Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of
the new subclass Phallomycetidae and two new orders

Kentaro Hosaka
Department of Botany, The Field Museum, 1400 S.
Lake Shore Drive, Chicago, Illinois 60605-2496

Scott T. Bates
School of Life Sciences, Arizona State University, Tempe,
Arizona 85287-4501

Ross E. Beever
Landcare Research, Private Bag 92170, Auckland,
New Zealand

Michael A. Castellano
United States Department of Agriculture, Forest Service,
Pacific Northwest Research Station, Forestry Sciences
Laboratory, Corvallis, Oregon 97331

Wesley Colgan III
ADInstruments, 2205 Executive Circle, Colorado
Springs, Colorado 80906

Laura S. Domínguez
Eduardo R. Nouhra
Instituto Multidisciplinario de Biología Vegetal,
Universidad Nacional de Córdoba, Casilla de Correo
495, 5000, Córdoba, Argentina

József Gém
Institute of Arctic Biology, 311 Irving I Building, 902
N. Koyukuk Drive, University of Alaska at Fairbanks,
Fairbanks, Alaska 99775-7000

Admir J. Giachini
SIBW do Brasil Agricultura Ltda., Rodovia SP 107,
Km 32, Holambra, SP 13825-000, Brazil

S. Ray Kenney
National Institutes of Health, 9000 Rockville Pike,
Bethesda, Maryland 20892

Nicholas B. Simpson
Ackert Hall 421, Division of Biology, Kansas State
University, Manhattan, Kansas 66506

Joseph W. Spatafora
Department of Botany & Plant Pathology, Oregon State
University, Corvallis, Oregon 97331

James M. Trappe
Department of Forest Science, Oregon State University,
Corvallis, Oregon 97331

Abstract: Molecular phylogenetic analyses for the
gomphoid-phalloid fungi were conducted based on
the five gene dataset with extensive taxon sampling.
The monophyly of the gomphoid-phalloid clade was
strongly supported, and four well supported major
subclades were recognized. Three of the four sub-
clades were represented entirely by gastroid taxa, and
only Gomphales contained both gastroid and nong-
stroid taxa. While the gastroid morphology is
derived from epigeistous, nongastroid taxa in Gom-
phales, the topology of Phallices indicated that
truffle-like form is an ancestral morphology of the
stinkhorn fruiting bodies. Although basidiosome
maturation occurs within the enclosed fruiting bodies
of the stinkhorn, the elevation of the mature spore-
producing tissue represents an independent origin of
the stipe among Basidiomycota. Comparisons are
made between previous and new classification
schemes, which are based on the results of phyloge-
etic analyses. Based on the results of these analyses,
a new subclass Phallomycetidae, and two new orders,
Hysterangiales and Geastrales, are proposed.

Key words: atp6, EF-1α, homobasidiomycetes,
rDNA, RP52, systematics

INTRODUCTION

The gomphoid-phalloid clade comprises a group of
fungi that exhibits a considerable breadth of both
morphological and ecological diversity. The fruiting
body morphology includes earthstars (Fig. 1u), stink-
horns (Figs. 1f–i), cannonball fungi (Fig. 1w), coral
fungi (Fig. 1m), club fungi, gilled mushrooms, tooth
fungi, resupinate fungi (Fig. 1p) and false truffles
(Figs. 1a–c, j, k, o, v). Both ectomycorrhizal and
saprobic taxa are represented. Because of its diversity
traditional morphology-based taxonomy has classified
the fungi of the gomphoid-phalloid clade into several
distantly related orders, including Lycoperdales,
Phallices, Nidulariales and Gomphales (Zeller 1949,

Review of previous classifications.—The traditional
classifications (e.g. Zeller 1949, Donk 1964) differ
dramatically with the new classification scheme pro-
posed herein (SUPPLEMENTARY FIG. 1). Many members
of the gomphoid-phalloid clade can be broadly
classified as gastroid fungi (e.g. Hysterangium, Geas-
trum and Phallus). Gastroid fungi traditionally were
assigned to Gasteromycetes, which are now known to
be an artificial assemblage (Hibbett et al 1997). The
spores of these fungi develop and mature within an
enclosed spore-producing tissue or gleba; furthermore they lack a forcible spore discharge mechanism, termed statismosporic (Miller and Miller 1988). Nongastroid members of the gomphoid-phalloid clade (e.g. *Gomphus, Ramaria*) are found only within Gomphales. These fungi traditionally were classified in the family Gomphaceae within Aphyllophorales, along with distantly related taxa such as Cantharellaceae, Ganodermataceae and Polyporaceae (Donk 1964).

Phallales was described by Fischer (1898) to accommodate Phallaceae and Clathraceae. Cunningham (1931a, b) later added Claustulaceae. Hysterangiales initially was treated as a family of Hymenosphaerales, along with Hymenogastraceae, which is distantly related to the gomphoid-phalloid fungi (Peintner et al. 2001). Although this treatment has been widely used by subsequent authors (e.g. Cunningham 1944), some authors (e.g. Miller and Miller 1988) recognized the affinity of Hysterangiales to stinkhorns and included Hysterangiaceae in Phallales. Other authors (Zeller 1939, Jülich 1981) segregated Hysterangiales as an independent order from Phallales although they maintained the view that Hysterangiales is most closely related to Phallales. Three families, Hysterangiaceae, Protophallaceae and Gelopellaceae, were recognized in Hysterangiales (Zeller 1949, Jülich 1981). All members of this order are characterized by truffle-like (sequestate) fruiting bodies, most of which are produced below ground.

The members of Geastrales have been classified into two orders, Lycoperdales and Nidulariales (Zeller 1949), both of which have been demonstrated to be polyphyletic (Hibbett et al. 1997, Krüger et al. 2001). Within Lycoperdales (sensu Zeller 1949) the close relationship between Lycoperdaceae and Geastraceae was long assumed. Kreisel (1969), however, segregated Geastraceae from Lycoperdales and recognized an independent order, Geastrales. Molecular phylogenetic studies revealed that Lycoperdaceae is nested within the euagarics clade and is related only distantly to Geastraceae (Hibbett et al. 1997, Krüger et al. 2001). Nidulariales contains two families, Nidulariaceae and Sphaerobolaceae. Although this ordinal concept was accepted by many authors (Zeller 1949, Jülich 1981, Miller and Miller 1988) the monophyly of the order has been rejected because it has been demonstrated that members of Nidulariaceae are nested within the euagarics clade while Sphaerobolaceae is allied with Geastraceae (Hibbett et al. 1997).

Gautieria previously had been included in Hymenogastraceae, Hysterangiaceae (Cunningham 1944) and as an independent, monotypic order Gautieriales (Zeller 1948). Although its close relationship with Boletales also was suggested (Jülich 1981), molecular phylogenetic studies revealed that *Gautieria* is nested within Gomphales (Humpert et al. 2001). As mentioned above other members of Gomphales are nongastroid taxa, which previously were classified in Aphyllophorales (Donk 1964). Members of Gomphaceae (*sensu* Donk) later were divided into several smaller families and placed in a new order Gomphales (Jülich 1981). *Clavariadelphus* originally was included in Clavariaceae (Donk 1964), but the family was shown to be polyphyletic; *Clavariadelphus* is a member of Gomphales, whereas *Clavaria* and *Clavulina* are nested respectively within the euagarics and cantharellloid clade (Pine et al. 1999).

MATERIALS AND METHODS

Taxa sampled, along with GenBank accession numbers are provided (Supplementary Table 1). DNA sequence data were obtained from five independent loci: LROR-LR3 region for nuclear large subunit ribosomal DNA (nucLSU-rDNA); MS1–MS2 region for mitochondrial small subunit ribosomal DNA (mtSSU-rDNA); ATPase subunit 6 (*atp6*); bRBP2-6F-bRBP2-7R region for the second largest subunit of RNA polymerase (RPB2); EF1-883F-EF1-1567R region for translation elongation factor subunit 1α (*EF1α*). The primers and PCR protocols have been described previously (summarized in Assembling the Fungal Tree of Life Website http://aftol.org/primers.php).

Phylogenetic analyses were conducted for the concatenated five locus dataset under Bayesian and parsimony criteria. Maximum parsimony analyses were conducted with PAUP* 4.0b10 (Swofford 2002) with the heuristic search option (TBR and MULTREES on) and 1000 replicates of random addition sequence. Nodal supports were tested by bootstrapping of 500 replicates with the heuristic search option (TBR and MULTREES off) with five random addition sequences. Bayesian analysis was conducted with MrBayes ver. 3.0b4 (Huelsenbeck and Ronquist 2001) with 2000000 generations of MCCMCMC by sampling every 100th tree. The GTR+G+I model was used for the nucLSU-rDNA, mtSSU-rDNA, and each codon position for the remaining protein coding genes. The support of nodes was tested by posterior probabilities obtained from majority rule consensus after deleting the trees during burn-in.

Ancestral character state reconstructions of fruiting body morphologies under binary coding (sequestate vs. non-sequestate) were performed in the Geastrales, Gomphales and Phallales clades based on the tree topology and branch lengths are provided (Supplementary Fig. 2). In this paper the term “sequestrate” refers to the truffle-like fruiting body form and the “nonsequestrate” refers to the other gastroid forms, including stinkhorns, earthstars and cannonball fungi. Some taxa with uncertain fruiting body types (question marks in Fig. 2, Supplementary Fig. 2) were coded in alternative analyses as sequestrate, nonsequestrate or polymorphic (Supplementary Table II). Parsimony-based reconstructions were performed with MacClade ver. 4.06 (Maddison and Maddison 2003) without implementing
FIG. 2. Phylogeny of the gomphoid-phalloid fungi. Tree topology is based on the Bayesian analyses. Numbers on branches are Bayesian posterior probability/maximum parsimony bootstrap values (shown as percentage). The provisional taxon names are indicated with a slash (/). Taxon names are followed by symbols indicating fruiting body forms: ♦ = sequestrate-gastroid (truffle-like), ◆ = nonsequestrate-gastroid (including stinkhorns, earthstars and cannonball fungi), • = nongastroid.
RESULTS AND DISCUSSION

Both Bayesian and parsimony analyses showed strong support for the monophyly of the gomphoid-phalloid clade (“Phallomycetidae” in Fig. 2). No definitive synapomorphies have been identified for the gomphoid-phalloid fungi; however, some potential synapomorphic characters, including rhizomorph morphology (presence of ampullate hyphae and acanthohypha, Agerer and Iosifidou 2004; Fig. 1r, s), pistillarins content and structures of septal pore cap, have been proposed (Hibbett and Thorn 2001). In addition some members of the gomphoid-phalloid clade, such as Gauteria, Hysterangium, Ramaria and Geastrum, are known to produce thick hyphal mats in soil (Agerer and Iosifidou 2004, Nouhra et al 2005, Sunhede 1989; Fig. 1i). Although most of these characters are not exclusive to the gomphoid-phalloid fungi the yellowish filled acanthocystidia and associated “exuded drops of pigments” have been reported only from the gomphoid-phalloid fungi (e.g. Geastrum, Gomphus, Phalloasclerotia and Ramaria [Agerer and Iosifidou 2004]). Four major clades were recognized within Phallomycetidae: Hysterangiales, Geastrales, Gomphales and Phallales. All four major clades were supported by 100% posterior probability although bootstrap values for these clades varied from 59% to 98% (Fig. 2).

Gomphales clade.—This clade corresponds to the order Gomphales (sensu Jülich 1981) with addition of Gautieriales and Clavariadelphaceae. The monophyly of Gomphales was consistent with previous studies (Villegas et al 1999). Fruiting body morphologies include coral fungi (e.g. Ramaria and Lentariaeae; Fig. 1m), club fungi (Clavariadelphaceae), gilled mushrooms (Gloeocanthrellus), cantharelloid-gomphoid (e.g. Gomphus and Turbinellus, Giachini 2007; Fig. 1n), tooth fungi (Beenakia), resupinate fungi (Kavinia; Fig. 1p) and false truffles (Gautieriales; Fig. 1o). Despite their macromorphological variations the members of this clade share a number of microscopic and macrochemical characters, including cyanophilic spore ornamentation (Fig. 1q), hyphal construction and positive hymenial reaction to ferric sulfate (Donk 1964, Villegas et al 1999).

Humphert et al. (2001) suggested that branched coral fruiting bodies are ancestral forms for Gomphales. While lack of statistical support for some internal nodes within Gomphales in this study limits our inferences, the basal positions of some coral fungi, such as Ramaria moellneriana and R. stricta, are consistent with their conclusions (SUPPLEMENTARY TABLE VI). Gautieriales is the only false truffle taxon in Gomphales and it is restricted to a terminal clade, also indicating their derived form. This is consistent with the hypothesis that sequestrate fruiting bodies are derived forms from more complex, epigeous morphology (Thiers 1984, Peintner et al 2001). Gomphales also show heterogeneity in their ecological characters. Most species in Lentariaeae, Kaviniaeae, Beennakiaeae, Phaeoclea (Ramaria, such as R. moellneriana, R. stricta, and R. circinans, grow and fruit on woody debris, a trait that has led to their general categorization as saprobes. The other taxa of the order generally are considered ectomycorrhizal, and while the ectomycorrhizal status of many species of Gomphales is still unknown, the formation of ectomycorrhizae by Turbinellus, Gomphus and some Ramaria species has been confirmed (Agerer and Iosifidou 2001, Nouhra et al 2005).

Phallales clade.—It roughly corresponds to the order Phallales sensu Cunningham (1931a, b), with the results of molecular phylogenetic analyses (Fig. 2) suggesting the inclusion of more members to this order. Fruiting body morphologies include stinkhorns (Phallaceae, Fig. 1f), lattice stinkhorns (Clathraceae and Lysaceae, Figs. 1g–i) and false truffles (Protophallaceae, Claustraceae and Trappeaceae; Figs. 1j, k). A few false truffle taxa also are observed in Clathraceae (Protuberz canescens and Gelopellis sp.) and Lysaceae (Protuberz clathroides). Based on tree topology and original descriptions of these taxa (Beaton and Malajczuk 1986, Malloch 1989) it is likely that these taxa are unopenen stinkhorn fruiting bodies and therefore are considered as uncertain fruiting body forms (indicated by question marks in Fig. 2). Gastrosporium was shown to be the member of Phallales (Hibbett and Binder 2002) but it was not included in this study due to lack of a protein coding gene sequence. Zeller (1948) included Gastrosporiaeae in Tremelloastraeae, but Tremelloaster in Tremelloastraceae was demonstrated to be a member.

A few sequestrate taxa in the Phallales clade are indicated by question marks because of their uncertainty in fruiting body form (see text for details).
of Boletales (Binder and Hibbett 2006 this issue). The affinity of the remaining genus (*Clathrostroma*) to the gomphoid-phalloid fungi, however, is still unclear. Most taxa in this order are characterized by having fruiting bodies with a gelatinous layer and a gelatinous to mucilaginous gleba, but *Gastrosporum* has a powdery gleba (Dominguez de Toledo and Castellano 1997). Spores of most taxa are small, ellipsoid and smooth without ornamentation (Fig. 1i) but a few taxa, such as *Kjeldsenia* and *Gastrosporum*, have warty spore surfaces (Colgan et al 1995, Dominguez de Toledo and Castellano 1997). Most taxa are believed to be saprobic due to their lignicolous habit, but at least one species (*Prototuber* *canescens*) has been reported to be ectomycorrhizal (Malajczuk 1988).

Lysuraceae was recognized as a separate family from Clathraceae by Corda (1842) but most subsequent authors treated them as a single family Clathraceae (e.g. Dring 1980, Jülich 1981). This study shows that Lysuraceae is more closely related to Phallaceae than it is to Clathraceae (Fig. 2). Fruiting bodies of Phallaceae are characterized by a single, unbranched receptacle and a gleba attached externally on the upper part of receptacle (Fig. 1f). Fruiting body morphologies of Lysuraceae are similar to Clathraceae in having a gelatinous layer divided by sutures but differ in having long, stipitate receptacles that are longer than the arms that arise from the receptacle (Dring 1980; Fig. 1i). Also the gleba of Lysuraceae tends to migrate to the exterior face of the arms (Dring 1980; Fig. 1i). Species in Clathraceae have gleba attached only to the interior face of the arms (Dring 1980; Figs. 1g, h).

Protophallaceae traditionally has been classified in Hysterangiaceae, but this study shows that the family belongs to Phallales. *Prototuber* is polyphylectic in our analyses with species placed in at least three separate clades within Phallales, including Protophallaceae (and the type species, *P. maracuja*), Lysuraceae and Clathraceae. In addition some species of *Prototuber* were observed in Hysterangiaceae clade. Another member of this clade, *Kjeldsenia*, originally was described as a member of Coronariaceae (Colgan et al 1995). It is noteworthy that three basal clades within Phallales (Protophallaceae, Clastulaceae and Trappeaceae) all were characterized by truffle-like taxa, while taxa with more complex, stinkhorn-like fruiting bodies are restricted to more terminal clades, indicating that stinkhorn-like fruiting bodies are derived morphologies in Phallales. The results of ancestral character state reconstruction were consistent, showing a single transition from sequestrate to stinkhorn fruiting body form (Fig. 2, also see Supplementary Table II-i), except when uncertain taxa were coded as sequestrate, which showed ambiguous reconstructions for basal nodes. It is a rare example in the homobasidiomycetes showing that truffle-like fruiting bodies are ancestral morphologies. Unlike sequestrate taxa in Agaricales, however, the evolution of truffle-like fruiting bodies in Phallales does not require gains and/or losses of ballistospory because all taxa in Phallales are statismosporic.

Mycophagy (the use of fungi as food) by arthropods is well documented for many groups of Fungi (Martin 1979), and stinkhorn-like fungi are one of the prime examples (Nouhra and Dominguez 1994). On the other hand major mycophagous animals for truffle-like fungi are rodents and small marsupials, many of which eat significant amounts of truffle-like fungi in their diet (Lehmkuhl et al 2004). Spores of truffle-like taxa in Phallales, however, are not well documented from animal feces. Because many truffle-like fungi are known to emit chemical compounds to attract insects (Pacioni et al 1991) it is possible that spore dispersal of Phallales is entirely dependent on arthropods.

Hysterangiaceae clade.— It contains only sequestrate taxa although fruiting bodies of some taxa (e.g. *Phallogaster* and *Gallaceae*) occasionally crack open and expose the gleba (Castellano and Beever 1994). While most taxa possess a gelatinous to cartilaginous gleba (Figs. 1a, c) species in Mesophallaceae clade are characterized by a powdery gleba (Fig. 1b). This feature is the reason why Mesophallaceae has been classified in Lycoperdales, along with Lycoperdaeae and Geastraceae (Zeller 1949), and previous workers were not able to infer the close relationship of Mesophallaceae and Hysterangiaceae. *Mesophallaceae sensu* Zeller, however, is polyphyletic. The type genus *Mesophallia* belongs to Hysterangiaceae, but *Radiogaster* belongs to Geastrales (Fig. 2) and *Abstoma* is most likely related to Lycoperdaeae. *Rhophalologaster* traditionally has been included in Hysterangiaceae (Zeller 1949), but this study clearly shows that it is nested within Boletales (Fig. 2).

Most taxa in Hysterangiaceae clade possess ellipsoidal spores that are smooth to minutely warted. One of the exceptions is observed in Gallaceaeae clade, where *Austrogautieria* possesses longitudinally ridged spores (Fig. 1e). Within Phallomycetidae *Austrogautieria* (Fig. 1e) and *Gautieria* (in Gomphales) share similar spore morphology and sequestrate habit, but the phylogenetic analysis shows these similarities are due to convergent evolution. Many taxa in Hysterangiaceae and Mesophallaceae clade possess spores enveloped in a wrinkled to loose outer membrane (or utricle, Fig. 1d) whereas taxa in Gallaceaeae and Phallogastaceae clades do not (Stewart and Trappe 1985, Castellano and Beever 1994, Trappe et al 1996).
Taxa in Phalloastraceae clade are most likely saprobiic (Miller and Miller 1988, Castellano 1990) whereas the rest of Hystorangiiales are all ectomyco-
rrhal. Although ectomycorrhizal status has not been investigated for all taxa in Hystorangiiales it was confirmed for some Hystorangium spp. (Hystorangi-
aceae clade, Agerer and Losifidou 2004), Mesophellia and Castoreum spp. (Mesophelliae clade, Dell et al 1990) and Austrogaularia spp. (Gallaceaceae clade, Lu et al 1999). In addition many ectomycorrhizal taxa in Hystorangiiales form dense perennial hyphal mats, which often significantly change the soil chemistry and microorganism biomass (Griffiths et al 1994). Unlike sequester taxa in Phallales, mycophagy by small mammals and marsupials is well documented for Hystorangiiales and they often occupy a significant portion of the diet for these animals (Lehmkuhl et al 2004).

Geastrales clade.—It contains cannonball fungi (Sphaerobolaceae, Fig. 1w), earthstars (Geastraceae, Fig. 1u) and false truffles (Pyrenogastreae, Sclero-
ogastraceae and Radiigera, Fig. 1v). The ancestral character reconstruction for fruiting body morphology did not show a clear pattern for the basal nodes of the Geastrales clade, but parsimony-based reconstruction indicated that there were at least two independ-
ent changes from nonsequester to sequester fruiting bodies at the nodes leading to Radiigera (TABLE III, SUPPLEMENTARY INFORMATION). This again is consistent with the hypothesis that truffle-like fruiting bodies are derived forms (Thiers 1984, Peintner et al 2001).

Zeller (1948) described Broomeiaceae in Lycoper-
dales, but it is unclear whether this family is more closely related to Geastrales than to other homobasidiomycetes. Likewise some genera such as Phia-
lastrum and Trichaster were not included in this study although they traditionally have been placed in Geastraceae (Sunhede 1989). Geastrum and Myriostoma have fruiting bodies with multiple peridial layers. The exoperidium opens in a stellate manner as it matures, exposing the endoperidium with one (Gaeastrum) to multiple (Myriostoma) stomata, through which spores escape (Fig. 1u). Radiigera and Pyrenogastreae both have truffle-like fruiting bodies, and their peridia do not open until they are naturally degraded or eaten by mycophagous animals. The gleba of Pyrenogastreae is divided into multiple peridioles (Fig. 1v). Species within Geastrac-
ceae and Pyrenogastreae have glebas that become brownish to blackish and powdery at maturity. Sclerogastraceae also have truffle-like fruiting bodies, but the mature gleba never becomes powdery and exhibits a yellowish to brownish color. Most taxa described above possess globose spores with a warty surface (Fig. 1x), but Myriostoma possesses ornamentation that is fused into ramified ridge-like projections (Sunhede 1989; Fig. 1y).

The structure of the fruiting bodies of Sphaerobo-
laceae is unique for Geastrales. Although the outer peridium opens out stellately, similar to Geastraceae, the gleba is composed of a single peridiole (Fig. 1w), which never becomes powdery and contains numerous hyaline, smooth, subglobose to ellipsoid spores (Fig. 1z). The peridiole eventually is ejected forcibly (Ingold 1972). Members of Sphaerobolaceae are undoubtedly saprobiic because they can easily pro-
duce fruiting bodies on artificial media (Flegler 1984), but the nutritional mode for the remaining taxa in Geastrales remains uncertain. Many species of Geastrum grow without obvious ectomycorrhizal plants, and some authors concluded that Geastrum is saprobiic (Sunhede 1989, Kreisel 1969); however, at least one species, G. fimbriatum, is described as forming ectomycorrhizae (Agerer and Beenken 1998).

TAXONOMY

Based on the results of our phylogenetic analyses we propose a new subclass Phallomycetidae to include Gomphales and Phallales as well as two new orders, Hystorangiiales and Geastrales.

Phallomycetidae Hosaka, Castellano et Spatafora, subclass. nov.

Basidiomata hypogaea vel epigaea, solitaria, gregaria vel caespitosa, sequestrata, resupinata, effusoreflexa, pileata, turbinata, infundibuliformia, coralli-
formia, clavata, stellata vel recepticula singula vel irregulariter ramosa a volva basali exoriente. Rhizo-
morphae saepes conspiciueae ad basin vel latera basidiomatum, tegetem densam hyphalem interdum producentes, interdum hyphis ampullaribus acantho-
cystidiiis contentiis luteolis. Hymenium interdum cum FeSO₄ cocculescens. Gleba tectorum gastroium maturitate gelatinosa, mucilagina, cartilaginea vel pulverea, grisea, viridis, olivacea, brunnea, cinnamo-
mea vel nigra, saepe columella bene evoluta. Sporae in hymenio exposito enatae vel in gleba inclusae, ballistosporicae vel statismosporicae, symmetricae vel asymmetryciae, globosa, subglobosa, ellipsoidea, elongatae, cylindrica vel fusiformes, laeves, verruco-
Basidiomata hypogeous or epigeous, solitary, gregarious or caespitose, sequestrate or resupinate, effused-reflexed, pileate, turbinate, infundibuliform, coralliform, clavate, stellate or with a single to irregularly branched receptacle arising from a basal volva. Rhizomorphs often conspicuous at base or sides of basidiomata, occasionally producing dense hyphal mats in soil, sometimes with ampullate hyphae and acanthocystidia with yellowish contents. Hymenium sometimes turning blue with ferric sulfate. Gleba of gastroid taxa gelatinous, mucilaginous, cartilaginous or powdery at maturity, gray to green, olive, brown, cinnamon or black, often with a well developed columella. Spores borne on an exposed hymenium or enclosed within a gleba, statisomatic or ballistosporic, symmetrical or asymmetrical, globose, subglobose, ellipsoid, elongate, cylindrical to fusiform, smooth, verrucose, echinate or ridged, occasionally with a utricle or remnants of an epispore, hyaline to brown in KOH, often cyanophilic.

Orders included. Phallales E. Fischer, Gomphales Jülich, Hysterangiales Hosaka et Castellano, ord. nov., Geastrales Hosaka et Castellano, ord. nov.

Remarks. This group is equivalent to Phallales in the Dictionary of the Fungi 9th edition (Kirk et al. 2001) and the "gomphoid-phalloid clade" sensu Hibbett and Thorn (2001). Locquin (1984) used the term "Phallomycetidae" but did not provide a Latin diagnosis, and therefore it is considered invalid in accordance with Article 36.1 of the International Code of Botanical Nomenclature (ICBN). Furthermore Phallomycetidae sensu Locquin included only stinkhorn-like taxa and a few sequestrate taxa, which is roughly equivalent to Phallales clade in this study (Fig. 2). The results of our study strongly support the creation of the subclass Phallomycetidae to accommodate the four distinct but related clades (i.e. Phallales, Hysterangiales, Gomphales and Geastrales). This organization accommodates the two previously described orders, Phallales and Gomphales, with the numerous associated families.

On the other hand one could treat the entire gomphoid-phalloid clade as an order Phallales, following Kirk et al. (2001). However this treatment would require the creation of four new suborders, or four major clades (Geastrales, Gomphales, Hysterangiales and Phallales; Fig. 2) would have to be recognized at the family level. This change forces the elimination of several widely recognized families, such as Clathraceae, Mesophelligaceae, Protophallaceae and Sphaerobolaceae, all of which are supported as monophyletic groups in this study (Fig. 2). In addition the gomphoid-phalloid clade is potentially one of the basal clades within the homobasidiomycetes (Binder and Hibbett 2002, Lutzoni et al. 2004), which further supports the recognition of the subclass status for this group. The use of subclass Phallomycetidae with four orders is the best reflection of the higher-level phylogeny and hence would provide a stable classification system of Basidiomycota.

Hysterangiales Hosaka et Castellano, ord. nov.

= Hysterangiales Zeller, Mycologia 31:29, 1939. nom. nud.

Basidiomata hypogeous or epigeous, solitary or gregarious, sequestrate, globose to irregular, with or without a tapering, stem-like sterile base, often covered with adhering sand and soil or encased in debris and rootlets. Rhizomorphs conspicuous at base or sides of basidiomata, often producing dense hyphal mats in the soil, occasionally with attached calcium oxalate crystals. Peridium sometimes readily separable from gleba, elastic, glutinous or hard and brittle, white to pale yellow, brown, violet or purple, sometimes staining pink, red, brown, purple, yellow or brown when bruised, 1–4-layered, sometimes with a gelatinous subcutis containing sutures that divide the peridium into sections, sometimes incorporating mycorrhizae. Gleba at maturity cartilaginous to gelatinous or powdery, gray to green, olive or brown, often with labyrinthine to elongated locules, with
a dendroid, cartilaginous to gelatinous columella or a soft to rubbery central core or lacking such structures. Basidia 2-8-spored. Spores statismosporic, mostly symmetrical, ellipsoid, oblong to fusoid, smooth to minutely verrucose, or sometimes spinose, often with a wrinkled to inflated or ephemeral utricle, hyaline, pale green, or brown in KOH, inamyloid, sometimes weakly dextrinoid.

Type family. Hysterangiales E. Fischer, Die Natürlichen Pflanzenfamilien 1(1**):304, 1899.

Remarks. Several authors treated Hysterangiales as an independent order, segregated from Phallales (Zeller 1939, 1949; Jülich 1981; Locquin 1974, 1984). However, an extensive literature search revealed that the order had never been published with a Latin diagnosis and therefore it is considered invalid in accordance with Article 36.1 of the ICBN. Of interest, Hysterangiales sensu Zeller included Protophallaceae and Gelopellaceae, both of which were revealed to be members of Phallales (Fig. 2). Our study revealed several previously unrecognized relationships (i.e. Mesophelliaeae and Austrogauntiera, which necessitate a redefinition of Hysterangiales as a new order).

There are a few truffle-like genera in Gomphales and Geastrales but those that do occur in these two orders possess spores that have nonconvergent ridges with rounded margins or are distinctly warted, globose to subglobose with some tint of brown, which distinguish them from all members of Hysterangiales.

Geastrales Hosaka et Castellano, ord. nov.

= Geastrales Locquin, De Taxia Fungorum 1:37, 1974, nom. nud.

Basidiomata hypogaeae or epigeae, solitary, gregarious or caespitose on a common stroma or subculum, sequestrate or opening as stellate to irregular rays at maturity; endoperidial body sessile to stiptate. Rhizomorphs often conspicuous at base of basidiomata, sometimes of ampullate hyphae and acanthocystidia with yellowish contents. Peridium 2-5-layered; if the exoperidium opens at maturity, the endoperidial body possesses one to multiple stomata, or dehisces irregularly, or forcibly discharges a peridiole. Gleba of trumal plates radiating out from a central columella, or divided into one to multiple peridioles, or with spherical to elongate locules, yellow to orange, brown, or black, often powdery at maturity; capillitium present or absent. Basidia globose, clavate, pyriform to tubular, often constricted below the rounded apex, 4-8-spored. Spores statismosporic, symmetrical, globose, subglobose to ellipsoid, smooth to verrucose, echinulate or with ramified ridges, hyaline to brown in KOH, inamyloid, nondextrinoid.

Type family. Geastraceae Corda, Icones Fungorum 5:25, 1842, “Geastrideae”.

Remarks. Geastrales was published by Kreisel (1969) without a Latin diagnosis and therefore it is considered invalid in accordance with Article 36.1 of the ICBN. Furthermore Kreisel (1969) recognized the order as monotypic, containing a single family Geastraceae, in which only Geastrum and Myriostoma were recognized. Our study revealed a broader concept of Geastrales, one that encompasses several previously unrecognized taxa in the order, such as Pyrenogastraceae, Sphaerobolaceae and Sclerogaster. For the most part Geastrales differs from other members of Phallomycetidae in having basidiomata that open stellately or irregularly and forcibly discharge a peridiole, or expose the endoperidial body with one to multiple stomata through which spores are released. The truffle-like taxa in Geastrales (e.g. Pyrenogastraceae, Radiigera and Sclerogaster) generally can be distinguished from the similar taxa in other orders of Phallomycetidae by the combination of their spore characters, including a globose to subglobose shape and verrucose to echinulate ornamentation. The order differs from Gastrosporiaceae by having a membranous endoperidium rather than a gelatinous one (Domínguez de Toledo and Castellano 1997).
LITERATURE CITED

Castellano MA. 1990. The new genus Tropaia (Basidiomycota, Hysterangiaceae), a segregate from Hystera

Lu X, Malajczuk N, Brundrett M, Dell B. 1999. Fruiting of putative ectomycorrhizal fungi under blue gum (Eucalyp-

lytus globules) plantations of different ages in Western Australia. Mycorrhiza 8:255–261.

———. 2003. Multistate v0.8. Division of Zoology, School of Animal and Microbial Sciences, University of Reading, UK.

Supplementary Fig. 1. Previous and new classification schemes for the representative gomphoid-phalloid fungi. Left: Classification schemes by Zeller (1949) for Gasteromycetes; by Donk (1964) for Aphylophorales. Right: Classification scheme based on this study. Taxa with dotted arrows and question marks are not included in this study. Multiple arrows arising from the single taxon indicate that the taxon as previously constituted was demonstrated to be polyphyletic.
SUPPLEMENTARY FIG. 2. Nodes used for the ancestral character state reconstructions of the fruiting body type. A. Phallales clade. B. Geastrales clade. C. Gomphales clade. Tree topology is from Fig. 3. The names of taxa and symbols correspond to those of Fig. 3. Polytomies in the Gomphales clade were arbitrarily resolved to bifurcations with branch lengths of 0.001.
Supplementary Table 1. Taxon list and associated GenBank accession numbers

<table>
<thead>
<tr>
<th>Genus species</th>
<th>Herbarium</th>
<th>Specimen No.</th>
<th>nuc-LSU-rDNA</th>
<th>mt-SSU-rDNA</th>
<th>atp6</th>
<th>RPB2</th>
<th>EF-1α</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTGROUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boletellus projectellus</td>
<td>CUW</td>
<td>MB-03-118</td>
<td>AY684158</td>
<td>—</td>
<td>AFTOL</td>
<td>AY787218</td>
<td>AY879116</td>
</tr>
<tr>
<td>Calocera cornea</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AY536286</td>
<td>AY881019</td>
</tr>
<tr>
<td>Chamonixia sp.</td>
<td>OSC</td>
<td>Muroi 361</td>
<td>DQ218598</td>
<td>DQ218741</td>
<td>DQ218885</td>
<td>DQ219046</td>
<td>DQ219224</td>
</tr>
<tr>
<td>Cortinarius iodes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AY356285</td>
<td>AY881027</td>
</tr>
<tr>
<td>Dacrymyces chrysospermus</td>
<td>—</td>
<td>—</td>
<td>AF287785</td>
<td>AF296642</td>
<td>—</td>
<td>AY218480</td>
<td>—</td>
</tr>
<tr>
<td>Rhopolagaster transversarium</td>
<td>OSC</td>
<td>81680</td>
<td>DQ218599</td>
<td>DQ218742</td>
<td>DQ218886</td>
<td>DQ219047</td>
<td>DQ219225</td>
</tr>
<tr>
<td>Russula compacta</td>
<td>DUKE</td>
<td>s.n.</td>
<td>AF287888</td>
<td>U27074</td>
<td>—</td>
<td>AY218514</td>
<td>—</td>
</tr>
<tr>
<td>Sarcomon imbricatus</td>
<td>—</td>
<td>—</td>
<td>AY586711</td>
<td>—</td>
<td>—</td>
<td>AY218528</td>
<td>—</td>
</tr>
<tr>
<td>Suillus pictus</td>
<td>CUW</td>
<td>MB-03-002</td>
<td>AY684154</td>
<td>—</td>
<td>AFTOL</td>
<td>AY786066</td>
<td>AY883429</td>
</tr>
<tr>
<td>Geastrales clade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geastrum fimbriatum</td>
<td>OSC</td>
<td>60730</td>
<td>DQ218600</td>
<td>—</td>
<td>DQ218887</td>
<td>DQ219048</td>
<td>DQ219226</td>
</tr>
<tr>
<td>Geastrum floriforme</td>
<td>OSC</td>
<td>29328</td>
<td>DQ218485</td>
<td>DQ218600</td>
<td>DQ218769</td>
<td>DQ219049</td>
<td>DQ219227</td>
</tr>
<tr>
<td>Geastrum fothericum</td>
<td>MEL</td>
<td>2087743</td>
<td>DQ218601</td>
<td>DQ218734</td>
<td>DQ218888</td>
<td>DQ219050</td>
<td>DQ219228</td>
</tr>
<tr>
<td>Geastrum pectinatum</td>
<td>MEL</td>
<td>2096557</td>
<td>DQ218602</td>
<td>—</td>
<td>DQ218889</td>
<td>DQ219051</td>
<td>DQ219229</td>
</tr>
<tr>
<td>Geastrum recolligenes</td>
<td>OSC</td>
<td>41196</td>
<td>DQ218486</td>
<td>DQ218661</td>
<td>DQ218770</td>
<td>DQ219052</td>
<td>DQ219230</td>
</tr>
<tr>
<td>Geastrum rufescens</td>
<td>OSC</td>
<td>41850</td>
<td>DQ218603</td>
<td>DQ218744</td>
<td>DQ218890</td>
<td>DQ219053</td>
<td>—</td>
</tr>
<tr>
<td>Geastrum smaragdium</td>
<td>OSC</td>
<td>60464</td>
<td>DQ218604</td>
<td>—</td>
<td>DQ218891</td>
<td>DQ219054</td>
<td>—</td>
</tr>
<tr>
<td>Geastrum sp.</td>
<td>OSC</td>
<td>T26588</td>
<td>DQ218605</td>
<td>—</td>
<td>DQ218892</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Myriostoma coliforme</td>
<td>OSC</td>
<td>40741</td>
<td>DQ218606</td>
<td>—</td>
<td>DQ218893</td>
<td>DQ219055</td>
<td>DQ219231</td>
</tr>
<tr>
<td>Pyroagarista atrogloba</td>
<td>OSC</td>
<td>60063</td>
<td>DQ218607</td>
<td>—</td>
<td>DQ218894</td>
<td>DQ219056</td>
<td>—</td>
</tr>
<tr>
<td>Pyroagarista pistophyllum</td>
<td>OSC</td>
<td>59743</td>
<td>DQ218519</td>
<td>DQ218694</td>
<td>DQ218803</td>
<td>DQ219057</td>
<td>DQ219232</td>
</tr>
<tr>
<td>Raddiella bushnellii</td>
<td>OSC</td>
<td>T26259</td>
<td>DQ218608</td>
<td>DQ218745</td>
<td>DQ218895</td>
<td>DQ219058</td>
<td>DQ219233</td>
</tr>
<tr>
<td>Raddiella fusigloba</td>
<td>OSC</td>
<td>58979</td>
<td>DQ218609</td>
<td>—</td>
<td>DQ218896</td>
<td>DQ219059</td>
<td>DQ219234</td>
</tr>
<tr>
<td>Raddiella fusigloba</td>
<td>OSC</td>
<td>59749</td>
<td>DQ218610</td>
<td>—</td>
<td>DQ218897</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Raddiella taylorii</td>
<td>OSC</td>
<td>59760</td>
<td>DQ218520</td>
<td>DQ218695</td>
<td>DQ218804</td>
<td>DQ219060</td>
<td>DQ219235</td>
</tr>
<tr>
<td>Scleragarista xerophilus</td>
<td>OSC</td>
<td>49777</td>
<td>DQ218611</td>
<td>—</td>
<td>DQ219061</td>
<td>DQ219236</td>
<td>—</td>
</tr>
<tr>
<td>Sphaerobolus ingoldii</td>
<td>PSU</td>
<td>SS19</td>
<td>AY439012</td>
<td>AY88015</td>
<td>—</td>
<td>—</td>
<td>AY879790</td>
</tr>
<tr>
<td>Sphaerobolus ingoldii</td>
<td>PSU</td>
<td>SS26</td>
<td>AY439013</td>
<td>AY88022</td>
<td>—</td>
<td>—</td>
<td>AY879796</td>
</tr>
<tr>
<td>Sphaerobolus ingoldii</td>
<td>PSU</td>
<td>SS11</td>
<td>AY439014</td>
<td>AY88008</td>
<td>—</td>
<td>—</td>
<td>AY87984</td>
</tr>
<tr>
<td>Sphaerobolus ingoldii</td>
<td>PSU</td>
<td>SS9</td>
<td>AY439010</td>
<td>AY88006</td>
<td>—</td>
<td>—</td>
<td>AY87982</td>
</tr>
<tr>
<td>Sphaerobolus stellatus</td>
<td>PSU</td>
<td>SS12</td>
<td>AF393077</td>
<td>AF296662</td>
<td>AY574789</td>
<td>DQ219062</td>
<td>DQ219237</td>
</tr>
<tr>
<td>Gomphales clade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beenakia fricta</td>
<td>K</td>
<td>2083</td>
<td>AY574693</td>
<td>AY574766</td>
<td>AY574833</td>
<td>—</td>
<td>DQ219238</td>
</tr>
<tr>
<td>Clavariadelphus ligula</td>
<td>OSC</td>
<td>67068</td>
<td>AY574650</td>
<td>AY574723</td>
<td>AY574793</td>
<td>DQ219063</td>
<td>DQ219239</td>
</tr>
<tr>
<td>Clavariadelphus occidentalis</td>
<td>OSC</td>
<td>37018</td>
<td>AY574648</td>
<td>AY574721</td>
<td>AY574791</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Clavariadelphus truncatus</td>
<td>OSC</td>
<td>67280</td>
<td>AY574649</td>
<td>AY574722</td>
<td>AY574792</td>
<td>DQ219064</td>
<td>DQ219240</td>
</tr>
<tr>
<td>Clavariadelphus sp.</td>
<td>OSC</td>
<td>122861</td>
<td>DQ218612</td>
<td>—</td>
<td>DQ218888</td>
<td>DQ219065</td>
<td>DQ219241</td>
</tr>
<tr>
<td>Caulteria caudata</td>
<td>OSC</td>
<td>59201</td>
<td>DQ218483</td>
<td>DQ218658</td>
<td>DQ218767</td>
<td>DQ219066</td>
<td>DQ219242</td>
</tr>
<tr>
<td>Caulteria crispa</td>
<td>OSC</td>
<td>61308</td>
<td>DQ218484</td>
<td>DQ218659</td>
<td>DQ218768</td>
<td>DQ219068</td>
<td>DQ219244</td>
</tr>
<tr>
<td>Caulteria othii</td>
<td>REG</td>
<td>636</td>
<td>AF393058</td>
<td>AF393085</td>
<td>—</td>
<td>AY218486</td>
<td>AY883434</td>
</tr>
<tr>
<td>Caulteria parkisoniana</td>
<td>OSC</td>
<td>58907</td>
<td>AY574652</td>
<td>AY574725</td>
<td>AY574795</td>
<td>—</td>
<td>DQ219245</td>
</tr>
<tr>
<td>Caulteria pterosperma</td>
<td>OSC</td>
<td>69649</td>
<td>DQ218614</td>
<td>DQ218747</td>
<td>DQ218900</td>
<td>DQ219069</td>
<td>DQ219246</td>
</tr>
<tr>
<td>Caulteria sp.</td>
<td>OSC</td>
<td>61517</td>
<td>DQ218613</td>
<td>DQ218746</td>
<td>DQ218899</td>
<td>DQ219067</td>
<td>DQ219243</td>
</tr>
<tr>
<td>Caulteria sp.</td>
<td>OSC</td>
<td>48137</td>
<td>DQ218615</td>
<td>DQ218748</td>
<td>DQ218901</td>
<td>DQ219070</td>
<td>DQ219247</td>
</tr>
<tr>
<td>Caulteria sp.</td>
<td>OSC</td>
<td>122685</td>
<td>DQ218616</td>
<td>DQ218749</td>
<td>DQ218902</td>
<td>DQ219071</td>
<td>DQ219248</td>
</tr>
<tr>
<td>Gloeospatuicellus novaezelandiae</td>
<td>PDD</td>
<td>44960</td>
<td>AY574666</td>
<td>AY574739</td>
<td>AY574809</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gloeospatuicellus pallidus</td>
<td>BPI</td>
<td>54917</td>
<td>AY574673</td>
<td>AY574746</td>
<td>AY574815</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Genus species</td>
<td>Herbarium</td>
<td>Specimen No.</td>
<td>nuc-LSU-rDNA</td>
<td>mt-SSU-rDNA</td>
<td>atp6</td>
<td>RPB2</td>
<td>EF-1α</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Gloeocantharellus purpurascens</td>
<td>TENN</td>
<td>12793</td>
<td>AY574683</td>
<td>AY574756</td>
<td>AY574823</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gloeocantharellus sp.</td>
<td>TENN</td>
<td>06707114</td>
<td>AY574667</td>
<td>AY574740</td>
<td>AY574810</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gloeocantharellus sp.</td>
<td>OSC</td>
<td>122875</td>
<td>DQ218617</td>
<td>—</td>
<td>DQ218903</td>
<td>DQ219072</td>
<td>DQ219249</td>
</tr>
<tr>
<td>Comphus brunneus</td>
<td>BR</td>
<td>034190-46</td>
<td>AY574680</td>
<td>AY574753</td>
<td>AY574821</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Comphus clavatus</td>
<td>OSC</td>
<td>97558</td>
<td>DQ218487</td>
<td>DQ218662</td>
<td>DQ218771</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kavinia albocirrata</td>
<td>O</td>
<td>102140</td>
<td>AY574692</td>
<td>AY574765</td>
<td>AY574832</td>
<td>DQ219073</td>
<td>DQ219250</td>
</tr>
<tr>
<td>Kavinia himantia</td>
<td>O</td>
<td>102156</td>
<td>AY574691</td>
<td>AY574764</td>
<td>AY574831</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lentaria pinicola</td>
<td>SUC</td>
<td>0859</td>
<td>AY574688</td>
<td>AY574761</td>
<td>AY574828</td>
<td>DQ219251</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia africana</td>
<td>TENN</td>
<td>39621</td>
<td>AY574653</td>
<td>AY574726</td>
<td>AY574796</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia cokeri</td>
<td>TENN</td>
<td>36030</td>
<td>AY574701</td>
<td>AY574774</td>
<td>AY574843</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia curta</td>
<td>OSC</td>
<td>8711</td>
<td>AY574713</td>
<td>—</td>
<td>AY574858</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia cyanocapitata</td>
<td>TENN</td>
<td>37827</td>
<td>AY574710</td>
<td>AY574779</td>
<td>AY574854</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia eumorpha</td>
<td>TENN</td>
<td>36218</td>
<td>AY574712</td>
<td>AY574781</td>
<td>AY574856</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia gigantea</td>
<td>FH</td>
<td>109</td>
<td>AY574703</td>
<td>AY574776</td>
<td>AY574845</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia gracilis</td>
<td>BR</td>
<td>073158-06</td>
<td>AY574678</td>
<td>AY574751</td>
<td>AY574890</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia granis</td>
<td>OSC</td>
<td>122773</td>
<td>DQ218618</td>
<td>—</td>
<td>DQ218904</td>
<td>DQ219074</td>
<td>DQ219252</td>
</tr>
<tr>
<td>Phaeoclavulinia guyanensis</td>
<td>FH</td>
<td>84</td>
<td>AY574706</td>
<td>—</td>
<td>AY574848</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia insignis</td>
<td>FH</td>
<td>104</td>
<td>AY574704</td>
<td>—</td>
<td>AY574846</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia longiculata</td>
<td>TENN</td>
<td>31836</td>
<td>AY574700</td>
<td>AY574773</td>
<td>AY574842</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia ochraceovirens</td>
<td>OSC</td>
<td>23475</td>
<td>AY574714</td>
<td>—</td>
<td>AY574859</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia paracaribea</td>
<td>TENN</td>
<td>31836</td>
<td>AY574707</td>
<td>—</td>
<td>AY574849</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phaeoclavulinia sp.</td>
<td>OSC</td>
<td>122874</td>
<td>—</td>
<td>—</td>
<td>DQ218905</td>
<td>DQ219075</td>
<td>DQ219253</td>
</tr>
<tr>
<td>Ramaria apiculata</td>
<td>OSC</td>
<td>23549</td>
<td>AY574695</td>
<td>AY574768</td>
<td>AY574836</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria araispore</td>
<td>SUC</td>
<td>M739</td>
<td>AF213068</td>
<td>AF213141</td>
<td>AY574838</td>
<td>DQ219076</td>
<td>DQ219254</td>
</tr>
<tr>
<td>Ramaria boirynsis</td>
<td>SUC</td>
<td>M457</td>
<td>AY574698</td>
<td>AY574771</td>
<td>AY574840</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria boirynsis</td>
<td>SUC</td>
<td>M805</td>
<td>AF213058</td>
<td>—</td>
<td>DQ218906</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria celerevirescens</td>
<td>SUC</td>
<td>M469</td>
<td>AF213073</td>
<td>—</td>
<td>DQ218907</td>
<td>DQ219077</td>
<td>DQ219255</td>
</tr>
<tr>
<td>Ramaria circinnas</td>
<td>SUC</td>
<td>M615</td>
<td>AY574711</td>
<td>AY574780</td>
<td>AY574855</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria flavobrunneus</td>
<td>SUC</td>
<td>M7380</td>
<td>AY574753</td>
<td>AY574777</td>
<td>AY574851</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria gelatiniculata</td>
<td>SUC</td>
<td>36422</td>
<td>DQ218619</td>
<td>—</td>
<td>DQ218908</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria moelleriana</td>
<td>OSC</td>
<td>23287</td>
<td>AY574709</td>
<td>AY574778</td>
<td>AY574834</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria reinierensis</td>
<td>SUC</td>
<td>M231</td>
<td>AF213111</td>
<td>AF213135</td>
<td>AY574834</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria rubella</td>
<td>SUC</td>
<td>M844</td>
<td>AF213098</td>
<td>AF213142</td>
<td>AY574852</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria rubinbrunneus</td>
<td>SUC</td>
<td>M405</td>
<td>AF213117</td>
<td>AF213138</td>
<td>DQ218805</td>
<td>DQ219078</td>
<td>DQ219256</td>
</tr>
<tr>
<td>Ramaria stricula</td>
<td>SUC</td>
<td>M214</td>
<td>AF213102</td>
<td>AF213134</td>
<td>AY574850</td>
<td>DQ219079</td>
<td>DQ219257</td>
</tr>
<tr>
<td>Ramaria suecica</td>
<td>BPI</td>
<td>s.n.</td>
<td>AY574705</td>
<td>—</td>
<td>AY574847</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria vinosimaculans</td>
<td>OSC</td>
<td>23287</td>
<td>AY574709</td>
<td>AY574778</td>
<td>AY574834</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria sp.</td>
<td>OSC</td>
<td>122865</td>
<td>DQ218620</td>
<td>—</td>
<td>DQ218909</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria sp.</td>
<td>OSC</td>
<td>122871</td>
<td>DQ218621</td>
<td>—</td>
<td>DQ218910</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria sp.</td>
<td>OSC</td>
<td>122873</td>
<td>DQ218622</td>
<td>—</td>
<td>DQ218911</td>
<td>DQ219080</td>
<td>—</td>
</tr>
<tr>
<td>Ramaria sp.</td>
<td>OSC</td>
<td>122872</td>
<td>DQ218623</td>
<td>—</td>
<td>DQ218912</td>
<td>DQ219258</td>
<td>—</td>
</tr>
<tr>
<td>Turbirdellus flabelatus</td>
<td>FH</td>
<td>191</td>
<td>AY574674</td>
<td>AY574747</td>
<td>AY574816</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Turbirdellus flabelatus</td>
<td>K</td>
<td>1770</td>
<td>AY574681</td>
<td>AY574754</td>
<td>AY574822</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Turbirdellus floccosus</td>
<td>OSC</td>
<td>69167</td>
<td>AY574656</td>
<td>AY574729</td>
<td>AY574799</td>
<td>—</td>
<td>DQ219259</td>
</tr>
<tr>
<td>Turbirdellus fujisanensis</td>
<td>OSC</td>
<td>M7380</td>
<td>AY574699</td>
<td>AY574742</td>
<td>AY574811</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Turbirdellus kauffmani</td>
<td>MIC</td>
<td>10069</td>
<td>AY574671</td>
<td>AY574744</td>
<td>AY574813</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Hysterangiales clade

Andelblia pachythrix
Aroramycetes gelatinosporus
<table>
<thead>
<tr>
<th>Genus species</th>
<th>Herbarium</th>
<th>Specimen No.</th>
<th>nucl-LSU-rDNA</th>
<th>mt-SSU-rDNA</th>
<th>atp6</th>
<th>RPB2</th>
<th>EF-1α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroramys radiatus</td>
<td>OSC</td>
<td>Verbekest 99462</td>
<td>DQ218525</td>
<td>DQ218699</td>
<td>DQ218810</td>
<td>DQ218942</td>
<td>DQ219119</td>
</tr>
<tr>
<td>Aroramys sp.</td>
<td>OSC</td>
<td>122858</td>
<td>DQ218528</td>
<td>—</td>
<td>DQ218813</td>
<td>DQ218945</td>
<td>DQ219122</td>
</tr>
<tr>
<td>Aroramys sp.</td>
<td>OSC</td>
<td>122590</td>
<td>DQ218529</td>
<td>DQ218701</td>
<td>DQ218814</td>
<td>DQ218946</td>
<td>DQ219123</td>
</tr>
<tr>
<td>Aroramys sp.</td>
<td>RMS</td>
<td>S. Miller 10030</td>
<td>DQ218530</td>
<td>DQ218702</td>
<td>DQ218815</td>
<td>DQ218947</td>
<td>DQ219124</td>
</tr>
<tr>
<td>Aroramys sp.</td>
<td>OSC</td>
<td>T15013</td>
<td>DQ218526</td>
<td>—</td>
<td>DQ218811</td>
<td>DQ218943</td>
<td>DQ219120</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
<tr>
<td>Aktorogaster angustispurpureus</td>
<td>OSC</td>
<td>122814</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218821</td>
<td>DQ218956</td>
<td>DQ219134</td>
</tr>
</tbody>
</table>

SUPPLEMENTARY TABLE I. Continued
<table>
<thead>
<tr>
<th>Genus species</th>
<th>Herbarium</th>
<th>Specimen No.</th>
<th>nuc-LSU-rDNA</th>
<th>mt-SSU-rDNA</th>
<th>atp6</th>
<th>RPB2</th>
<th>EF-1α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysterangium separabile</td>
<td>OSC</td>
<td>69030</td>
<td>DQ218502</td>
<td>DQ218677</td>
<td>DQ218786</td>
<td>DQ218900</td>
<td>DQ219166</td>
</tr>
<tr>
<td>Hysterangium setchelli</td>
<td>OSC</td>
<td>58071</td>
<td>DQ218552</td>
<td>—</td>
<td>DQ218839</td>
<td>DQ218991</td>
<td>DQ219167</td>
</tr>
<tr>
<td>Hysterangium strobilus</td>
<td>OSC</td>
<td>T5285</td>
<td>DQ218504</td>
<td>DQ218679</td>
<td>DQ218788</td>
<td>DQ218992</td>
<td>DQ219168</td>
</tr>
<tr>
<td>Hysterangium youngii</td>
<td>OSC</td>
<td>59645</td>
<td>DQ218595</td>
<td>DQ218680</td>
<td>DQ218789</td>
<td>DQ218993</td>
<td>DQ219169</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>AHF602</td>
<td>DQ218566</td>
<td>—</td>
<td>DQ218854</td>
<td>DQ219008</td>
<td>DQ219185</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>K</td>
<td>K. & G.</td>
<td>DQ218506</td>
<td>DQ218681</td>
<td>DQ218790</td>
<td>DQ218997</td>
<td>DQ219174</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>Beaton</td>
<td>DQ218559</td>
<td>DQ218721</td>
<td>DQ218847</td>
<td>DQ219001</td>
<td>DQ219178</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>Garcia</td>
<td>DQ218557</td>
<td>DQ218719</td>
<td>DQ218845</td>
<td>DQ219009</td>
<td>DQ219176</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>H1423</td>
<td>DQ218557</td>
<td>DQ218861</td>
<td>DQ219015</td>
<td>DQ219192</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>H4749</td>
<td>DQ218573</td>
<td>DQ218661</td>
<td>DQ219016</td>
<td>DQ219193</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>H5057</td>
<td>DQ218574</td>
<td>DQ218661</td>
<td>DQ219017</td>
<td>DQ219194</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>H5573</td>
<td>DQ218575</td>
<td>DQ218662</td>
<td>DQ219018</td>
<td>DQ219195</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>H6105</td>
<td>DQ218576</td>
<td>DQ218662</td>
<td>DQ219019</td>
<td>DQ219196</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>122859</td>
<td>DQ218571</td>
<td>DQ218663</td>
<td>DQ219020</td>
<td>DQ219200</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>122860</td>
<td>DQ218572</td>
<td>DQ218664</td>
<td>DQ219021</td>
<td>DQ219201</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>122836</td>
<td>DQ218577</td>
<td>DQ218665</td>
<td>DQ219022</td>
<td>DQ219202</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>OSC</td>
<td>122483</td>
<td>DQ218579</td>
<td>DQ218666</td>
<td>DQ219023</td>
<td>DQ219203</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>PDD</td>
<td>82853</td>
<td>DQ218580</td>
<td>DQ218667</td>
<td>DQ219024</td>
<td>DQ219204</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>RMS</td>
<td>10007</td>
<td>DQ218581</td>
<td>DQ218668</td>
<td>DQ219025</td>
<td>DQ219205</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>RMS</td>
<td>S. Miller</td>
<td>DQ218582</td>
<td>DQ218669</td>
<td>DQ219026</td>
<td>DQ219206</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>RMS</td>
<td>S. Miller</td>
<td>DQ218583</td>
<td>DQ218670</td>
<td>DQ219027</td>
<td>DQ219207</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>RMS</td>
<td>S. Miller</td>
<td>DQ218584</td>
<td>DQ218671</td>
<td>DQ219028</td>
<td>DQ219208</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>RMS</td>
<td>S. Miller</td>
<td>DQ218585</td>
<td>DQ218672</td>
<td>DQ219029</td>
<td>DQ219209</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T13845</td>
<td>DQ218586</td>
<td>DQ218673</td>
<td>DQ218673</td>
<td>DQ219030</td>
<td>DQ219210</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T17501</td>
<td>DQ218587</td>
<td>DQ218674</td>
<td>DQ218674</td>
<td>DQ219031</td>
<td>DQ219211</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T17856</td>
<td>DQ218588</td>
<td>DQ218675</td>
<td>DQ218675</td>
<td>DQ219032</td>
<td>DQ219212</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T19293</td>
<td>DQ218589</td>
<td>DQ218676</td>
<td>DQ218676</td>
<td>DQ219033</td>
<td>DQ219213</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T26567</td>
<td>DQ218590</td>
<td>DQ218677</td>
<td>DQ218677</td>
<td>DQ219034</td>
<td>DQ219214</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T27921</td>
<td>DQ218591</td>
<td>DQ218678</td>
<td>DQ218678</td>
<td>DQ219035</td>
<td>DQ219215</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T3929</td>
<td>DQ218592</td>
<td>DQ218679</td>
<td>DQ218679</td>
<td>DQ219036</td>
<td>DQ219216</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T3938</td>
<td>DQ218593</td>
<td>DQ218680</td>
<td>DQ218680</td>
<td>DQ219037</td>
<td>DQ219217</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T6899</td>
<td>DQ218594</td>
<td>DQ218681</td>
<td>DQ218681</td>
<td>DQ219038</td>
<td>DQ219218</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T6926</td>
<td>DQ218595</td>
<td>DQ218682</td>
<td>DQ218682</td>
<td>DQ219039</td>
<td>DQ219219</td>
<td>—</td>
</tr>
<tr>
<td>Hysterangium sp.</td>
<td>T8997</td>
<td>DQ218596</td>
<td>DQ218683</td>
<td>DQ218683</td>
<td>DQ219040</td>
<td>DQ219220</td>
<td>—</td>
</tr>
<tr>
<td>Maloajcziukia amicosum</td>
<td>OSC</td>
<td>59295</td>
<td>DQ218597</td>
<td>DQ218684</td>
<td>DQ218790</td>
<td>DQ219041</td>
<td>DQ219221</td>
</tr>
</tbody>
</table>
Supplementary Table 1. Continued

<table>
<thead>
<tr>
<th>Genbank No.</th>
<th>Genus species</th>
<th>Herbarium</th>
<th>Specimen No.</th>
<th>Significance (nuc-LSU-rDNA)</th>
<th>Significance (mt-SSU-rDNA)</th>
<th>Significance (atp6)</th>
<th>Significance (RPB2)</th>
<th>Significance (EF-1α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDD - REB-2182</td>
<td>DQ218624</td>
<td>DQ218750</td>
<td>DQ218913</td>
<td>DQ219081</td>
<td>DQ219260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122632</td>
<td>DQ218625</td>
<td>DQ218914</td>
<td>DQ219082</td>
<td>DQ219261</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDD - 75096</td>
<td>DQ218626</td>
<td>DQ218915</td>
<td>DQ219083</td>
<td>DQ219262</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 79910</td>
<td>—</td>
<td>DQ218916</td>
<td>DQ219084</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122651</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>DQ219085</td>
<td>DQ219263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122632</td>
<td>DQ218751</td>
<td>—</td>
<td>—</td>
<td>DQ219086</td>
<td>DQ219264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 38819</td>
<td>DQ218481</td>
<td>DQ218656</td>
<td>DQ218765</td>
<td>DQ219087</td>
<td>DQ219265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 36088</td>
<td>DQ218627</td>
<td>DQ218752</td>
<td>DQ218917</td>
<td>DQ219088</td>
<td>DQ219266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 1054289</td>
<td>DQ218628</td>
<td>DQ218753</td>
<td>DQ218918</td>
<td>DQ219089</td>
<td>DQ219267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 1563888</td>
<td>DQ218529</td>
<td>DQ218627</td>
<td>—</td>
<td>—</td>
<td>DQ219090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2063887</td>
<td>DQ218530</td>
<td>DQ215755</td>
<td>DQ218920</td>
<td>DQ219091</td>
<td>DQ219270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2063989</td>
<td>DQ218532</td>
<td>DQ218921</td>
<td>DQ219092</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122734</td>
<td>DQ218533</td>
<td>DQ218756</td>
<td>DQ218922</td>
<td>DQ219093</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2024221</td>
<td>DQ218534</td>
<td>—</td>
<td>DQ218923</td>
<td>DQ219094</td>
<td>DQ219271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2057239</td>
<td>DQ218535</td>
<td>DQ218757</td>
<td>DQ218924</td>
<td>DQ219095</td>
<td>DQ219272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2054561</td>
<td>DQ218536</td>
<td>—</td>
<td>DQ218925</td>
<td>DQ219096</td>
<td>DQ219273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 59709</td>
<td>DQ218537</td>
<td>—</td>
<td>—</td>
<td>DQ219097</td>
<td>DQ219274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122682</td>
<td>DQ218538</td>
<td>DQ218926</td>
<td>DQ219098</td>
<td>DQ219275</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122683</td>
<td>DQ218539</td>
<td>DQ218927</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 122684</td>
<td>DQ218540</td>
<td>DQ218758</td>
<td>DQ218928</td>
<td>DQ219099</td>
<td>DQ219276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 39531</td>
<td>DQ218541</td>
<td>—</td>
<td>DQ218929</td>
<td>DQ219100</td>
<td>DQ219277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUW - MB-02-012</td>
<td>DQ218507</td>
<td>DQ218682</td>
<td>DQ218791</td>
<td>DQ219101</td>
<td>DQ219278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 107657</td>
<td>AY574643</td>
<td>AY574717</td>
<td>AY574785</td>
<td>DQ219102</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDD - 76197</td>
<td>DQ218642</td>
<td>—</td>
<td>DQ218930</td>
<td>DQ219103</td>
<td>DQ219279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUW - MB-02-040</td>
<td>DQ218513</td>
<td>DQ218688</td>
<td>DQ218797</td>
<td>DQ219104</td>
<td>DQ219282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 107658</td>
<td>DQ218514</td>
<td>DQ218689</td>
<td>DQ218798</td>
<td>DQ219104</td>
<td>DQ219292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUW - s.n.</td>
<td>DQ218515</td>
<td>DQ218690</td>
<td>DQ218799</td>
<td>DQ219105</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - CUP1289</td>
<td>DQ218643</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>DQ219281</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - OKM2198</td>
<td>DQ218516</td>
<td>—</td>
<td>DQ218800</td>
<td>DQ219106</td>
<td>DQ219282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2063471</td>
<td>DQ218644</td>
<td>—</td>
<td>DQ218931</td>
<td>DQ219107</td>
<td>DQ219283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL - 2105835</td>
<td>DQ218645</td>
<td>DQ218759</td>
<td>DQ218932</td>
<td>DQ219108</td>
<td>DQ219284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFI - s.n.</td>
<td>DQ218646</td>
<td>—</td>
<td>DQ219109</td>
<td>DQ219285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - T2842</td>
<td>DQ218647</td>
<td>DQ218760</td>
<td>DQ218933</td>
<td>DQ219110</td>
<td>DQ219286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - Garido</td>
<td>DQ218518</td>
<td>DQ218693</td>
<td>DQ218802</td>
<td>DQ219111</td>
<td>DQ219287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2550-A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>DQ219287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 59689</td>
<td>DQ218648</td>
<td>—</td>
<td>DQ218934</td>
<td>DQ219112</td>
<td>DQ219288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - T2737</td>
<td>DQ218649</td>
<td>—</td>
<td>DQ218935</td>
<td>DQ219113</td>
<td>DQ219289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS - S. Miller</td>
<td>DQ218650</td>
<td>—</td>
<td>DQ218936</td>
<td>DQ219114</td>
<td>DQ219290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUW - JN 98/351</td>
<td>AF261555</td>
<td>—</td>
<td>DQ218937</td>
<td>—</td>
<td>DQ219291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB-02-016</td>
<td>DQ218521</td>
<td>DQ218696</td>
<td>DQ218806</td>
<td>DQ219115</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC - 65965</td>
<td>DQ218651</td>
<td>—</td>
<td>DQ218938</td>
<td>DQ219116</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The Pennsylvania State University Mushroom Culture Collection.

*Sequences were obtained from Assembling the Fungal Tree of Life website (http://afotol.org/data.php).
Supplementary Table II. The results of the ancestral character state reconstructions of the fruiting body type for Phallales clade: i. Taxa with uncertain fruiting body type (\(? \) in Fig. 2, Supplementary Fig. 2) were coded as nonsequestrate. ii. Taxa with uncertain fruiting body type were coded as sequestrate.

<table>
<thead>
<tr>
<th>Character state</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (= sequestrate)</td>
<td>5.012<sup>a</sup></td>
<td>4.720<sup>a</sup></td>
<td>4.189</td>
<td>5.608</td>
<td>5.221</td>
<td>10.486</td>
<td>4.881</td>
<td>4.021</td>
<td>4.161</td>
</tr>
<tr>
<td>1 (= nonsequestrate)</td>
<td>9.507</td>
<td>7.738</td>
<td>5.008</td>
<td><0.001<sup>d</sup></td>
<td><0.001<sup>d</sup></td>
<td><0.001<sup>d</sup></td>
<td><0.001<sup>d</sup></td>
<td><0.001<sup>d</sup></td>
<td><0.001<sup>d</sup></td>
</tr>
<tr>
<td>Probability<sup>a</sup></td>
<td>0.989</td>
<td>0.989</td>
<td>0.962</td>
<td>0.070</td>
<td>0.002</td>
<td><1.001</td>
<td>0.007</td>
<td>0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Parsimony<sup>b,c</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[ii]

<table>
<thead>
<tr>
<th>Character state</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (= nonsequestrate)</td>
<td>20.805</td>
<td>19.774</td>
<td>18.015</td>
<td>15.830<sup>a</sup></td>
<td>11.061</td>
<td>8.767<sup>a</sup></td>
<td>4.386<sup>a</sup></td>
<td>2.365<sup>d</sup></td>
<td>1.592</td>
</tr>
<tr>
<td>Probability<sup>a</sup></td>
<td>0.739</td>
<td>0.745</td>
<td>0.634</td>
<td>0.330</td>
<td>0.403</td>
<td><0.001</td>
<td>0.092</td>
<td>0.055</td>
<td>0.115</td>
</tr>
<tr>
<td>Parsimony<sup>b</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

^a Probabilities of state 0 (= sequestrate) obtained using the "testall" command of Multistate (Pagel 2003).

^b The results from parsimony-based reconstruction using MacClade (Maddison and Maddison 2003); 0 = sequestrate, 1 = nonsequestrate, E = equivocal.

^c The results were identical when taxa with uncertain fruiting body type were coded as polymorphic.

^d The results were considered significant with a difference of two or more units in log-likelihood scores.
SUPPLEMENTARY TABLE III. The results of the ancestral character state reconstructions of the fruiting body type for Geastrales clade

<table>
<thead>
<tr>
<th>Character state</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (= sequestrate)</td>
<td>10.788</td>
<td>8.763</td>
<td>8.168</td>
<td>7.541</td>
<td>6.872</td>
<td>1.982</td>
<td>1.998</td>
</tr>
<tr>
<td>1 (= nonsequestrate)</td>
<td>10.388</td>
<td>9.519</td>
<td>8.043</td>
<td>6.498</td>
<td>6.112</td>
<td>2.384</td>
<td>2.517</td>
</tr>
<tr>
<td>Probability*</td>
<td>0.401</td>
<td>0.588</td>
<td>0.576</td>
<td>0.222</td>
<td>0.136</td>
<td>0.198</td>
<td>0.159</td>
</tr>
<tr>
<td>Parsimony*</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>I</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Probabilities of state 0 (= sequestrate) obtained using the “testall” command of Multistate (Pagel 2003).

*b The results from parsimony-based reconstruction using MacClade (Maddison and Maddison 2003); 1 = nonsequestrate, E = equivocal.
Supplementary Table IV. The results of the ancestral character state reconstructions of the fruiting body type for Gomphales clade

<table>
<thead>
<tr>
<th>Character state</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (= sequestrate)</td>
<td>10.505</td>
<td>10.377</td>
<td>9.282</td>
<td>6.258</td>
<td>3.601<sup>c</sup></td>
<td><0.001<sup>c</sup></td>
</tr>
<tr>
<td>1 (= nongastroid)</td>
<td>7.278<sup>c</sup></td>
<td>6.733<sup>c</sup></td>
<td>6.504<sup>c</sup></td>
<td>6.300</td>
<td>6.279</td>
<td>10.613</td>
</tr>
<tr>
<td>Probability<sup>a</sup></td>
<td>0.038</td>
<td>0.012</td>
<td>0.007</td>
<td>0.016</td>
<td>0.086</td>
<td>0.995</td>
</tr>
<tr>
<td>Parsimony<sup>b</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

^a Probabilities of state 0 (= sequestrate) obtained using the "testall" command of Multistate (Pagel 2003).

^b The results from parsimony-based reconstruction using MacClade (Maddison and Maddison 2003); 0 = sequestrate, 1 = nonsequestrate.

^c The results were considered significant with a difference of two or more units in log-likelihood scores.