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Abstract 

Biogeochemical models offer an important means of understanding carbon dynamics, but the computa- 
tional complexity of many models means that modeling all grid cells on a large landscape is computa- 
tionally burdensome. Because most biogeochemical models ignore adjacency effects between cells, however, 
a more efficient approach is possible. Recognizing that spatial variation in model outputs is solely a 
function of spatial variation in input driver variables such as climate, we developed a method to sample the 
model outputs in input variable space rather than geographic space, and to then use simple interpolation in 
input variable space to estimate values for the remainder of the landscape. We tested the method in a 
100 km x260 km area of western Oregon, U.S.A. , comparing interpolated maps of net primary production 
(NPP) and net ecosystem production (NEP) with maps from an exhaustive, wall-to-wall run of the model. 
The interpolation method can match spatial patterns of model behavior well (correlations > 0.8) using 
samples of only 5 t o 15% of the landscape. Compression of temporal variation in input drivers is a key step 
in the process, with cl~oice of input variables for compression largely determining the upper bounds on the 
degree of match between interpolated and original maps. The method is applicable to any model that 
does not consider adjacency effects, and could free up computational expense for a variety of other 
computational burdens, including spatial sensitivity analyses, alternative scenario testing, or finer grain-size 
mapping. 

Introduction 

A key challenge to carbon cycle science is char- 
acterizing current and future carbon dynamics 
over large spatial domains. Biogeochemical mod- 
els offer one means of carbon modeling, and have 
been applied for this purpose at regional to con- 
tinental scales (Aber and Federer 1992; VEMAP 
Members 1995; Thornton 1998). 

In a standard approach to spatial modeling, the 
biogeochemical model is run separately at a large 
number of contiguous grid cells on the landscape 
(e.g. VEMAP Members 1995; Ollinger et al. 1998; 
Law et al. 2004). Each cell contains the necessary 
driving variables (climate, soils, etc.) to run the 
model. For many biogeochemical models, com- 
putational burden at each cell can be great 
(Thornton 1998; Law et al. 2004), reducing the 



number of model runs possible over large areas. 
To explore fine grain effects over large areas, to 
characterize model sensitivity, or to investigate 
alternative climate change scenarios, more efficient 
approaches to spatial extrapolation are desirable. 

One approach is to reduce the computational 
burden of the model by constructing a simplified 
metamodel (Friedman 1996; Urban et al. 1999) 
that reproduces the bulk properties of a detailed 
model over a defined range of input (driver) vari- 
ables (e.g. WiIliams et al. 1997, 2001; Urban et al. 
1999; Acevedo et al. 2001; Alexandrov et al. 2002; 
Garman 2004). The structure of the metamodel is 
developed through hypothesis building and expert 
understanding of the detailed model (Williams 
et al. 1997; Garman 2004), and then parameterized 
by running the detailed model across the full range 
of input variables. Because of its lower computa- 
tional burden, this simplified model can be applied 
to larger landscapes more readily than its more 
detailed counterpart. Although an elegant and 
powerful approach, development of the structure 
for the metamodel can be challenging, especially 
when multiple feedbacks in the detailed model 
prevent easy hypothesis building. 

A simpler strategy for spatial extrapolation of 
a computationally burdensome model is to use 
lookup tables. Here, the n-dimensionaI input 
variable space observed on a given landscape is 
partitioned into discrete regions, the model is run 
only once in each input variable region, and the 
model outputs are assigned to the landscape 
according to the region of input space into which 
each point on the landscape falls (Band et al. 1991; 
Burke et al. 1991; Franklin 2001). Although con- 
ceptually appealing, this strategy relies on an a 
priori stratification whose definition may be arbi- 
trary and whose discrete outputs may not be 
appropriate for some applications. 

Nevertheless, the lookup-table approach 
emphasizes that most biogeochemical model out- 
puts are entirely a function of the input variables 
controlling them, not a function of neighboring 
conditions (e.g. Aber and Federer 1992; Running 
and Hunt 1993; VEMAP Members 1995; Ollinger 
et al. 1998; Thornton 1998; Coops and Waring 
2001). For any combination of input variables, the 
model output will be the same regardless where on 
the landscape it falls. Thus, the models are not 
truly spatial (Peters et al. 2004). Rather, spatial 
variation in the model outputs simply reflects the 

underlying geographic variability in input 
variables. 

In the lookup-table approach, those input 
variables are stratified into discrete regions, but we 
envision an extension to the continuous-variable 
case (Figure 1). Rather than the standard 
approach of running the model in every cell on the 
landscape (Figure 1, black arrow), model outputs 
can be determined at a sample of points in the 
multidimensional space of the input variables, 
interpolated to the remaining cells in the input 
variable space, and mapped back into geographic 
space (Figure 1, open arrows). We refer to the 
standard path as "wall-to-wall" modeling and to 
the alternative path as "input-space interpolation" 
modeling. 

For biogeochemical models, a challenge is 
appropriately representing input-variable space. 
Climate variables that drive daily time-step mod- 
els, for example, may include hundreds or thou- 
sands of dimensions of information (Thornton 
1998). Fortunately, it is only the spatial variation 
in the temporal variables that matters. A consid- 
eration of the simplest case is instructive: If all of 
the cells on a landscape had identical temporal 
patterns of climate, then a map of model outputs 
for the entire landscape could be constructed by 
replicating the output from single model run 
across every cell. This is true even if that single run 
were extremely complicated to implement. While 
most landscapes show more spatial variation in the 
input drivers than this simplest case, spatial auto- 
correlation in climate and soil properties often 
results in spatial variation orders of magnitude 
lower than the temporal variation. Our method 
capitalizes on this fact to develop a com- 
pressed representation of spatial variation in input 
variables, and then applies the input-space 
interpolation approach to mimick spatial patterns 
in modeled output. 

Methods 

Wall- to-wall modeling 

We tested our conceptual approach using the 
biogeochemical model BGC 4.1.1. (Thornton 
1998; Thornton et al. 2002). BGC is constructed as 
a series of modules representing the major func- 
tions of an ecosystem, including photosynthesis, 
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Figure 1. Two approaches for spatial modeling with ecosystem models that do not have cell to cell interactions. In "wall-to-wall" 
modeling (dark arrow), the model is run separately for every cell in the geographic study area. This approach is relatively inefficient, 
since many cells may have similar driving variables (climate, soils, etc.). The proposed alternative approach moves modeling out of 
geographic space into the space of the driver variables (the "input space"). Modeling is done only at a sample of grid cells, with the rest 
of the points being estimated by interpolation in input-space and re-projection into geographic space. 

respiration, decomposition, and transpiration in 
plants, as well as transpiration and runoff of water. 
The model requires daily meteorological data, here 
derived from DAYMET (Thornton et al. 1997; 
Thornton et al. 2000) at a grain size of 1 km, 
which defines the grain size for BGC modeling. 
Climate data at each grid cell are derived from 
actual weather station observations, interpolated 
using a terrain model, and thus spatial patterns of 
climate data reflect both simple elevation effects as 
well as the long-term patterns of weather systems 
and air masses. At the time of ths  work, each 
1 krn cell had 18 years of daily meteorological 
data (365 daysx 18 years for a total of 6570 input 
layers per meteorological variable). Soil depth and 
type were from a dataset described in Kern et al. 
(1997). The model is designed to run for an ide- 
alized vegetation type for several thousand years 
until several carbon and nitrogen pools reach 

approximate steady state. A vegetation type is 
defined by a suite of parameters that describe the 
type's ecosystem-, canopy-, organism-, and leaf- 
level attributes. In this study, the parameter set for 
evergreen needleleaf conditions supplied with the 
model code was adjusted slightly to better repre- 
sent Douglas-fir (Pseudotsuga mensziesii). The 
model was run for a 100 kmx260 km study area 
in western Oregon (U.S.A.). Modeling was limited 
to 18,395 cells where a landcover map of the area 
(Law et al. 2004) suggested Douglas-fir was likely 
to occur (Figure 2). After spinup equilibrium was 
reached in each cell, we followed the approach of 
Law et al. (2004) in applying two post-spinup 
disturbances, and finally the model was allowed to 
run for 200 years. 

The two variables tracked for this study were 
net primary production (NPP) and net ecosys- 
tem production (NEP), both recorded in units of 



Figure 2. The study area, (a) defined as all of the cells within a 100 km x 260 km area of western Oregon's Cascade Mountains that are 
likely to support Douglas-fir forests. Shown are (b) average yearly precipitation (cm), (c) temperature (degrees C), and (d) vapor 
pressure deficit (Pa), as well as (e) estimated soil depth (crn). See Table 1 for sources of spatial data. 

kg c/m2 yr. NPP is defined as total autotrophic 
carbon fixation, minus respiration losses due to 
maintenance and growth within the plant. NEP is 
the total system balance of carbon, here defined as 
NPP minus heterotrophic respiration and losses to 
fire. NEP and NPP vary significantly over the 200- 
year model run. Directly after disturbance, NEP is 
initially negative (carbon flowing out of the ter- 
restrial system) because of decomposition of 
residual biomass, and then it slowly becomes po- 
sitive as NPP, which has quickly returned to po- 
sitive flux (into the terrestrial system), accumulates 
and as material from the prior stand available for 
decomposition diminishes (see Law et al. (2004), 
Figure 8 for more detail of typical model output in 
this ecosystem). Because of the cyclic repetition of 
the DAYMET data, an appropriate temporal 
grain for analysis of these temporal trends is 
18 years. Therefore, all NPP and NEP data were 
aggregated into non-overlapping 18-year bins, re- 
ferred to as age classes, using simple averaging. 

This wall-to-wall modeling represents the 
"truth" set. While the model itself does not truly 
describe the system, the wall-to-wall modeling is a 

faithful representation of the behavior of the model 
in every 1 km cell across the study area. The goal of 
the input-space interpolation modeling approach is 
to efficiently match the behavior of the model over 
space. 

Input-space interpolat ion modeling 

Because the model ignores adjacency effects 
among cells, spatial patterns of modeled NPP and 
NEP are determined solely by spatial patterns in 
meteorological and soils data (Figure 2). As noted 
above, the high dimensionality of the climate data 
in a given cell is irrelevant for spatial mapping. 
The first step in input-space interpolation, then, is 
to develop a simplified representation of spatial 
variation in input variables. This was achieved 
through several compression steps. First, the 
yearly mean or total (as appropriate for each 
variable) was calculated for each meteorological 
variable listed in Table 1 for each of the 18 years 
of record. For precipitation only, spring and 
summer averages were considered separately to 
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Table I .  Summaries of spatially-distributed input variables for the study area shown in Figure 2. 

Variable Description Units Minimuma Maximuma Mediana Source 

Pr 
PrS p 
PrSu 
T 
Tmn 
Sw 
VPD 
SDpth 

Average total precipitation (Jan. I to Dec. 31) 
Average spring precipitation (April 1 to June 30) 
Average summer precipitation (July 1 to Sep. 30) 
Average daily temperature 
Average daily minimum temperature 
Average daily shortwave radiation flux 
Average daily vapor-pressure deficit 
Soil depth 

DAY MET^ 
DAY MET^ 
DAY MET^ 
DAY MET^ 
DAY MET^ 
DAY MET^ 
DAY MET^ 
Kern et al. 1997 

aMinimum, maximum, and median values are for the population of grid cells in the study area; see Figure 2. 
b~~~~~~ citations: (Thornton et al. 1997; Thornton et al. 2000). 

reflect the dominant seasonal climate of the region 
(Waring and Franklin 1979). This temporal 
aggregation was carried out for each cell on the 
landscape separately. 

Next, variation across cells was characterized 
using principal-component analysis (PCA). PCA is 
a tool that compresses an n-dimensional space into 
a reduced set of transformed, orthogonal axes that 
more efficiently capture the bulk of the variation in 
the original space (Jongman et al. 1995). The more 
highly correlated the dimensions of the original 
space, the greater the compression. Before PCA 
was applied, all meteorological data were con- 
firmed to be normally distributed, and then were 
standardized to across-year mean and unit stan- 
dard deviation. This preserved interannual varia- 
tion within a meteorological variable while 
providing equal weighting across meteorological 
variables with different units of measurement. In 
PCA, each cell was assigned principal component 
scores that described the cell's position along new 
axes through the multivariate meteorological data 
space. Because a first principal component axis 
captures the greatest variance in a dataset, the map 
of first principal component axis scores (PC Image 
#1) represented the dominant spatial pattern in the 
18-year record of each meteorological variable, 
with successively higher-order PC images repre- 
senting diminishing sources of spatial variation. 
Soil depth was standardized to unit standard 
deviation and used as a single-layer spatial input 
variable. (Note: Soil texture was not considered 
here because its spatial patterns were identical to 
those of soil depth, but with much less variability in 
range). The PC images and single soil depth image 
will be referred to collectively as "spatial input 
variables." 

Taken together, these spatial input variables 
define the input variable space of the model, and 
define the bounds of the response surface of the 
model as applied to the particular landscape' of 
study. However, spatial variation in the different 
meteorological indices is highly correlated across 
indices. If all meteorological indices were perfectly 
correlated, for example, then any one of them 
could be used alone to define the meaningful spa- 
tial variation of model outputs. Parsimony argues 
for use of a combination of spatial input variables 
that most efficiently captures spatial pattern in 
model output. Twelve combinations of spatial in- 
put variable were tested, with combinations chosen 
to be illustrative of expected meteorological and 
edaphic controls on the model (Table 2). For each 
combination, two cases were considered: one using 
only the first PC image (the dominant spatial 
pattern) of each spatial input variable, and one 
using both the first and second PC images of each 

Table 2. Summary of spatial input variable combinations kes- 
ted for input-space interpolation. 

Input Variables" 

Pr+Sw+T 
Pr+T+Tmn 
Pr+T+VPD 
PrSu + PrSp + Sw + T 
PrSu + PrSp + T + Tmn 
PrSu + PrSp + T + VPD 
SDpth + Pr + T 
SDpth + PrSu+ PrSp + T 
SDpth + PrSu + PrSp + Sw + T 
SDpth + PrSu + PrSp + T+ Tmn 
SDpth + PrSu+ PrSp + T +  VPD 
SDpth tPr  +T+Tmn+VPD 

"Variables defined in Table 1 



spatial input variable (except for soil depth, which 
has only one layer). This resulted in a total of 24 
combinations in spatial input variables, the sim- 
plest having 3 dimensions (the first PC image from 
three spatial input variables) and the most com- 
plex having 9 dimensions (two PC images from 
four spatial input variables, plus standardized soil 
depth). A final PCA was then applied to each of 
these combinations, and the first three axes of this 
final PCA used to describe the spatial variation in 
the spatial input variables. 

Although a variety of space-filling approaches 
to response-surface sampling are available (Box 
and Draper 1987; Myers and Montgomery 2002), 
a simple regular grid was chosen here. A lattice 
was constructed through the three-dimensional 
space in each of the 24 cases, with equal spacing 
between lattice intersections. The actual grid cells 
closest (using Euclidean distance) to lattice inter- 
sections were used as sample cells; lattice inter- 
sections greater than one cubic hypotenuse length 

- from an actual cell were dropped. At each sampled 
cell, the model value from the wall-to-wall ap- 
proach was extracted. (In an actual implementa- 
tion of the approach, no such wall-to-wall output 
would be available, and the model would be run in 
each sample cell.) 

Non-sampled cells were estimated by interpola- 
tion in input variable space. For each cell, the NEP 
or NPP value was estimated by linear inverse-dis- 
tance weighted averaging of the nearest 8 sampled 
lattice-intersection cells (in three-dimensional in- 
put variable space). Once NEP or NPP values were 
assigned in input-variable space, the cells were 
mapped back into geographic space to produce a 
map of estimated model outputs. If the lattice of 
sample points was sparse, interpolation distance 
would be large and the smoothing properties of 
interpolation exacerbated. To investigate this ef- 
fect, tests were repeated at five grid densities, 
ranging from < 1% to 15% of the landscape for 
NEP outputs only. 

Comparisons 

Modeled outputs from the input-space interpola- 
tion approach were compared on a cell-by-cell 
basis with all cells in the truth datasets derived 
using the wall-to-wall approach. Two metrics of 
comparison were calculated across all cells for 

each of the 11 age classes and each of the five grid 
densities: a simple correlation and the square root 
of mean-square error (RMSE). These two metrics 
were also calculated for a randomly-selected subset 
of validation cells, and compared to the metrics 
derived from the wall-to-wall values to provide an 
estimate of the proportion of independent cells 
needed to faithfully capture error in the interpo- 
lation method. Tested validation cell proportions 
ranged from 0.5% to 10% of the landscape. 

Multiple regression in input variable space was 
investigated as a possible alternative to interpola- 
tion. Sampling of the input variable space was 
identical to that used for interpolation. A multiple 
linear regression of NEP or NPP values from all 
sampled points on the three axes of the input space 
was conducted. The resultant model was then ap- 
plied to the non-sampled points to produce esti- 
mates of NEP or NPP in the input-variable space. 
As with interpolation, those estimated values were 
then projected into geographic space to produce a 
map of modeled outputs. 

Results 

Figure 3 shows a comparison of interpolated 
and wall-to-wail NEP maps for one age class 
at two lattice-point sampling densities using 
one combination of spatial input variables 
(SDpth + Pr + T + Tmn + VPD). It provides a 
visual reference for the results presented subse- 
quen tly . 

As expected, the interpolation method works 
better when more points are sampled for the 
interpolation. When only 0.4% of the cells are 
sampled in the input-variable space, the interpo- 
lation approach produces a map that captures only 
the approximate patterns of the wall-to-wall map 
(Figure 3a). The image to image histogram plot 
shows scatter about the 1: 1 line (Figure 3b). When 
the input-space lattice samples 12% of the cells, 
the maps match well visually (Figure 3c), and the 
image-to-image histogram plot shows strong 
attraction to the 1 :1 line with relatively little 
scatter. 

The two summary metrics capture these visual 
patterns. The correlation between the maps pro- 
vides a quantitative measure of the fit, and is 
independent from the units of NEP or NPP being 
estimated. As expected, the poorly-matched map 
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Figure 3. Comparing wall-to-wall NEP maps (left-hand maps) with input-space interpolation NEP maps (right-hand maps) for 
interpolation age ciass 73-90 years, for sampling proportions of (a) 0.004 and (c) 0.12. NEP unit.. are kg c/rn2~ear, with positive values 
representing uptake by the terrestrial system. Spatial input variables for were soil depth, yearly precipitation, average temperature, 
average minimum temperature, and average vapor pressure deficit. Plots (b) and (d) show two-dimensional histograms of the inter- 
polated map against the wall-to-wall map, and report the correlation and RMSE of the plots. Higher sampling intensity for inter- 
polation resulted in a better match. 

had a lower correlation than a well-fit map (com- 
pare Figure 3b and d). The RMSE provides a 
measure of the potential error in units of NEP or 
NPP, useful for interpreting the magnitude of the 
error directly. 

In the example from Figure 3, the match with 
the original wall-to-wall map was poorer when 
regression rather than interpolation was used 
(Figure 4a and b). This held true across nearly all 
NEP tests conducted for this study (Figure 4c). 
From here forward, results will be limited to maps 
built using interpolation. 

The correlation of maps reached an asymptotic 
value as the proportion of training cells increased. 
The level of this asymptote varied depending on 
the spatial input-variables used to build the input- 
variable space, and the age class being interpolated 
(Figure 5). For any given age class, the spatial 
input-variable combination with highest maximum 
correlation tended to reach its asymptote more 

quickly than those combinations with lower max- 
imum correlation. 

Maximum correlation varied across age classes 
for a given combination of spatial input variables, 
and different combinations showed different tem- 
poral trajectories (Figure 6). Three distinct groups 
of spatial input-variable combinations emerged 
(separated as Figure 6a, 6b, and 6c). Groups 1 and 
2 (Figure 6a and b) performed well or moderately 
well across age classes, but had opposing patterns 
with age. Group 3 performed poorly for older age 
classes (Figure 6c). Notable is the inclusion of soil 
depth as a spatial input variable in Groups 1 and 
2, and its omission from Group 3. 

NPP results were similar to NEP results. For 
brevity, only one example test from each of the 
Groups identified in Figure 6 is shown in Figure 7. 
The maximum correlations for NPP in Group 1 
were slightly lower than for the NEP maps, but 
were more consistent across age classes. Groups 2 
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and 3 were also more stable for NPP than for NEP 
maps, and generally had higher correlations than 
for NEP. 

A summary of the use of validation points is 
shown in Figure 8. Across all NEP tests, correla- 
tions of interpolated and wall-to-wall maps were 
well-characterized using a sample of validation 
points. Even at relatively low sampling density 
(3% of cells), the correlation as estimated by val- 
idation points strongly tracked the true correlation 
(Figure 8a). As the proportion of cells used for 
validation points increased, the match improved 
slightly (Figure 8b). A regression line anchored at 
zero had a slope near 1 (ideal) for all validation 

Ib' Proportion of Cells Used For proportions greater than 3 % . 

Regression: 0.12 
Correlation : 0.83, RMSE: 0.01 4 Discussion 

When a model lacks cell-to-cell interactions, its 
behavior across geographic space depends entirely 
on the spatial patterns of the variables that drive 
it. Insofar as the driver variables are redundant 
across space, wall-to-wall modeling of each cell is 
inefficient. Here, we described and tested the input- 
space interpolation approach to more efficiently 

0.25 0.30 0.35 extrapolate spatial patterns in the biogeochemical 
Wall-to-wall M P  model BGC (Thornton 1998). 

In essence, the input-space interpolation 
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Figure 4. Comparing maps derived using interpolation versus 
regression. (a) Wall-to-wall, interpolated, and regressed NEP 
maps for ages 73-90 years using a sampling proportion of 0.12. 
Input variables used to define the input space are the same as in 
Figure 3. (b) Two-dimensional histogram for the regressed map 
against the wall-to-wall map. Compare to the interpolated 
version in Figure 3d. (c) Plots of the correlations for regressed 
maps against correlations for interpolated maps for 1144 NEP 
maps spanning a range of input variable combinations and 
sampling proportions. 

approach develops a site- and input-variable- 
specific metamodel of the spatial behavior of 
BGC. This metamodel is not a simplified repre- 
sentation of the functional behavior of the model 
at a given point in space, and as such lacks the 
conceptual elegance of other metamodeling efforts 
(e-g. Williams et al. 1997; Urban et al. 1999, 
Garman 2004). Rather, it is a simplified repre- 
sentation of the spatial behavior of the model. The 
advantage of this approach is that the entire 
functional complexity of the underlying model is 
retained, and only the relatively simpler spatial 
variation is approximated. 

The input-space interpolation method appears 
to work well. By sampling only 10 to 15% of the 
cells in our study area, the approach captured the 
bulk of the patterns of modeled NEP and NPP 
values across space (Figure 3) and time (Figures 
6a, 6b, and 7). More importantly, the error of 
prediction of model output was generally quite 
small. Figure 9 shows mean RMSE by age class of 
NEP predictions for all of the runs in Groups 1 
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Figure 5. Examples of the correlation between wall-to-wall and interpolated maps of NEP for modeled stands at (a) 19-36 years, 
(b) 73-90 years, and (c) 163-1 80 years, for four different combinations of input-space drivers for interpolation. Definitions of input- 
space drivers are given in Table 1. The relative performance of different input variable combinations varied across age classes. 

and 2 (of Figure 6). Except for the youngest age 
class, mean error was just over 3%. Error in 
estimates was smaller using interpolation than 
regression, underscoring that local fitting in input 
variable space was more appropriate than a global 
fit. Note, however, that other forms of regression 
may work better than the linear approach used 
here, especially those that use local fits, non-linear 
structures, or arbitrarily complex variable combi- 
nations. While reducing error relative to the 
regression approach tested here, such complexity 
would appear unwarranted given the success of the 
simple interpolation approach. 

The compression of the input-variable space 
appears to set the upper bounds on the accuracy of 
the interpolated maps. Asymptotic levels of cor- 
relation were reached at fairly low sampling 
intensities (Figure 5), suggesting that further in- 
creases in sampling density or better input variable 
space sampling strategies would do little to im- 
prove correlation. Rather, correlation was only 
improved when a better set of spatial input vari- 
ables was used to describe the input variable space 
(Figures 6 and 7). It is critical to emphasize that 
correlation and accuracy of the maps refer only to 

how well the interpolation approach mimicks 
spatial patterns of modeled NEP and NPP values, 
not how well those maps represents actual NEP or 
NPP values in the natural world. 

The chief drawback of this approach is its sen- 
sitivity to the choice of spatial input-variables. 
Had only input-variable combinations from 
Group 3 been tested, the results would have been 
poor. Thus, a certain degree of testing of different 
variables is necessary, using an independent set of 
validation points for establishing error rates. An 
understanding of the mechanistic controls within 
the model should lead to judicious choice of input 
variables for interpolation. 

Interpreting relative importance of different 
spatial input variables sheds light on model 
behavior. The success of interpolation varied over 
the time course of model runs, suggesting that 
controls on spatial patterns of model outputs 
varied over time. Soil depth was a consistently 
important control on modeled carbon dynamics 
(both NEP and NPP), especially at older age 
classes. All of the input variables in Groups 1 and 
2 (the better-fitting Groups) included soil depth as 
an input variable, and the only difference between 



Figure 6. Maximum correlation between interpolated maps and wall-to-wall maps of NEP plotted against age class. Definitions of 
variables are given in Table 1:Numbers in parentheses are the number of PC layers from each meteorological variable used to build the 
input-variable space. (a) Group 1: Input variables that result in better fits at  older ages than younger ages. (b) Group 2: Input variables 
that result in better fits at young ages and moderate fits at old ages. (c) Group 3: Input variables that fit well at young ages but very 
poorly at  older ages. 

Figlire 7. As in Figure 6, but for NPP rather than NEP maps, 
and for only one representative combination of input variables 
from each of the three groups shown in Figure 6. 

some Group 1 and Group 2 combinations was the 
relative weight given to soil depth in the data 
compression steps (data not shown). Although not 

necessarily the case in natural systems, soil depth 
in BGC controls both the total water content that 
can be stored in the system and the levels of 
available nutrients that accumulate in the soil. 
Apparently, these controls have high leverage on 
overall model behavior, especially over long peri- 
ods. As a site constant, soil depth was not con- 
sidered in an extensive sensitivity anaiysis of BGC 
(White et al. 2000), which makes judging its rela- 
tive importance difficult. However, it is clear that a 
better understanding of the effects of soil depth on 
the behavior of the BGC model will be usefuI when 
the model is applied over regional or continental 
scales. 



Figure 8 .  Summaries of tests of validation points for estimating 
true map correlation. (a) Plot of validation point vs. true cor- 
relation for validation point proportion of 0.03. Each point 
represents one map comparison. (b) Slope and r? of linear 
regressions of the type shown in (a), for a range of validation 
point proportions. Reasonable estimates of correlation are 
achieved with only 3-5% of plots used as validation points. 
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Figure 9. Mean RMSE of interpolated NEP as a function of 
absolute value of true NEP, for all runs in Groups 1 and 2 of 
Figure 6 averaged by age class, with Iines indicating gradations 
of percent error. For most runs. error of interpolation was 
between 3 and 5% of the true value. The single exception was 
for age class 1 to 18 years, where RMSE of NEP was more than 
5% of the true NEP. 

Although it may aid in understanding model 
behavior, the input-space interpolation approach 
is primarily designed to improve modeling 

efficiency. A reasonable approximation of spatial 
behavior of the BGC model can be achieved using 
only a fraction of the points on the landscape. 
Indeed, although the highest-density runs were 
highlighted in Figures 6 and 7, the asymptotic 
behavior seen in Figure 5 is typical of the ap- 
proach, and suggests that only 5 to 10% of cells 
can be used to capture the bulk of the spatial 
behavior of the model. The time needed for the 
interpolation approach itself is minimal: on a 
2003-era PC computer, using the software package 
IDL (Research Systems Inc., Boulder CO), the 
input-space interpolation took only 5-50 min, a 
small addition to the much larger cost of running 
the model (12 computer days for the wall-to-wall 
run, for example). The order-of-magnitude savings 
in modeling effort can translate into greater 
exploration of model behavior and testing, easier 
development of spatial sensitivity analyses, 
broader testing of climate change scenarios, or 
modeling at finer grain sizes. The structure de- 
scribed here could be applied to any ecological 
model that does not consider cell-to-cell interac- 
tions, including other common biogeochernical 
models such as CENTURY (Parton et al. 1987), 
PnET (Aber and Federer 1992), and others (VE- 
MAP Members 1995). 

Conclusion 

We have described an approach to spatial model- 
ing that has the potential to improve modeling 
efficiency by nearly an order of magnitude, while 
retaining most of the spatial variation in model 
output. The approach is built on the recognition 
that variation in many biogeochemical models is 
solely a function of spatial variation in input 
drivers, and that modeling in input-variable space 
is more efficient than in geographic space. By 
reducing computational burden in spatial model- 
ing, the approach can allow more time for greater 
exploration of model behavior under different 
scenarios or conditions. 

Acknowledgments 

The first author was supported under a National 
Aeronautics and Space Administration Earth 
System Science fellowship. Significant aid in model 



set up was supported under by a grant from U.S. 
Environmental Protection Agency's Science to 
Achieve Results (STAR) Program (Grant # R- 
82830901-0). Although the research described in 
the study has been funded wholly or in part by the 
U.S. Environmental Protection Agency's STAR 
program, it has not been subjected to any EPA 
review and therefore does not necessarily reflect 
the views of the Agency, and no official endorse- 
ment should be inferred. 

References 

Aber J.D. and Federer C.A. 1992. A generalized, lumped- 
parameter model of photosynthesis, evapotranspiration and 
net primary production in temperate and boreal forest eco- 
systems. Oecologia 92: 463-474. 

Acevedo M.F., Pamarti S., Ablan M., Urban D. and Mikler A. 
2001. Modeling forest landscapes: parameter estimation from 
gap models over heterogeneous terrain. Simulation 77: 53-68. 

Alexandrov G.A., Oikawa T. and Yamagata Y. 2002. The 
scheme for globalization of a process-based model explaining 
gradations in terrestrial NPP and its application. Ecol. 
Model. 148: 293-306. 

Band L.E., Peterson D.L., Running S.W., Coughlan J., 
Lammers R., Dungan J. and Nemani R. 1991. Forest eco- 
system processes at the watershed scale: basis for distributed 
simulation. Ecol. Model. 56: 171-196. 

Box G.E.P. and Draper N.R. 1987. Empirical Model-Building 
and Response Surfaces. John Wiley & Sons, New York. 

Burke I.C., Kittel T.G.F., Lauenroth W.K., Snook P., Yonker 
C.M. and Parton W.J. 1991. Regional analysis of the central 
Great Plains. BioScience 41 : 685-692. 

Coops N.C. and Waring R.H. 2001. Estimating forest pro- 
ductivity in the eastern Siskiyou Mountains of southwestern 
Oregon us~ng a satellite driven process model, 3-PGS. Can. J. 
For. Res. 31: 143-154. 

Franklin S.E. 2001. Modeling forest net primary productivity 
with reduced uncertainty by remote sensing of cover type 
and leaf area index. In: Hunsaker C.T., Goodchild M.F., 
Fried1 M. and Case T. J. (eds), Spatial Uncertainty in Ecol- 
ogy: Implications for Remote Sensing and GIs  Applications. 
Springer-Verlag, New York, NY pp.402. 

Friedman L.W. 1996. The Simulation Metamodel. Kluwer 
Academic Publishers. Norwell, Massachusetts. 

Garman S.L. 2004. Design and evaluation of a forest landscape 
change model for western Oregon. Ecol. Model. 175: 3 19-337. 

Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R. 
1995. Data Analysis in Community and Landscape Ecology. 
Cambridge University Press, Cambridge. 

Kern J.S., Turner D.P. and Dodson R.F. 1997. Spatial patterns in 
soil organic carbon pool size in the northwestern United States. In: 
La1 R., Kimbai J.M., Foilett R. and Stewart B.A. (eds), Soil Pro- 
cesses and the Carbon Cycle. CRC Press, Boca Raton, pp. 29-43. 

Law B.E., Turner D.P., Lefsky M., CampbelI J., Guzy M., 
Sun O., Van Tuyl S. and Cohen W.B. 2004. Disturbance 

and climate effects on carbon stocks and fluxes across 
Western Oregon USA. GlobaI Change Biol. 10: 1429-1444. 

Myers R.H. and Montgomery D. 2002. Response Surface 
Methodology: Process and Product Optimization using De- 
signed Experiments. John Wiley & Sons, New York. 

Ollinger S.V., Aber J.D. and Federer C.A. 1998. Estimating 
regional forest productivity and water yield using an eco- 
system model linked to a GIs. Landscape Ecol. 13: 323-334. 

Parton W.J., Stewart J.W.B. and Cole C.V. 1987. Analysis of 
factors controlling soil organic matter levels in Great Plains 
grasslands. Soil Sci. Soc. Am. J. 51: 1173-1 179. 

Peters D.P., Herrick J.E., Urban D.L., Gardner R.H. and 
Breshears D.D. 2004. Strategies for ecological extrapolation. 
Oikos 106: 627-636. 

Running S.W. and Hunt E.R.J. 1993. Generalization of a forest 
ecosystem process model for other biomes, BIOME-BGC, 
and an application for global-scale models. In: Field C.B. and 
Ehleringer J.R. (eds), Scaling Ecophysiological Processes: 
Leaf to Globe. Academic Press, San Diego, pp. 388. 

Thornton P. 1998.Regional Ecosystem Simulation: Combining 
Surface- and Satellite-based Observations to Study Linkages 
between Terrestrial Energy and Mass Budgets. PhD Disser- 
tation, University of Montana. 

Thornton P., Hasenauer H. and White M.A. 2000. Simultaneous 
estimation of daily solar radiation and humidity from observed 
temperature and precipitation: an application over complex 
terrain in Austria. Agric. For. Meteorol. 104: 255-271. 

Thornton P., Running S.W. and White M.A. 1997. Generating 
surfaces of daily meteorological variables over large regions 
of complex terrain. J. Hydrol. 190: 214-251. 

Thornton P.E., Law B.E.. Gholz H.L., Clark K.L., Falge E., 
Ellsworth D.S., Goldstein A.H., Monson R.K., Hollinger D., 
Falk M., Chen J. and Sparks J.P. 2002. Modeling and mea- 
suring the effects of disturbance history and climate on car- 
bon and water budgets in evergreen needleleaf forests. Agric. 
For. Meteorol. 1 1 3: 1 85-222. 

Urban D., Acevedo M.F. and Garman S.L. 1999. Scaling fine- 
scale processes to large-scale patterns using models derived 
from models: meta-models. In: Mladenoff D. and Baker W. 
(eds), Spatial Modeling of Forest Landscape Change: Ap- 
proaches and Applications. Cambridge University Press, 
Cambridge, pp. 70-98. 

VEMAP Members 1995. Vegetation/ecosystem modeling and 
analysis project: Comparing biogeography and biogeochem- 
istry models in a continental-scale study of terrestrial eco- 
system responses to climate change and C02 doubling. 
Global BiogeoChern. Cycles 9: 407-437. 

Waring R.H. and Franklin J.F. 1979. Evergreen coniferous 
forests of the Pacific Northwest. Science 204: 1380-1386. 

White M.A., Thornton P.E., Running S.W. and Nemani 
R.R. 2000. Parameterization and sensitivity analysis of the 
BIOME-BGC terrestrial ecosystem model: net primary 
production controls. Earth Interact. 4-003. 

Williams M., Rastetter E.B., Fernandes D.N., Goulden M.L., 
Shaver G.R. and Johnson L.C. 1997. Predicting gross pri- 
mary productivity in terrestrial ecosystems. Ecol. Appl. 7: 
882-894. 

Williams M., Rastetter E.B., Shaver G.R., Hobbie J.E., 
Carplno E. and Kwiatkowski B.L. 2001. Primary production 
of an arctic watershed: an uncertainty analysis. Ecol. Appl. 
11: 1800-1816. 


