LPI error to a range between +150 and 
-60% (Figure 5GH) ,  but the direction of error 
differed depending on the MMU. Total Edge was 
overestimated on the initial incorrect, MMU = 2, 
and MMU = 4 landscapes (Figure SE-G) and 
underestimated by more than 50% for the most 
fragmented landscapes when MMU = 9. 

The percent error in NP relative to the correct 
image ranged from approximately 0 to 10,600°/~. 
The behavior of NP was qualitatively similar to that 
of Total Edge, where the LPI was overestimated for 
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Figure 3. User's error versus producer's error for the incorrect and smoothed landscapes at different MMUs. Top panel 
Relationship with habitat proportions labeled and grouped into low f 10-30%), medium (40-60%), and high (70-90%) 
levels. Bottom panel Same data points labeled with the three levels of spatial autocorrelation (see Figure 1B for details). 
Points on smoothed landscapes are labeled according to the H level of the corresponding original correct landscape. 
Horizontal and vertical lines on the plots mark 15 % user's error and producer's error, respectively. Figures 4 and 5 only show 
results from inside this 15 O/O region. 

the initial incorrect landscape and for the MMU = 2 
landscapes (Figure 51-J), but then it was underes- 
timated by as much as 100% for MMU = 9 (Fig- 
ure 5L). 

For MPS, the initial rnisclassifications resulted in 
underestimation of the LPI by as much as 100% 
(Figure 5M). When smoothed using MMU = 2, 
MPS was both over- and underestimated (Fig- 
ure 5N). Successive smoothing using MMU = 4 
and 9 resulted in increases in LPI error, to more 
than 1,000% for MMU = 9 (Figure 5P). 

Our results suggest that the magnitude and 
spread of LPI errors due to misclassification can 
be quite large. Moreover, LPI errors do not al- 
ways decrease with spatial postprocessing tech- 
niques, such as smoothing, that are routinely 
applied to reduce user's error. In short, the spatial 
arrangement of classification error is at least as 
important as the amount. LPI errors are not al- 
ways lower on maps with lower user's errors, and 
maps with the same user's error can frequently 

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 

Producer's Producer's Producer's Producer's 
Error (%) Error (%) Error .(%) Error (%) 

result in maps with LPI errors of very different 
magnitudes. 

. 

. 

- 60. 
/ 

. 40. 
0 

How Do the Amount of Habitat and Its 
Clumpiness Affect the Error in the LPIs? 

. 60. 

1 40 

The magnitude of LPI errors was affected by the 
structure of the landscape, but it was affected more 
by the clumpiness (H, the autocorrelation pararn- 
eter) than by the proportion of habitat. This was 
especially evident for Total Edge, Number of Pat- 
ches, and MPS before smoothing (Figure 5E, I, M, 
N). For Total Edge, LPI error was lowest for H = 0.2 
(dispersed) and much greater when H = 0.8 
(clumpy), approaching 4,000 Oh error (Figure 5E). 
Qualitatively similar patterns were evident for NP. 
The effect of landscape clumpiness on error in MPS 
was dependent on MMU. Before smoothing, the 
smallest LPI errors were roughly -50% in the 
H = 0.20 landscapes (Figure 5M), and LPI errors 
were as large as -100%. When smoothed, the 
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Figure 4. Values of raw landscape pattern indices (LPIs) on correct base maps versus incorrect and smoothed landscapes 
resulting from pattern analysis using Fragstats. Each graph shows one point for each map that had no more than 15% 
user's error and producer's error. The x-axis shows the measured raw LPI value; the y-axis shows the correct raw LPI value 
that the measured value should predict. There are three rays on each plot. The central one shows the line that would result 
if there was no LPI error; that is, correct = measured. The other two rays show errors of +15 % and -1 5 O/O of the correct 
value for reference. A-D Mean Patch Shape, E-H Total Edge, I-L Number of Patches, M-P Mean Patch Size. 

largest LPI errors were in the H = 0.20 landscapes habitat, but this was often the region where the 
(Figure 50-P), and the lowest LPIs errors were in highest LPI errors occurred. 
clumped landscapes (with H = 0.80). Although the 
proportion of habitat had less effect on our LPI 
error, it is correlated highly with user's error (Fig- DISCUSSION 
ure 3); thus, our results must be seen in that con- We are aware of only four other studies that ad- 
text. The lowest user's errors always occurred in dress the effects of cla&ification error on LPI error, 
the landscapes with the highest proportion of and all but one of these studies were based on ei- 
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user error f%) user error (96) user error f%) user error (%) 
M N 0 P 

Figure 5. Percent LPI error relative to the LPI value for the correct landscape for four LPIs. Each graph shows one point for 
each map that had no more than 15 O/O user's error and producer's error. The x-axis shows the user's error: the y-axis shows 
the percent error in the LPI. There are three lines on each plot. The central line marks the line of no LPI error. As in Figure 
4, the other two lines show the boundaries of the interval of LPI errors between +15% and -15% for reference. Points are 
shaded according to the H value of the corresponding original correct map. A-D Mean Patch Shape, E-H Total Edge, I-L 
Number of Patches, M-P Mean Patch Size. 

ther a single image or landscape and did not control 
for the impact of landscape structure. The one 
study that did use more than one landscape and did 
control for landscape structure was conducted by 
Hess and Bay (1997). As in our study, they exam- 
ined the effect of map error on several LPIs. Con- 
trary to our study, their indices were nonspatial 
ones, including percent cover and two commonly 
used diversity indices. They used three levels of 
map error and found that they did cause error in 
the measures. They further described a method to 

put confidence intervals around the measures. Of 
the remaining three studies, only one measured 
both accuracy and variability in the LPIs. Wickharn 
and others (1997) simulated classification errors 
over portions of a land-cover map derived from a 
single TM image. As in our study, they computed 
the difference in the values of several LPIs between 
the original base map and the maps with simulated 
classification errors. They concluded that for the 
landscape and methods they used, classification 
error did not increase LPI error. Instead of simu- 
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7 z -  dung t.11- (2DOi j, had 23 rhf---- 
ferent interpreters classify a single TM image and 
then measured the variation in LPIs over the 23 
different maps. They found that even though there 
was not much variation in the accuracy of the 
classifications, there was a great deal of variation in 
the LPI error. The third related study is that of 
Brown and others (2000), which examined esti- 
mates of error in pattern indices used for change 
detection. They classified images for two forested 
areas, subsetted the two areas into many smaller 
landscapes, and then compared the LPI values ob- 
tained in overlapping areas of adjacent images 
photographed around the same time. They found 
that the LPIs of MPS and NP were more error prone 
than the edge density LPI. 

Our experiments demonstrate that classification 
error is not always a reliable predictor of LPI error, 
and that one cannot assume a map with low das- 
sification error will produce accurate LPIs. In our 
simulated landscapes, the spread in LPI error was 
generally large, and the magnitude in LPI error was 
almost always much larger than the magnitude of 
classification error, even for small classification er- 
rors. Also, the common practice of reducing clas- 

' sification error by spatially smoothing a classified 
map using a MMU sometimes increases LPI errors. 
This result is also consistent with the results of the 
study conducted by Brown and others (2000), 
which was based on empirical data. The consistent 
underestimation of NP and consistent overestima- 
tion of Total Edge and MPS in smoothed classifi- 

- cations Suggest -tGt--landscape fragmlentationlemmayr' - - 

be routinely underestimated as a result of 
smoothing classifications and should be investi- 
gated further. Because the landscapes and error 
models in this paper are artificial, the specific 
quantitative results obtained here do not generalize 
to all landscapes and error matrices. However, our 
results show large and unpredictable amounts of 
error in LPIs on images with very low classification 
error by the standards of the remote-sensing com- 
munity. In addition, our results show that different 
smoothing and/or classification techniques may be 
recommended for reducing errors in different LPIs 
even on the same image. In the following sections, 
we discuss these points in greater detail. 

How Do Image Classification Errors and 
Smoothing Techniques Affect LPIs of 
Fragmentation? 
Our results suggest that the accuracy of LPIs de- 
rived from classified images may not be easily 
predicted from the accuracy of the classification. In 

error was nearly always a great deal larger than the 
magnitude of the corresponding classification error, 
even when classification error was small. Although 
there is no reason to expect that the value of the 
LPI error should equal the value of the classification 
error, we often found that the errors were not'even 
within the same order of magnitude. Moreover, the 
large spread in LPI error at all levels of classification 
error (shown in Figure 5) means that we cannot fit 
any single function from classification error to LPI 
error in the conditions that we have simulated. We 
cannot even guarantee the weak criteria that the 
rankings of maps by classification error would yield 
the same results as a ranking based on LPI errors. 

Predicting LPI error from classification error was 
further confounded by the fact that the common 
practice of using MMU to reduce salt-and-pepper 
classification error actually increased LPI error for 
Mean Patch Shape and MPS. Moreover, it always 
reversed the direction of error (from over- to 
underestimation or vice versa). Further, the ideal 
smoothing levels for reducing LPI error varied by 
LPI (Figure 5). For example, the smallest LPI error 
values and spread for Mean Patch Shape occurred 
in scenarios with no smoothing, whereas the best 
smoothing level for Total Edge was MMU = 9; for 
NP, it was MMU=4; and for MPS, it was MMU=2. 
This suggests that minimizing error for each LPI 
may require the use of different maps derived from 
different classifiers or smoothing levels for each LPI. 

- - - . - - - - - - -- -- 

How Do the Amount of ~abitat-&d 1ts - 
Clumpiness Affect the Error in the LPIs? 
The proportion of habitat had less effect on LPI 
error than habitat clumpiness did. As the smooth- 
ing MMU increased, clumpiness had less effect on 
LPI errors for Mean Patch Shape and MPS, but 
greatly affected LPI errors for Total Edge and NP. 
Although habitat proportion was not related closely 
to LPI error in our simulations, it had a large effect 
on the difference between user's error and pro- 
ducer's error generated by our model. User's errors 
were generally higher in low proportion landscapes 
(Figure 3).  This error pattern would not be unrea- 
sonable to expect using any classifier for several 
reasons. First, there are likely to be relatively more 
edge and mixed pixels in lower proportion land- 
scapes - exactly the type of pixels where more 
classification error is expected. Second, the small 
sample size of pixels in low-proportion landscapes 
results in the availability of fewer training data for 
training a classifier. Lastly, higher user's error in 
low-proportion landscapes is likely simply given 
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1 ~nt. equatrtJrrfrJraefserrrrr: IpiQp+fp). in a b w -  
proportion landscape, this equation would be 
dominated by the false positives, given the small 
number of true positives possible even if 100% of 
habitat was recognized correctly. In future experi- 
ments, we could totally eliminate this effect by 
writing a more complicated error model that draws 
pixels in a different way to control for user's error 
as well. We did not rerun the experiments here 
with the more complicated model because our 
conclusions remain the same even if we remove all 
points with user's error greater than 1 5 % . 

Bounds of Generalization. Our primary goals were 
to characterize a certain type of classification error 
over a range of landscape structures and to test the 
hypothesis that a map with small classification er- 
ror necessarily yields spatially reliable LPIs. Our 
results should not be generalized quantitatively to 
all landscapes, all LPIs, or all types of classification 
error. Our results are limited to the landscape 
structures, LPIs, smoothing, and classification error 
models tested. In spite of these limitations, we ar- 
gue that the scenarios we have presented have 
enough realism to reasonably reflect some of the 
complexity of a real application and to show that 
this complexity can generate subtle and counter- 
intuitive outcomes. 

Just as we recommend not overgeneralizing from 
our results, our study strongly illustrates the 
problem in drawing general conclusions based on 
classifications derived from one original base 
landscape or image. As an example, even though 

- - -- -* -- 
our expenmerit<'- employed-- classFfication - error 
assumptions similar to those of Wickharn and 
others (1 997), our study yielded much larger errors 
in LPIs not only because we used different LPIs, but 
more importantly because we used a range of dif- 
ferent landscape structures. 

Simulations versus Real Landscapes. The danger of 
overgeneralizing from a single map is made par- 
ticularly clear by the use of multiple simulated 
landscape maps that we have presented here. 
Simulated landscapes are often employed to di- 
rectly control, manipulate, and replicate features of 
landscape structure (Gardner and others 1987; 
Gardner and OfNeill 1991) such as the proportion 
of habitat types or clumpiness (With and Icing 
1997; Turner and others 2001; Gergel 2002). 
Controlling for the variability in real landscapes is 
extremely problematic because they vary widely in 
many of these features that influence the behavior 
of LPIs. Often, they are also highly anisotropic and 
nonstationary (containing different gradients of 
clumpiness or autocorrelation, and in different 
directions). This makes their patterns uneven 

. . ** 
landscape imagery used for a study like this one is 
unlikely to systematically span the range of pro- 
portions or variability in autocorrelation. Further- 
more, the proportions of different habitat types on 
a remotely sensed image are ultimately dependent 
on the spatial resolution and on the level of the- 
matic resolution of land-cover classes chosen to 
create the map (for example, three versus five 
cover types). 

Equally important is that when using a classified 
image as the correct base landscape for simulating 
classification errors, the correct patch boundaries 
and LPI values cannot be known due to LPI errors 
already introduced by the classifier. The range of 
LPI values on the initial correct map (if obtained 
this way) would incorporate the classifier's bias and 
need not represent the true range of LPI values. For 
example, smoothing tends to reduce the complex- 
ity of patch edges and the number of small patches. 

We argue that until we understand the behavior 
of LPIs in highly controlled and replicated scenar- 
ios, we cannot expect to understand or predict their 
behavior on real maps, which vary in many 
uncontrolled ways. The numerous sources of error 
and variability make it difficult to isolate the factors 
influencing the behavior of LPIs on real landscapes 
or those from any classified image. With simulated 
landscapes, we can systematically vary proportion 
and spatial autocorrelation and we can generate 
multiple realizations of these landscapes using the 
same parameters. 

Error Modefi. -One- 1-imitati6n 3-i our error--m-ode1 
is that spatial structuring of error is not directly 
accounted for beyond edge effects. Directly mod- 
eling spatial autocorrelation in the errors might 
have different results and should be investigated 
because many errors in our model come from the 
splitting-off of small patches. However, there are 
several factors to suggest that the results derived 
from this model are still of interest. First, our 
experiments showing smoothing with a minimum 
mapping unit of nine cells do address a certain 
amount of autocorrelation because there is spatial 
grouping of errors when no patch can be smaller 
than nine cells. Second, as the spatial resolution of 
imagery used increases, there is less averaging of 
the signal; consequently, the local characteristics of 
the image are less uniform. Per pixeI classifiers that 
do not take this texture into account are more 
likely to generate varying classifications of neigh- 
boring pixels. These classifications are likely to re- 
quire postclassification smoothing similar to that 
used in our simulations, possibly with similar re- 
sults. Third, the amount of salt-and-pepper error 
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of the skill of the operator. The experiments in 
Shao and others (2001) with multiple operators 
showed many different outcomes, even given ex- 
actly the same input. Anyone with access to an 
image processing program can push a button to 
classify an image and then compute LPIs on that 
output. Users whose primary expertise is not in 
image processing may have little idea how to deal 
with issues such as texture in an image and 
therefore produce speckled classifications that they 
may or may not smooth afterward. In either case, 
their errors may be qualitatively similar to those 
expressed in our error model. Finally, our results 
have shown that even if there is less than 1 or 2% 
error of this kind, it can still generate huge amounts 
of error in some LPIs (for example, see Figure 5P). 
Normalization of LPI Errors for Comparison. Anoiher 

important issue is that the ability to compare and 
rank different LPIs by error requires a fair method 
for normalizing LPI errors. Throughout this paper, 
we have examined LPI error as a percentage of the 
correct LPI value, but the total possible percent error 
can differ greatly among LPIs. When the range of 
an LPI is infinite or enables values to become 
infinitesimally small (that is, arbitrarily dose to 
zero), there will be no upper bound on the per- 
centage error possible. In contrast, any LPI whose 
magnitude is bounded above and below and does 
not include any neighborhood of zero will have 
bounds on the percentage error it can possibly at- 
tain. It may thus appear better (lower error) than 

-- a n  CPI- with errors that can -be unbounded. For 
example, the fractal dimension of a planar region 
can only vary between 1 and 2. Consequently, it 
can never have an error greater than 100% be- 
cause the denominator can never be less than one 
and the numerator can never be greater than one. 
Similarly, an LPI may be effectively bounded if it is 
very difficult or uncommon to observe values 
outside a narrow range (for example, the Shape 
Index in our studies). In either case (actual or 
effective bounding of error), it is inappropriate to 
directly compare the magnitude and variation of 
the error of bounded LPIs with unbounded ones. 
The bounded LPI may appear to have very little 
percentage error, but this may simply be because its 
range is so small that the ecologically relevant dis- 
tinctions in the LPI's values require high precision 
that is irrelevant in the unbounded LPI. 

One way to normalize the errors would be to 
normalize them against what is considered to be 
the smallest ecologicaIly relevant distinction in the 
application of interest. For general comparison of 
LPIs however, it would be useful to have a nor- 
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specific applications. One way to do this would be 
to compare the errors to the largest error "reason- 
ably possible" for that LPI. For example, we could 
assume that a classifier should not do any worse 
than randomly guessing classifications. More re- 
search is necessary to determine the appropriate 
characteristics and candidates for a normalization 
method to enable comparison of LPI errors. How- 
ever, it is clear that any future studies that attempt 
to rank LPIs in terms of LPI error will need to 
normalize their error measures in some way so that 
the results are meaningful. 

Accuracy Assessment. Our work suggests that 
both the creators and the users of classified images 
need to do more to measure spatial aspects of 
classification errors in maps. In particular, better 
techniques for accuracy assessment of LPIs need to 
be developed for several reasons. First, as we have 
shown, nonspatial measures of accuracy (user's 
error) do not necessarily correspond to errors in 
spatially explicit LPIs. To date, studies that do 
measure spatial aspects of classification error (Fo- 
ody 2002; Hagen 2003; Pontius and others 2004) 
do not examine how those error measures relate to 
the errors in the LPIs. Second, many users of clas- 
sified remote-sensing imagery are often unlikely or 
unable to verify the spatial accuracy of classifica- 
tions themselves due to budget or expertise or be- 
cause not all of the original reference data is 
available to the user (for example, because of 
agreements with landowners covered by the map). 
In-su-&-cases, th-e priiducers of classified -i-mageFjf 

- 

would help their users by evaluating spatial char- 
acteristics of classification error instead of just 
counting misclassified pixels. 

However, it is not clear whether it is possible to 
develop predictive models of LPI error that can be 
generalized to real-world applications. The reason 
for this is that the pattern of errors in any classified 
map is the result of complex interactions among 
many factors. These factors include the classifica- 
tion algorithm, its training data, the user's skill, the 
landscape, the class structure (for example, relative 
abundance of classes, relative importance of 
different types of errors, patch shapes, patch 
interlacing, anisotropy), as well as the spatial dis- 
tribution of classification errors (for example, 
location of easily confused classes relative to each 
other). It may be more useful to develop project- 
specific predictive models for LPI error based on 
image characteristics, as Brown and others (2000) 
did for change detection in LPIs in forest-cover 
maps. At a minimum, however, analogous to 
classification error analysis, subsampIes of the 
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identified through some more reliable method of 
assessment. These subsamples could then be used 
to provide a standard for assessing the correctness 
of spatial measures derived from their classification. 

We do not mean to suggest that deriving a more 
accurate value of the LPI as defined for the given 
single landscape will solve all problems with LPIs. 
Even if we could identify the correct value of an LPI 
from a classified map, there are other issues about 
whether that value has ecological meaning. For 
example, if a landscape represents a stochastic pro- 
cess, the many possible realizations of that process 
may each yield different values for an LPI and, in 
that sense, there is no single correct value for the 
LPI. Questions such as this have led some 
researchers to advocate approaches based on sto- 
chastic models (Rernmel and others 2002; Fortin 
and others 2003). For example, to determine whe- 
ther the LPI values of two landscapes are signifi- 
cantly different, they suggest measuring the overlap 
of confidence intervals on the LPI values obtained 
over a large number of realizations from an ecolog- 
ically relevant stochastic model. These questions are 
beyond the scope of this paper; however, they raise 
the following important point. The stochastic mod- 
eling approach requires the estimation of model 
parameters such as proportion and autocorrelation 
from the same erroneously classified maps of land 
cover used to calculate LPIs. Therefore, the sto- 
chastic modeling approach also requires an analysis 
of model errors and LPI errors induced by estimating 
model parameters from maps contaiiliing cIassi5ca- - 

tion errors. In short, any process that computes 
spatial results based on a classified image must assess 
the errors in the results themselves, rather than 
assuming that the classification error is a reliable 
estimate of the amount of error in the results. 

This work raises several important issues that merit 
further attention. In particular, fragmentation sta- 
tistics may be suspect regardless of the accuracy of 
the classifications on which they were based, given 
that quite small errors in classification can lead to 
quite high errors in LPIs. This has implications not 
only for forest fragmentation statistics, but for 
wetland and riparian zones as well. Many US states 
are currently spending millions of dollars to develop 
Geographical Information Science System (GIs) 
coverages and other spatial databases to quantlfy 
wetland abundance and wetland losses. Even sim- 
ple measures such as "number of wetlands" and 
"average wetland size" may require further accu- 
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here. Errors in LPIs for all habitat types deserve 
further consideration, particularly as remote sens- 
ing data becomes available at ever increasing levels 
of resolution. Such imagery provides an unprece- 
dented opportunity to quantlfy and monitor all 
habitats, but it is especially useful for smaller habi- 
tats such as ephemeral wetlands and narrow, linear 
riparian zones, which are often missed in routine 
mapping using coarser-scale data sources. The lin- 
ear nature of riparian habitats might render them 
particularly sensitive to errors in classification; for 
example, a rnisclassified pixel or two could shatter 
one long contiguous patch into several smaller 
patches. Although they offer valuable new sources 
of data at the resolutions needed for many ecolog- 
ical applications, spatial measures derived from 
classifications of such data sources must be used 
with care. In a recent review of papers on habitat 
fragmentation, Fahrig (2003) discussed the chal- 
lenges posed by attempts to discriminate the impact 
of habitat loss from that of habitat fragmentation on 
biodiversity and concluded that the impact of frag- 
mentation was weaker and less consistent than that 
of habitat loss. This conclusion is interesting in light 
of the fact that errors in measuring habitat loss are 
routinely quantified (via classification errors), 
whereas errors in measuring landscape pattern are 
generally not quantified and may be substantial. 
The kinds of errors found in LPIs in our study sug- 
gest that there is some danger that fragmentation 
may be routinely underestimated as a result of 
smoothing; we re7o-end that- tEiS-posIsTbIlTt~ be -- 
investigated further. 

In summary, our work shows that the spatial 
arrangement of classification errors affects the 
amount of error in LPIs. Classification errors often 
resulted in large errors in LPIs, even at classification 
error rates considered low by the remote sensing 
community. The amount of map classification error 
is not necessarily a reliable predictor of LPI error. 
One cannot assume that a map with low classifi- 
cation error will produce relatively accurate LPIs. 
By inference, the results of any fragmentation 
study where LPI errors have not been measured 
may be incorrect, and potentially to a large degree. 
No one would classify an image and then claim that 
the classifications were accurate without testing 
that claim, yet virtually no study using LPIs derived 
from a classified image actually measures the 
accuracy of the LPIs derived from those maps. More 
emphasis must be placed on evaluating the sources 
and spatial nature of error in land-cover data used 
for conservation purposes, because over- or 
underestimation of the degree of fragmentation can 
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scientific conclusions related to habitat fragmenta- 
tion. Although it may be difficult or expensive to 
measure LPI accuracy, such a justification does not 
serve to correct erroneous conclusions derived 
from faulty LPI values. 

W.T.L. was supported by NSF grants IRI-9204129, 
IRI-9626584, ITR-0085836, ONR grant NO00 14-95- 
1-0557, AFOSR grant F49620-98-1-0375, the NASA 
Terrestrid Ecology Program, and EPA STAR fellow- 
ship U 9 1 5 196-0 1 - 1. Part of this work was conducted 
while W.T.L. and S.E.G. were postdoctoral associates 
at the National Center for Ecological Analysis and 
Synthesis, a center funded by NSF (grant DEB- 
0072909), the University of California, and the 
Santa Barbara campus. We thank D. Brown, 
J. Cardille, Y. Carmel, M.J. Fortin, G. Hess, M. I-- 
naird, C. McCain, J. Parrish, I<. Phrodite, V. Radeloff, 
and D. Vazquez for valuable comments on this pa- 
per. We also thank an anonymous reviewer of an 
earlier version of this paper for comments on nor- 
malization methods. 

REFERENCES 

Andren H, Angelstam P. 1988. Elevated predation rates as an 
edge effects in habitat islands: experimental evidence. Ecology 
69~544-7. 

Benitez-Malvido J, Martinez-Ramos M. 2003. Impact of forest 
fragmentation on understory plant species richness in 
&nazonJa.-Conse~ Biol17:389+0. 

Brown DG, Duh J, Drzyzga SA. 2000. Estimating error in an 
analysis of forest fragmentation change using North American 
landscape characterization (NALC) data. Remote Sens Envi- 
ron 71:106-17. 

Brittingham MC, Temple SA. 1983. Have cowbirds caused forest 
songbirds to decline? Bioscience 3 3:3 1-5. 

Cardille JA, Turner MG. 2001. Understanding landscape metrics 
I. In: Gergel SE, Turner MG, Eds. Learning landscape ecology: 
a practical guide to concept. and techniques. Berlin HeideI- 
berg New York: Springer. p 85-100. 

Congalton RG, Green K. 1999. Assessing the accuracy of re- 
motely sensed data: principles and practices. Boca Raton: (FL) 
Lewis. 

Cordeiro NJ, Howe HF. 2003. Forest fragmentation severs 
mutualism between seed dispersers and an endemic African 
tree. Proc Natl Acad Sci USA 100: 14052-6. 

Edwards G, Lowell KE. 1996. Modeling uncertainty in photo- 
interpreted boundaries. Photogram Eng Remote Sens 62:377- 
9 1. 

Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. 
Annu Rev Ecol Evol Syst 34:487-515. 

Ferraz G, and others. 2003 Rates of species loss from Amazonian 
forest fragments. Proc Natl Acad Sci USA 100: 14069-73. 

Foody G. 2002. Status of land cover classification accuracy 
assessment. Remote Sens Environ 80: 185-201. 

spatial stochastic models in understanding landscape indices 
in ecology. Oikos 102:203-12. 

Gardner RH. 1999. RULE: map generation and spatial analysis 
program. In: Klopatek JM, Gardner RH, Eds. Landscape eco- 
Iogical analysis: issues and applications. Berlin Heidelberg 
New York: Springer. p 280-303. 

Gardner RH, O'Neill RV. 199 1. The use of neutral models for 
landscape analysis. In: Turner MG, Gardner RH, Eds. Quan- 
titative methods in landscape ecology: the analysis and 
interpretation of landscape heterogeneity. Berlin Heidelberg 
New York: Springer. p 289-307. 

Gardner RH, Milne BT, O'Neill RV, Turner MG. 1987. Neutral 
models for the analysis of broad-scale landscape patterns. 
Ecosystems 1 : 19-28. 

Gergel SE. 2002. Cumulative impact of levees and dams on the 
duration of temporary floodplain ponds: a terrain model ap- 
proach for assessing multiple disturbances at broad scales. Ecol 
Appl 12 ( 6 ) :  1 740-54. 

Griffiths GH, Lee J, Eversham BC. 2000. Landscape pattern and 
species richness; regional scale analysis from remote sensing. 
Int J Remote Sens 2 1:2685-704. 

Hagen A. 2003. Fuzzy set approach to assessing similarity of 
categorical maps. Int J Geogr Inf Sci 17:23549. 

Hammond TO, Verbyla DL. 1996. Optimistic bias in classification 
accuracy assessment. Int J Remote Sens 17:126 1-6. 

Hess G. 1994. Pattern and error in Iandscape ecology: a com- 
mentary. Landscape Ecol 9:3 5. 

Hess GR, Bay JM. 1997. Generating confidence intervals for 
composition-based landscape indexes. Landsc Ecol 12:309- 
20. 

Imbernon J, Branthomrne A. 2001. Characterization of land- 
scape patterns of deforestation in tropical rain forests. Int J 
Remote Sens 22:1753-65. 

Laurance W, and others. 2000. Conservation - Rainforest frag- 
mentation kills big trees. Nature 404836. 

McGarigaLK, Cushrnan SA, Nee1 MC;Ene E. 2002. FR-AGSTATS: 
spatial pattern analysis program for categorical maps. Com- 
puter software program produced at the University of Mas- 
sachusetts, Amherst. [Online] URL: www.umass.edul 
landeco/research/fragstats/fragstats.html. 

Peralta P, Mather P. 2000. An analysis of deforestation patterns 
in the extractive reserves of Acre, Arnazonia from satellite 
imagery: a landscape ecological approach. Int J Remote Sen 
21:2555-70. 

Plourde L, Congalton RG. 2003. Sampling method and place- 
ment: how do they affect the accuracy of remotely sensed 
maps? Photogram Eng Remote Sens 69:289-98. 

Pontius G, Huffaker D, Denman K. 2004. Useful techniques of 
validation for spatially explicit land-change model. Ecol Mo- 
dell 1 79:445-6 1. 

Remmel TK, Csillag F, Mitchell SW, Boots B. 2002. Empirical 
distributions of landscape pattern indices as functions of 
classified image composition and spatial structure. Proceedings 
of Symposium on Geospatial Theory, Processing, and Appli- 
cations, Ottawa, Canada, 9-12 July 2002. 

Saunders DA, Hobbs RJ, Margules CR. 1991. Biological conse- 
quences of ecosystem fragmentation -a review. Conserv BioI 
5(1):18-32. 

Saura S, Martinez-Millan J. 200 1. Sensitivity of Iandscape pat- 
tern metrics to map spatial extent. Photogram Eng Remote 
Sens 67: 1027-36. 



W. T. Langford and others 

r T;,. n , 7hmr\ L' ,- U. B ~ ~ I a ~ i m ~ i ~ a ~ = ,  . . 
tion accuracy and variation of landscape statistics. Can J Re- 
mote Sens 27:33-43. 

Skole D, Tucker C. 1993. Tropical deforestation and habitat 
fragmentation in the Amazon: satellite data from 1978 to 
1988. Science 260:1905-10. 

Stehman SV. 2001. Statistical rigor and practical utility in the- 
matic map accuracy assessment. Photogram Eng Remote Sens 
67:727-34. 

Stehman SV, Wickham JD, smith JH, Yang L. 2003. Thematic 
accuracy of the 1992 National land-cover data for the eastern 
United States: statistical methodology and regional results. 
Remote Sens Environ 86:500-16. 

Terborgh J, and others. (200 1) Ecological meltdown in predator- 
free forest fragments. Science 294:1923-26. 

Turner MG, Gardner RH, O'Neill RV. 2001. Landscape ecology in 
theory and practice: pattem and process. Berlin Heidelberg 
New York: Springer. 

- T - k & R - e n a ; l - V  sf 
changing spatial scale on the analysis of landscape pattern. 
Lands Ecol 3: 153-62. 

Villard M-A, Trzcinski MK, Merriam G. 1999. Fragmentation 
effects on forest birds: relative influence of woodland cover 
and configuration on landscape occupancy. Conserv Biol 
13:774-83. 

Wickham JD, O'NeiU RV, Riitters KH, Wade TG, Jones KB. 1997. 
Sensitivity of selected landscape pattern metrics to land-cover 
misclassification in land-cover composition. Photogram Eng 
Remote Sens 63:397402. 

[WISCLAND] Wisconsin Initiative for Statewide Cooperation on 
Landscape Analysis and Data. 1993. User's guide to WISC- 
LAND land cover data. Wisconsin Department of Natural 
Resources, Madison, USA. 

With KA, King AW. 3997. The use and misuse of neutral land- 
scape models in ecology. Oikos 79:219-29. 




