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Describing Land Use Change in Multidisciplinary Analyses 99

vely recent adaptation of land use modeling methods of economists
rd greater spatial specificity desired in integrated research with ecologists,
sing on data, conceptual modeling, and econometrics issues. This is fol-
d by an example of a spatially explicit land use model developed as part
multidisciplinary landscape-level analysis of socioeconomic and ecolog-
processes in Oregon’s Coast Range. The model characterizes the spatial
namic distribution of humans on the forest landscape of western Oregon in
terms of building densities, which serves as input into other models describing
et-production and wildlife habitat.

'5
Describing Land Use Change
in Multidisciplinary Analyses

JErEREY D. KLINE

hallenges of Integration

ind use models can be viewed as extensions of area-base models first
ped by economists more than 20 years ago. Area-base models describe
ons (or shares) of land in forest, agriculture, urban, or other discrete
egorles, within well-defined geographic areas, usually counties, as func-
' socioeconomic and geophysical variables aggregated at the particular
phic unit of analysis. Published examples are numerous (Alig 1986; Alig
ealy 1987; Alig et al. 1988, 2004; Cropper et al. 1999; Hardie and Parks
97; Hardie et al. 2000; Lichtenberg 1989; Parks and Murray 1994; Plantinga
Plantinga et al. 1990, 1999; Stavins and Jaffe 1990; White and Fleming
)80). Future land use shares are computed using projected explanatory vari-
values and provide aggregate regional or national land use projections
only reported in national resource assessments, such as the Resources
ning Act Assessment (Haynes 2002). Although the spatial detail of such
,}ECtIOIlS is limited to the geographic unit of analysis, usually counties, this
sufficed for national resource assessments. Ecologists, however, often de-
land use projections at finer spatial scales more relevant to the ecological
sses they study. The desire to account for land use change in ecological
es has led to the development of more spatially explicit models to project
rate and location of land use change at finer spatial scales.

What economists have come to call “spatial” land use models generally rely
iscrete land use data sampled from satellite imagery, aerial photographs,
systematic land inventories, combined with other spatial data describing so-
conomic and geophysical variables. These data are used to estimate discrete
ice (e.g., logit or probit) models describing the likelihood of a particular
use change occurring at a given location and point in time (Bockstael
96; Bradshaw and Muller 1998; Chomitz and Gray 1996; Kline and Alig
999; Kline et al. 2001; Nelson and Hellerstein 1997; Wear and Bolstad 1998;
et al. 1996). By focusing on general land use categories, these mod-
differ from related research focused on describing changes in land cover,
as deforestation or cropping patterns, that may occur within the general

Economists increasingly face opportunities to collaborate with ecologi
and other scientists in multidisciplinary research involving landscape-le
analyses of socioeconomic and ecological processes. A common goal of st
analyses is to describe potential changes in ecosystem processes and cont
tions resulting from forest policies and management actions addressing ti
ber, wildlife, and wildfire objectives (e.g., Spies et al. 2002; Hayes et al. 200
In particular, land use economists often are called upon to describe poten
future land use changes that are likely to influence the effectiveness and ot
comes of policies and management actions of interest. This typically invol
developing statistical spatial empirical models describing land use changes
projecting future land use change scenarios for integration with other m
describing socioeconomic and ecological processes.

Providing ecologists with the specific types of land use information th
desire can present challenges regarding the availability of appropriate data,
need to adapt existing modeling methods to particular research issues of inte
and data at hand, and unresolved econometric issues associated with spa
autocorrelation. Recent papers in economics literature have addressed spa
land use modeling issues and presented illustrative models (e.g., Bockstael 19
Irwin and Geoghegan 2001). These papers are invaluable for their focus on:
development of conceptually rigorous structural models and examination
econometric issues associated with spatial autocorrelation.

This chapter focuses on practical issues involved in providing land use mf
mation that is both conceptually rigorous and usable to researchers outside
economics, using spatial data that are often imperfect. It begins by describ

B
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100 Jeffrey D. Kline:

categories (e.g., Lambin et al. 2003), although the empirical methods used in

both types of models often are similar. In terms of information provided, the
primary difference between spatial land use models and their area-base ances-
tors is the unit of analysis—typically a county with area-base models versus
a pixel or point observation with spatial models. This refinement in spatial
scale has led economists to focus on reconsidering the most appropriate com-
bination of conceptual frameworks, data, and econometric methods for spatial
land use modeling (Bockstael 1996; Irwin and Geoghegan 2001). Less attention
has been given to whether land use models meet the informational needs of
ecologists or others involved in the provision of policy guidance.

A weakness of many spatial land use models is their reliance on discrete data

describing land use as a simple hierarchy of forestry, agricultural, and urban -

uses. Often defined by data sources, such as the National Resources Inventory

(Nusser and Goebel 1997) and the USDA Forest Service’s Forest Inventory
and Analysis Program (Frayer and Furnival 1999), discrete land use classes

imply a level of abstraction that may be inappropriate in multidisciplinary
analyses. They tend to describe where humans are and are not present on

landscapes, and may be inadequate to characterize the spatial and temporal -
interactions of humans as agents affecting landscape-level ecological processes.
Also, discrete choice models estimated with land use data typically result in

predicted probabilities—the probability of conversion, for example—which

can be difficult to interpret in ecological or natural science models. Conversion-

probabilities may be good relative indicators of change, but more information
may be needed to predict new development (Bockstael 1996, 1174).

Another difficulty in spatial land use modeling is a frequent lack of appropri-
ate data with which to construct conceptually rigorous explanatory variables.
Empirical models typically are specified using proxy variables describing po-
tential rents earned from different land uses in terms of socioeconomic and
geophysical factors. Although spatial data describing geophysical factors such
as slope, elevation, and soil quality increasingly are available from geographic
data sources, socioeconomic data are less so. For example, models describing
forest and farmland conversion to urban uses typically call for timber and
agricultural commodity prices as proxies for forestry and farming land rents,
which generally are unavailable at spatial scales finer than states or regions.
Potential urban land rents can be described using proxies such as population
densities (Bradshaw and Muller 1998; Wear and Bolstad 1998), but obtaining
these in digitized form at census tract and block levels is often not possible for
all but recent years. Land prices increasingly are available from digitized tax lot
data, but these too can lack temporal coverage and can poorly represent actual
land values if not kept current by local tax assessors. More generally, confi-

dentiality problems related to spatial socioeconomic data often occur when

data-gathering agencies restrict the uses of certain information to protect the
privacy of surveyed individuals. Considering such factors, it is clear that the

Chapter 5: Describing Land Use Change in Multidisciplinary Analyses 101

‘development of appropriate econometric specifications for any land use model
necessarily requires trade-offs among conceptual rigor, data quality and avail-
ability, and the particular research needs at hand.

A final issue involves potential spatial dependence present in spatial land use
data, which area-base models typically have not addressed. Spatial dependence
can result from omitted spatial variables that influence the land use decisions of
landowners, such as weather-related variables, and spatial behavioral relation-
ships, such as common ownership of sampled plots of land. The first leads to
inefficient but asymptotically unbiased estimated coefficients; the second can
lead to inefficient and biased estimated coefficients {Nelson and Hellerstein
1997). Bockstael (1996) and Irwin and Geoghegan (2001), among others, re-
view empirical issues involved in estimating spatial land use models. The devel-
opment of standard protocols for addressing spatial dependence in statistical
models is relatively recent (e.g., Sohngen and Alig 2001; Fleming 2004). Among
the more popular methods in applied work at the time of the study described
in this chapter were purposeful sampling (Fortin et al. 1989; Haining 1990;
Helmer 2000) and the inclusion of spatial lag variables (e.g., Wear and Bolstad
1998).

A Spatial Land Use Model from Oregon

An example of how land use change can be characterized in multidisciplinary
analyses is provided by a spatial land use model developed for the Coastal
Landscape Analysis and Modeling Study (Spies et al. 2002). The study analyzes
the aggregate socioeconomic and ecological effects of forest policies in western
Oregon’s Coast Range mountains by linking stand-alone models describing
land use change, timber production, and wildlife habitat, among other fac-
tors. The study region is bordered by the Pacific Ocean on the west and the
Willamette Valley, extending from Portland south to Eugene, on the east (Fig-
ure 5-1). Forest policies in the region attempt to achieve a mix of forest goods
and services by spatially distributing different forest practices over watersheds,
landscapes, and ownerships. Recent policy concerns have focused on main-
taining habitat for northern spotted owls (Strix occidentalis caurina) and coho
salmon (Oncorhynchus kisutch). The study integrates quantitative analyses of
ecological and socioeconomic processes to test whether forest policy goals (re-
stricting cutting near spotted owl nest sites, for example) are consistent with
projected future outcomes (availability of spotted owl habitat).

Identifying Relevant Land Use Information

One socioeconomic factor expected to have a significant impact on forestry
in western Oregon is land use change resulting from forestland conversion to
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ause of its potential adverse impacts on forestry productivity (Barlow et al.
1998; Wear et al. 1999), incompatibility -with timber production (Egan and
uloff 2000), and increased wildfire risk near homes. Characterizing this form
of development was of particular interest to the study.

An alternative to discrete land use data exists in spatial data depicting his-
orical building counts in western Oregon developed by the Pacific Northwest
search Station’s Forest Inventory and Analysis Program. The data consist of
ial photo-point observations of building counts (number of buildings of
any size or type within 80-acre circles surrounding points on aerial photos)
nonfederal land. Aerial photos were taken in 1974, 1982, and 1994 (Azuma
al. 2002). With nearly 24,000 photo-points, the data provide almost 72,000
servations of building counts varying in space and time. Tracking building
unts on individual photo-points at each of three points in time provides
0 observations of change in building counts (number of new buildings con-
ucted) for each photo-point. When combined with other spatial data using
eographical information system (GIS), the entire data set comprises 44,928
servations.

Figure 5-1. Coastal Landscape Analysis and Modeling Study Region in Western Oreg ceptual Framework

atial land use models based on discrete land use data generally assume that
downers choose the land use that maximizes the present value of future net
returns derived from their land (Bockstael 1996; Irwin and Geoghegan 2001).
For example, they might convert a forest or farmland parcel to an urban use
once the present value of future returns generated by the parcel in urban use less
conversion costs equals or exceeds returns generated by the parcel remaining as
forest or farmland. Such assumptions are implied in the survival-time analyses
ound in Chapters 3 and 4 of this book, as well as in the assessment of use value
taxation in Chapter 8.

Characterizing individual behavior in this way applies neatly to estimating
discrete choice (logit or probit) models describing observed changes among
discreteland use classes on individual parcels, or models of development timing
seeking to forecast the future time at which individual farm or forest parcels
will convert to alternative uses. The building-count data in this study, how-
ver, describe locally aggregated decisions of unknown numbers of individual
landowners regarding construction of new buildings on land of all types. Hence,
aconceptual framework characterizing development as numbers of new build-
ings within relatively local geographic areas is needed.

Within any local area, landowners face a range of development opportunities
garding new housing, businesses, and industry. Decisions regarding such
opportunities are influenced by potential future rents to be earned from any one

residential, commercial, and industrial uses. Currently, 70 percent of Oregon
3.4 million people live in the Willamette Valley, and the population ther
expected to grow by 1.3 million new residents in the next 40 years (Franzen and
Hunsberger 1998). Research in western Oregon and elsewhere suggests thatas
forest landscapes become more populated, the intensity with which remainin
forest landowners manage their lands for timber production declines, resulting
in variety of potential economic and ecological implications (Kline et al. 2004).
In this study, land use modeling must account for such effects by describin
the future distribution of humans throughout the study region. ;

Probit models initially developed for the study described land use chang
among discrete forest, agriculture, and urban categories (Kline and Alig 1999
Kline et al. 2001). Integrating projected conversion probabilities into timbe
production and ecology models proved difficult, however. Forestland area
western Oregon historically has been substantially greater than urban lan
area, causing projected forestland conversion probabilities to be very low over
much of the study area and of little value in identifying likely locations of futun
conversion. Also, although forestland conversion to urban use categories h
been a relatively slow process, significant land use change has occurred 2
dispersed, low-density development (Azuma et al. 2002). Such developmen
has become a concern of forest managers and policymakers in recent years

ol



104 Jeffrey D. Klin Chapter 5: Describing Land Use Change in Multidisciplinary Analyses 105

opportunity relative to rents earned from existing land uses. Within the 80-acr ariable Selection
vicinity of sample points comprising building-count observations in this stud
local landowners likely face similar types of development opportunities, subject
to zoning and topographic differences that affect potential building sites. The-
extent to which we observe new buildings in any given local area is assumed:
to be a function of the potential returns to be earned from new developmen
as well as local zoning and topographic characteristics. The building counts
identify newly constructed buildings and can be used to estimate Poisson and
negative binomial models describing new development as a function of the
factors.

Regionally disaggregated economic data describing potenUal land rents
earned from new development relative to forestry and agriculture are not
available, so proxy variables must be identified. Conceptually, the value of
land in developed uses has been viewed as a function of the spatial proxim-
ity to city centers (Capozza and Helsley 1989; Fujita 1982; Mills 1980; Miyao
1981; Wheaton 1982). Von Thunen viewed spatial proximity in terms of costs
associated with transporting forest and agricultural commodities to markets,
influencing whether forestry and agriculture were profitable in any given lo-
cation (Barlow 1978, 37). Modern society, however, views spatial proximity
in terms of the difference between quality-of-life factors, such as housing,
neighborhood characteristics, and environmental amenities, and the costs as-
sociated with commuting to employment destinations. More consistent with
central place theory, this view explains location choices based on the relative
economic advantages of locating people, business, and industries in particular
clusters and patterns (King 1984).

One of the most important factors affecting land’s development potential
in western Oregon is its commuting proximity to employment opportunities
offered by major cities of the Willamette Valley. Land within short commu
ing distances likely will have greater development potential than land within
relatively longer commuting distances. Also, land within commuting distance
to a large city likely will have greater development potential than land within
a comparable commuting distance to a smaller city. Cities beyond reasonable
commuting distances likely will have very little, if any, influence on develop-
ment potential. We describe the influence of city size and location using a
gravity index (Haynes and Fotheringham 1984; Reilly 1929) to account for the
combined influence of population and proximity as economic forces effecting
land use change (Shi et al. 1997). The gravity index is combined with variables
describing other factors, such as topography, existing development, and land
use zoning mandated by Oregon’s Land Use Planning Program, which also
can influence development patterns. Land use zoning in Oregon, for example,
requires cities and counties to focus new development inside urban-growth
boundaries and restrict development outside of these boundaries by Zomng
those lands for exclusive farm or forest use.

We describe the development potential of land using a gravity index computed

- TIME;k) 5-1)

here K represents the number of cities within a 60-minute drive (or com-
nute) of each photo-point i, POPULATION is the population (U.S. Bureau
of the Census 1992) of each city k, and TIME is the driving time in minutes
etween photo-point i and city k. The gravity index is the sum of populations
of cities within a 60-minute commute of each photo-point, weighted by the
‘estimated driving time to each city’s edge. The index sets a 60-minute thresh-
old on the “reasonable” commuting time, based on our assumption that most
‘Oregonians probably commute no more than one hour to work. Varying this
reshold to reflect somewhat shorter or longer maximum commuting times
did not substantially affect the sign, magnitude, or statistical significance of the
‘gravity index estimated coefficient. Incorporated into the gravity index com-
putation are 45 western Oregon cities having 5,000 or more persons in 1990
(U.S. Bureau of the Census 1992). Adjacent cities are combined and treated as
‘larger metropolitan areas, reducing the total number of cities and metropolitan
areas included in the analysis to 30.

Driving times used to calculate the gravity index were estimated using a
1S map of roads existing in 2001 to create a friction surface based on average
“driving times assumed for different types of roads. We assume that drivers
average speeds of 60 miles per hour on primary roads, 25 miles per hour on
secondary roads, and 10 miles per hour where there are no roads. Driving times
-are based on road data from a single point in time, because data describing
‘road improvements are unavailable. As a consequence, we ignore potential
endogeneity between land use change and road building noted by Irwin and
Geoghegan (2001) among others. Ignoring such endogeneity can lead to two
potential problems. First, we fail to account for improved physical access to land
~provided by new roads in the future. Second, because driving times are based
on the modern road network rather than a potentially less extensive network
existing when new buildings were constructed in the past, gravity indices could
be overestimated, and their model coefficient underestimated, in magnitude.
‘Both problems could result in underestimating projected changes in building
counts.

" We combine the gravity index with other explanatory variables describ-
ing existing building counts, topographic features of slope and elevation, and
~dummy variables describing land use zoning adopted under Oregon’s Land

‘Use Planning Program (Abbott 1994). We assume that together the variables
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sing a random effects negative binomial model (Greene 1995, 570-71). Be-
cause group effects are conditioned out (not computed), projected values can-
not be computed using the random effects model (Greene 1995, 567), but
e estimated coefficients can be compared with those of the model estimated
ithout random effects.

“A final estimation issue is potential spatial autocorrelation among the
uilding-count observations, which to our knowledge has not previously been
dressed in count-data models. In this case, peculiarities in data reporting
mplicate remedies routinely used in discrete models. Although the building-
unt data are based on a systematic photo-point sampling spaced on roughly
1,370-meter average grid, Forest Inventory and Analysis Program policy re-
uires that the UTM x and y coordinates of sample points each be “fuzzed” by
pto 1,000 meters to protect the precise point locations. This inhibits both pur-
poseful sampling and the development of reliable spatial lags of A BUILDINGS,

characterize the value of land in developed yises over its value in undeve
oped forest and agriculture. We expect greater numbers of new buildings
areas with higher gravity index values, and fewer in areas with low values. Wk
further expect that higher existing building counts have a positive but dimin
ishing impact on new buildings, because factors attracting existing develo;
ment likely attract new development before building-density limits mandat
by zoning are achieved. We anticipate slope to be negatively correlated wi
new buildings, because steeper slopes can be more difficult to build on. Hi
elevations also can be negatively correlated with new buildings if they i
pede construction with poor physical access. The correlation can be posi i
however, if they provide desirable views (Wear and Bolstad 1998). Hence, the
net effect of elevation is an empirical question. We expect that land located
within urban-growth boundaries adopted under Oregon’s Land Use Plannin
Program will gain greater numbers of new buildings than land in forest or farm.

zones. ecause sample points neighboring each observation cannot be identified with
ertainty. Given these difficulties, we assume that the 1,370-meter average spac-
Model Estimation g of sample points likely minimizes any spatial behavioral relationships un-

unted for by the gravity index, zoning, and other spatial explanatory vari-
les, and we estimate the final model leaving potential spatial autocorrelation
untreated.

Recognizing the potential for spatial autocorrelation, however, we did test
ur alternative spatial autocorrelation remedies using the fuzzed UTM co-
rdinates: two based on purposeful sampling and two on the inclusion of
atial lag variables. The four models yielded estimated coefficients that were
similar in sign, magnitude, and statistical significance to those of the pre-
nted model. Estimated spatial lag coefficients in the two models that in-
uded them were positive and statistically significant (P<0.01), suggesting
at building-count changes observed on individual sample points do seem
be accompanied by changes on neighboring sample points. Building-
nsity projections made using the alternative models differed from those
the presented model by 0.3 to 0.7 percent for undeveloped land, and 0.3
5 percent for undeveloped and low-density developed land combined
the two categories of particular interest here). Based as they are on im-
ect UTM coordinates and somewhat ad hoc remedies, the alternative
odel results are not shown, but they are available from the author upon
quest.

uzzy UTM coordinates do not affect the slope, elevation and land use
ning variables included in the analysis, because they were developed using
unfuzzed coordinates. Because the fuzziness is limited to one kilometer and
ata span a geographic area of roughly 78,000 square kilometers, impacts
the gravity index variable are negligible. The general regression equation
escribes changes in building counts on photo-points from one time point to
e next, where the specific explanatory variables are described in Table 5-1.

The dependent variable A BUILDINGS was constructed by computing chang
in building counts observed within 80-acre circles surrounding sample poi
at 10-year intervals between 1974 and 1984, and between 1984 and 1994. T
adjust the building-count observations to consistent 10-year intervals, buildin
counts for 1984 were approximated by interpolating between 1982 and 199
values, and rounding to the nearest whole number. The dependent variabl
ABUILDINGS is measured as a count and is not continuous. Assumin
ABUILDINGS is distributed as a Poisson leads to the negative binomial
model

—Ai) Vi
pr(ABUILDINGS = y;|y) = T
;!

y;i=0,1,2,...5i=1,2,...,n
where In(A;) =In(A) +y = B'x; +v

where y is a random variable and exp(y) has a gamma distribution wi
mean 1 and variance «, X; is a vector of independent variables, and g’
vector of coefficients to be estimated (Greene 1997). The negative binomi
model is a general form of the Poisson model relaxing the Poisson assump
tion that the dependent variable’s mean equals its variance (Wear and Bolsta
1998).

The panel nature of the data—generally two observations of building-cou
change per photo-point—creates the potential for correlation among pairs
time-series observations for individual photo-points to deflate standard erro
and bias estimated coefficients. We can account for these potential correlatio
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Table 5-2. Estimated Coefficients of Negative Binomial Models Describing Changes in
Building Counts in Western Oregon

Table 5-1. Descriptions of Explanatory Variables Tes\téﬂin the Empirical Model

Variable Description

. . Negative binomial
GRAVITY INDEX Equal to the average of the gravity index computed (using ,

: e . . Negative binomial regression regression with
Equatlm'l 5t2) at the beginning of each time per‘wd and Coefficient Marginal effect random effects
the gravity index computed at the end of each time period :
(times 1/100,000). City populations for noncensus years —0.308 (—13.66) —0.410 —0.045 (~2.36)

estimated by interpolating between populations reported

@

for census years (U.S. Bureau of Census 1992). . 0.048 (12.48) 0.064 0.009(3.52)
BUILDING COUNT  Number of buildings within an 80-acre circle surrounding UILDING COUNT 24.999 (46.63) 33312 16971 (63.22)

photo-point (Azuma et al. 2002) at the beginning of eac - BUILDING COUNT? —26.572 (~45.88)  —35.408 —26.720 (-59.28)

time period (times 1/100). ‘ —7.530 (—=30.59)  —10.034 -5.851 (—20.28)
SLOPE Percent slope at the sample point (times 1/100). —2.127 (~28.43) 2835 1714 (—20.44)
ELEVATION Elevation in meters. 1.076 (7.13) 1.433 0.716 (5.22)
URBAN GROWTH  Variable equals 1 if plot is located in an urban-growth

BOUNDARY bou{ndary or rural residential land use zone; 0 otherwise. ARM ZONE 0.162 (1.09) 0.215 0.547 (3.97)
FARM ZONE Variable equals 1 if plot is located in a farm zone; 0 otherwise, OREST ZONE 0,363 (—2.39) 0.484 0.062 (0.43)
FOREST ZONE Variable equals 1 if plot is located in a forest zone; 0 otherw 4 ~1.088 (—8.09) —1.450 ~1.168 (~9.70)
Vbl cquls 1 bt dsribetdin dety o e
— — 0.884 (23.67)

This equation is given as mary statistics.  Poisson log-L = —37,214 Log-L = 24,357

x%=39,597, =9, P < 0.0001
Negative binomial log-L = 24,647
X% = 25,134, df = 1, P < 0.0001°

ABUILDINGS = f(GRAVITY INDEX, BUILDING COUNT, SLOPE,
ELEVATION,URBAN-GROWTH, BOUNDARY,
FARM ZONE, FOREST ZONE, 1994). (5-3)

otes: N = 44, 928. The ¢-statistics for each estimated coefficient are in parentheses.

" L. .. o . .o Tested against the null of the Poisson model.
T'he modelis highly significant, based on log-likelihood ratio tests of the Poisson

model (x* = 39,597, df = 9,p < 0.0001) and negative binomial model tested
against the null of the Poisson (x” = 25, 134, df =1, p-< 0.0001). Random
effects model coefficients are reasonably consistent with negative binomial
coefficients, although the statistical significance of the beta coefficient in the
random effects regression suggests that statistically significant random effects
may be present.

Estimated coefficients for the linear and quadratic GRAVITY INDEX va
ables are statistically significant (P<0.01) and together suggest that, over time,
building counts rise at an increasing rate with greater proximity to cities within
commuting distance and higher population sizes of those cities (Table 5-2). Es-
timated coefficients for the linear and quadratic BUILDING-COUNT variables
are statistically significant (P<0.01) and together suggest that existing build-
ing numbers have a positive but diminishing impact on future building-count
increases. Estimated coefficients for SLOPE and ELEVATION are negative and

 statistically significant (P<0.01), suggesting that slope and elevation have a neg-
tive impact on building-count changes. Relative to FARM ZONE and FOREST
. ZONE, estimated coefficients for URBAN-GROWTH BOUNDARY are posi-
tive and statistically significant (P<0.01), suggesting that Oregon’s Land Use
Planning Program has tended to concentrate new building construction within
_ urban-growth boundaries since it mandated the adoption of statewide zoning.

Model Validation

n multidisciplinary research, an important part of empirical modeling is val-
dating models by examining the potential accuracy of projected values. We
valuated the forecasting performance of previous versions of the negative bi-
nomial land use model by looking at the percentage of correct projections
‘within the sample, estimating auxiliary models after reserving validation data
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e5-3. Percentage of Within-Sample Correct Base Model Projections of Ending
ilding Counts and Ending Broad Building-Count Class

sets; and examining several inforlnatioﬁ\hadices suggested by Hauser (19
and Wear and Bolstad (1998). We briefly describe only the first of these here
details regarding the other validation procedures can be found in Kline et al.

Percent correctly

(2003). Their general results, however, were that estimated coefficients of ﬁve Percent of class projected within
auxiliary models, each estimated by excluding 20 percent of the sample, wet Percent in class correctly projected one building
consistent in sign, magnitude, and statistical significance with those of th ding building count®
main model estimated using the full sample, and also fell within the 95 percenl 68.7 100.0 100.0
confidence bounds of the main model coefficients; and that information in 8.9 80.0 100.0
dices suggested that the empirical models were both statistically 51gn1ﬁcantan 5.5 63.0 88.9
accurate, but that the models were better at predicting coarser (less precise 39 48.2 82.2
rather than finer (more precise) ending building-density classes. 2.6 40.2 7‘3~4

Regarding the percentage of correct projections within-sample, we use ig ;; ; 26"’2
the estimated negative binomial model coefficients (Table 5-2) to compu 10 202 524
projected changes in building counts, which were added to initial buildin 0.9 193 48.8
counts to compute within-sample projections of ending building counts f 5.2 81.8 86.4
each observation (N = 44, 928). Projected changes in building counts we g broad building-count class
estimated by using the empirical model to compute the expected value of y; 9‘;?; 99.6 99.8

;. . 82.8 86.4

Ely] = 2 =44,928

(Greene 1995, 551). We compared projected to actual ending building cot ding count within an 80-acre circle surrounding sample photo-point.
to compute the percentage of correct projections. This percentage decreases: ‘
ending building counts increase, from a high of 100.0 percent for observatio;
having an ending building count of zero to a low of 19.3 percent for observ
tions having an ending building count of eight (Table 5-3). The percentage
correct projections within one building is higher, ranging from 100.0 perce
for observations having an ending building count of zero or one to alow of 48
percent for those with an ending building count of eight. Greater accuracy
the lower range of ending building counts likely is due in part to the relative
large proportion of observations with relatively low building counts.

The purpose of the model in the Coastal Landscape Analysis and Modelir
Study is to locate forestland with building densities of greater than 64 buildin;
per square mile—the point at which timber management and production
assumed to end in the study’s timber production models. This threshold
consistent with an average forest parcel size of 10 acres per building (hous
which is the minimum forest parcel size eligible for preferential assessme
as forestland for property tax purposes in Oregon (Oregon Departme
Revenue 1998). Based on an average household size of 2.45 persons (Azu
et al. 2002), the 64-buildings-per-square-mile threshold also is equivalent to
157 people per square mile, which is relatively consistent with the populati
density found by Wear et al. (1999) to be the point at which commercial timbi
production ends on private forestlands. Using the 80-acre basis of our buildin;
count data, the 64-buildings-per-square-mile density threshold is equivalent
to 8 buildings per 80 acres. The percentage of correct projections falling above

below the threshold is relatively high—99.6 percent for the <8 class and
2.8 percent for the >8 class—suggesting that the model is probably adequate
it the immediate purposes for which it is used.

tegrating Land Use Projections with Timber Production
d Ecology Models

e estimated negative binomial coefficients (Table 5-2) are combined with
rojected gravity index values to compute increases in building counts on forest
d agricultural land in western Oregon, given existing land use zoning. Exist-
gand projected 80-acre building counts are converted to building densities
er square mile. Projected city populations are based on county population
rojections for western Oregon through 2040 (Office of Economic Analysis
997) and on extrapolation for 2040 to 2054. Building-density projections
used to create GIS maps of future low-density and urban development of
restlands that are inputs to timber production and habitat viability models
Kline et al. 2003).

Forestlands were delineated from agricultural lands using a vegetation map
1995 forest and nonforest cover, and these delineations remain constant
oughout the modeling time horizon. A base-year map of building densities
was developed from the 1994 building-count data by interpolating between
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photo-point building-count values and convé\ft;ng these to densities per squa
mile. Projected changes in building densities at each 10-year modeling interval
were added to the beginning building-density map for that interval to obtainthe
ending building-density map. For example, projected changes between 1994
and 2004 were added to 1994 building densities to obtain a 2004 building-
density map. These maps delineate the forestland area available for timber
production and wildlife habitat at each 10-year modeling interval according

Table 5-4. Projected Low-Density and Urban Development on Nonfederal Forested and
Agricultural Land in Western Oregon, 19942054

Building-density class”
Undeveloped Low-density Urban Total undeveloped
Land cover (<64) (65 to 640)" (>640) and low-density"

Existing in 1994°

low-density and urban building-density thresholds (Spies et al. 2002). 7,138,080 61,920 — 7,220&009

Timber production is assumed to end on forestlands attaining a low-densi 1)328)22 lzgzgz - 1, 3‘;}388
et , . . . \ 35,573 — 775.

threshold of 64 buildings per square mile, the point at which standing trees ar. 9,683,720 234,280 — 9,918,000

assumed to be no longer available for harvest for the remainder of the modeling. . '
time horizon. Wildlife habitat is assumed to end on forestlands attaining rojected in 2024

urban threshold of 640 buildings per square mile, which most likely could 7,058,880 103,680 37,440 7,162,560
achieved only on lands zoned within urban-growth boundaries. Additionaﬂy; 1,561,006 268,328 113,666 1,829,334
once low-density and urban lands are delineated, quarter-acre open vegetation 681,380 70,215 23,405 751,595
patches (building footprints) are created for each projected new building. T 9,301,266 442,223 174,511 9,743,489

building footprints are intended to represent the indirect impact of buildings ojected in 2054
on timber production and wildlife habitat in terms of their direct impacts on

- ; . . 6,952,320 141,840 105,840 7,094,160
vegetative cover. The quarter-acre footprints are consistent with the avera, 1,134,906 457,965 350,129 1,592,871
vegetation patch sizes found among a sampling of buildings in the study area. 600,315 105,400 69,285 705,715
The footprints also are roughly equivalent in size to the basic spatial simulation 8,687,541 705,205 525,254 9,392,746

unit used in Coastal Landscape Analysis and Modeling Study timber production
models. The specific locations of building footprints are selected randomly
according to estimated building densities for each unit.

*Buildings per square mile computed from projected building counts.

}Coastal Landscape Analysis and Modeling Study assumptions allow only forestland in the un-
eveloped class to contribute to timber production, while forestland in both the undeveloped
d low-density classes contributes to wildlife habitat. Agricultural land was included in land use
odeling but is not included in the other study analyses.

eported in Azuma et al. (2002).

Projected Low-Density and Urban Development

As shown in Table 5-4, land use data for 1994 indicate that western Oreg
comprised about 9.9 million acres of nonfederal forest (7.2 million, 73 percen
agricultural (1.9 million, 19 percent), and mixed forest—agricultural land (0.8
million, 8 percent). Building-density data indicate that 61,920 acres (0.9 per-
cent) of forestland, 136,787 acres (7.0 percent) of agricultural land, and 35,573
acres (4.6 percent) of mixed forest—agricultural land fell in the low-density
class (64 to 640 buildings per square mile). Land exceeding the urban thre:
old (> 640 buildings per square mile) is assumed to have converted from fores
and agricultural uses to predominantly urban uses. Building-density projec-
tions suggest that by 2024, 37,440 acres (0.5 percent) of forestland, 113,666
acres (5.8 percent) of agricultural land, and 23,405 acres (3.0 percent) of mixed
forest-agricultural land that existed in 1994 will have been converted to urban
uses. Also by 2024, 103,680 acres (1.4 percent) of remaining forestland, 268,32
acres (14.7 percent) of agricultural land, and 70,215 acres (9.3 percent) of mixe
forest—agricultural land will fall in the low-density class. By 2054, 105,840 acre
(1.5 percent) of forestland, 350,129 acres (18.0 percent) of agricultural land

and 69,285 acres (8.9 percent) of mixed forest—agricultural land that existed in
1994 will have been converted to urban uses. Also by 2054, 141,840 acres (2.0
percent) of remaining forestland, 457,965 acres (28.8 percent) of agricultural
land, and 105,400 acres (14.9 percent) of mixed forest-agricultural land will
fallin the low-density class.

Along with forest and agricultural land lost to urban uses, building-density
projections suggest that greater numbers of people will be living in closer prox-
imity to remaining forestlands in the future. The projected building densities
are based on population values that are outside the range of data used to es-
timate the empirical model. To evaluate how reasonable the building density
projections are, we compared per capita increases in low-density and urban
development indicated by our spatial projections with per capita development
rates indicated by 1997 National Resources Inventory data for Oregon (NRCS
1999). Our projections suggest that low-density and urban development will
increase an average of 0.44 acre per new resident from 1994 to 2054. This rate
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is quite close to the average 0.46-acre incff\:a%e in “developed land” per new
resident in Oregon from 1982 to 1997, and below the national average of 0
acre per new resident, based on National Resources Inventory data.

en coincide with forestland conversion. Other potentially influential fac-
ors might include a landowner’s age, education, and income level; how much
orestland he or she owns; and the overall management objectives (Kline et al.
000). Obtaining linked data describing both land and landowners often is not
ssible, however, because of concerns about protecting the privacy of survey
pondents. In this application, land use information is treated as an exoge-
us input into timber production models. Greater integration of land use
and timber production analyses would allow for land use change and forest
production decisions to be modeled as the endogenous decisions they often are.
~ Developing spatial land use models calls for new types of data and relatively
new empirical techniques to address econometric issues presented by spatial
data. Integrating spatial land use information into multidisciplinary research
necessarily involves identifying relevant research issues and specific informa-
tion needs of cooperating analysts, obtaining conceptually relevant spatial data
with which to estimate empirical models, and adapting existing spatial econo-
metric methods to suit the particular modeling objectives and data at hand.
Given the wide variety of potential multidisciplinary research topics, a lack
of regular and consistent spatial data sources, and an absence of universally
accepted protocols regarding spatial land use analysis, no universal approach
s likely to emerge for some time. Analysts will need to consider conceptual
and empirical trade-offs associated with different types of data and modeling
methods as they determine how best to meet their research objectives in a
cost-effective manner.

Conclusions

The building-count model and resulting building-density projections are o
example of how useful, conceptually rigorous land use information can b
provided in multidisciplinary settings when data are imperfect. In the absence
of spatial economic data describing land rents, we used information about
city populations and locations to proxy potential rents earned from land in
developed uses. Combined with data describing topographic features and lan
use zoning, the empirical model describes potential future land developmentin
terms of numbers and locations of new buildings. Model validation procedures
suggest that the likelihood of correctly projecting future building densitie
improves with the increasing coarseness of building-density classes desired
The model is better at projecting close to actual future building density classes
than it is at projecting exact ones. The validation illustrates the trade-off
inherent in choosing between precision and accuracy when building-densi
classes, or any land use classes, are projected using spatial models.

This particular modeling approach was made possible by obtainin,
building-count data, which are unavailable from national land inventories an
other common data sources and are relatively expensive to collect indep
dently. Where such data are available, however, they can enable analyses t
more closely match the needs of ecologists and others seeking to forecast nat
ural resource productivity. Here, the data enabled empirical modeling of n
buildings, which provides more information relevant to timber productionan
ecological analyses than do discrete land use classes, The model enables analys
to account for ranges of human occupation of forestland that are relevant s
timber production and wildlife habitat. Unconstrained by discrete forest an
urban delineations, the model provides land use information that potentlall
can be applied to a broader range of research issues.

Spatial land use models often suffer from a weak link between their con
ceptual framework and empirical application because of poor availability o
data with which to construct conceptually appropriate explanatory variab
In this case, better information regarding potential forestry rents would enabl
more accurate accounting of the opportunity costs of forestland development
Related to this is the need to consider heterogeneity across forest stands whe
describing landowners’ decisions to convert forestland to developed uses. An
ideal data set would include information describing both land and landowner.
In this particular application, such factors as species, age class, and standin
volume likely are important in landowners’ timber harvest decisions, whic
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