SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY
OF SMALL, FORESTED STREAMS

Marwan A. Hassan, Michael Church, Thomas E. Lisle, Francesco Brardinoni, Lee Benda, and Gordon E. Grant

ABSTRACT: This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by individual clasts or wood materials in the channel. Such channels are headwater channels in close proximity to sediment sources, so they reflect a mix of hillslope and channel processes. Sediment inputs are derived directly from adjacent hillslopes and from the channel banks. Morphologically significant sediments move mainly as bed load, mainly at low intensity, and there is no standard method for measurement. The larger clastic and woody elements in the channel form persistent structures that trap significant volumes of sediment, reducing sediment transport in the short term and substantially increasing channel stability. The presence of such structures makes modeling of sediment flux in these channels—a potential substitute for measurement—difficult. Channel morphology is discussed, with some emphasis on wood related features. The problem of classifying small channels is reviewed, and it is recognized that useful classifications are oriented. Reach scale and channel unit scale morphologies are categorized. A “disturbance cascade” is introduced to focus attention on sediment transfers through the slope channel system and to identify management practices that affect sediment dynamics and consequent channel morphology. Gaps in knowledge, errors, and uncertainties have been identified for future research.

INTRODUCTION

Forests significantly influence channel morphology and processes in streams. Particular effects are created by within channel accumulation of large woody debris (LWD) and by channel margin trees. Wood is critically important in regulating sediment transport and diversifying channel form, thereby also having major effects on aquatic and riparian ecology (e.g., Bisson et al., 1981; Sullivan, 1986; Bilby and Bisson, 1998). This paper presents a review of small forested stream dynamics, drawing primarily from research conducted in the Pacific Northwest region of North America.

Wood has its greatest effect in channels with dimensions similar to those of the larger wood pieces, hence smaller streams rather than larger rivers are most especially affected. Church (1992) characterized "small channels" as ones in which individual bed particles greatly influence channel morphology. On steeper gradients, step pool is a dominant bed form. Absolute width would normally be less than 3 to 5 m. He characterized “intermediate channels” as ones with width much greater than characteristic grain size that might still be influenced by blockage across most or all of the cross-section, most often by fallen woody debris. In forests, this might include channels up to 20 or 30 m in width. Particle accumulations greatly influence channel morphology, pool riffle being a typical bed form feature. According to the British Columbia channel classification (British Columbia
Ministry of Forests, 1996a,b), small and intermediate channels have a range of particle size/width ratio between 0.002 and 1.0, while relative roughness (particle size/depth) ranges from 0.1 to 1.6. Such channels are strongly influenced by the entry of wood into them. In contrast, large channels, with major bar development, meander-bend pools, and crossover riffles, are essentially hydraulically controlled, although significant wood accumulations might still occur on bar surfaces.

Whereas external sediment inputs such as mass wasting and bank collapse, along with wood accumulation, tend to dominate channel morphology – hence ecology – in small forest streams, larger channels are primarily affected by downstream fluvial sediment transport and bank erosion. “Small streams,” as discussed in this paper, would be classified as small or intermediate in the channel typology of Church (1992). His definitions are relative because sediment texture and forest morphology influence the size range of such channels in a particular environment. Insofar as they speak to process, they seem more appropriate than arbitrary classifications by absolute size.

The focus on small streams stems from recognition that these represent a distinct class of streams with distinctive morphologies, processes, and dynamics. There are, of course, small, low gradient channels present in a range of environments, from mountain meadows to lowland tributaries and secondary channels. Although important geomorphic and ecologic environments in their own right, these channels are not considered here. The focus of this paper is the steeper portions of the channel network where episodic sediment and wood inputs from adjacent slopes exert significant control on channel dynamics and morphology. In these channels significant amounts of LWD tend to control the amount of sediment stored within the channel and impact their stability (e.g., Swanson et al., 1982c; Bilby and Ward, 1989).

The concentration of wood in the channel decreases with increasing stream order and channel width, implying little impact of wood on channel morphology of high order streams (higher than fifth order) (e.g., Swanson et al., 1982c; Bilby and Ward, 1989). On the other hand, wood typically spans the smallest streams and has little hydraulic effect there. Consequently, attention will be focused on channels that are typically of third through fifth orders (as determined in the field), which are likely to contain significant amounts of wood.

The primary objective is to critically assess channel processes relevant to riparian management around steep, wood loaded streams and to identify gaps in knowledge. Most research has been focused on large and intermediate size channels of higher order. Due to the limited available information on small forested streams, certain information accumulated from larger mountain rivers will be included in this paper, and its applicability to small streams will be assessed.

First, the fundamental phenomenon of sediment transport is considered under the headings sources, mobilization, phases of transport, measurement, variability of transport, and modeling. Then channel morphology – the product of sediment transport and deposition – is introduced under the headings reach morphology, channel units, and channel classification. Finally, slope channel interactions and disturbance are considered, with some emphasis on timber harvesting and roads.

SEDIMENT TRANSPORT

Much research has been conducted into sediment transport processes and sediment transport rate prediction in rivers, mostly in relatively large rivers. Techniques conventionally used to calculate sediment transport in large rivers are not appropriate for headwater streams where episodic sediment supply from adjacent slopes, rather than the hydraulic conditions, dominates the sediment transport regime. LWD often constitutes a significant portion of material transported by forested streams (Bilby, 1981) and is a major impediment to the downstream progress of clastic material (e.g., Megahan, 1982; Rice and Church, 1996; Hogan et al., 1998).

The particulate sediment load of a stream is conventionally divided into suspended load – particles moving in the water column with their submerged weight supported by upwardly directed turbulent currents – and bed load – particles moving in contact with the bed. This division reflects the mechanics of movement and the conventional methods for measurement. A somewhat different division provides insight into channel formation and stability. Wash material is relatively fine material that moves directly through a reach without being deposited in the main channel, whereas bed material is the coarser material that is apt to be deposited and form the channel bed and banks. Wash material moves in suspension and is an important determinant of water quality; bed material may move either way. The movement of bed material along small channels will be the focus of this part of the review since that is what determines channel morphology (see Gomi et al., 2005, for a discussion of fine sediment dynamics). In headwater and mountain streams there is high correspondence between bed material and bed load. Hence, bed load will be considered.
Sediment Sources

Sediment is supplied to channels from surface erosion on slopes, mass wasting, stream banks, and tributaries. In small forested streams, where the channel usually is not bordered by a valley flat or well developed floodplain, rapid mass wasting and bank erosion are primary sources of sediment supply. Roberts and Church (1986; see also Church and Ryder, 2001) summarized sediment mobilization and yield from hillslopes in the Pacific Northwest in relation to forest practices (Table 1). They reported that episodic mass wasting provides the most significant input to channels while continually recurring processes such as surface erosion and soil creep are of relatively minor importance. Ditches, roads, and skid track surfaces are the main sources of fine sediment in harvested basins in the Pacific Northwest (e.g., O'Loughlin, 1972; Swanson et al., 1982c; Grant and Wolff, 1991; Montgomery, 1994, Megahan and Ketcheson, 1996). Table 2 summarizes sediment yield from episodic sources and delivery to channels for several harvested basins in British Columbia.

Sediment entering stream channels from adjacent slopes or upstream tributaries may be deposited immediately, to be remobilized and moved onward by fluvial processes at a later stage (Sutherland et al., 2002), or it may travel along the channel for some distance and be deposited in low gradient reaches or behind obstacles to form sediment wedges. In the former case, the channel may be partially dammed for a more or less protracted period. Sometimes, part of the deposit remains for a very long time to form persistent, complex channel morphology. In the latter case, on sufficiently steep gradients, the immediate onward movement of the sediment mass may take the form of a debris flow, a landslide like mass flow that typically entrains additional material from the channel bed and may scour it to bedrock (Swanson and Swanson, 1976; Miles and Kellerhals, 1981; Costa, 1984; Bovis and Dagg, 1988).

Debris flows may be relatively rare in individual channels unless there is a prolific source of sediment, but they are by no means rare in steep lands. Benda and Dunne (1987) have calculated that they constitute the dominant means by which sediment is delivered into the low order drainage system in the Pacific Northwest (see also Slaymaker, 1993). The behavior of a debris flow – in particular, how far it goes – depends on the fluid/debris mixture and on total momentum (hence size of the flow). Fine sediments hold water and can flow out onto quite low gradients, whereas sandy matrix material drains readily and tends to stop the flow on gradients of order 10° or more (Hungr et al., 1984). The total volume of material moved in a debris flow depends on initial volume, the distance of travel and the volume mobilized per unit length, which may be in the range 5 to 25 m3/m

TABLE 1. Sediment Mobilization and Yield From Hillside Slopes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Mobilization Rate</th>
<th>Yield Rate to Stream Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forested Slopes</td>
<td>Cleared Slopes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL REGIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Creep (including animal effects)</td>
<td>1 m³/km²/yr*</td>
<td>2x</td>
</tr>
<tr>
<td>Deep Seated Creep</td>
<td>10 m³/km²/yr*</td>
<td>1x</td>
</tr>
<tr>
<td>Tree Throw</td>
<td>1 m³/km²/yr</td>
<td></td>
</tr>
<tr>
<td>Surface Erosion: Forest Floor</td>
<td>< 10 m³/km²/yr</td>
<td></td>
</tr>
<tr>
<td>Surface Erosion: Landslide Scars, Gully Walls</td>
<td>> 10³ m³/km²/yr (road area only)</td>
<td>1x</td>
</tr>
<tr>
<td>Surface Erosion: Active Road Surface</td>
<td>-</td>
<td>10⁴ m³/km²/yr (road area only)</td>
</tr>
<tr>
<td>EPISODIC EVENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Slides</td>
<td>10² m³/km³/yr</td>
<td>2-100x</td>
</tr>
<tr>
<td>Rock Failures (fall, slide)</td>
<td>No consistent data: not specifically associated with land use</td>
<td></td>
</tr>
</tbody>
</table>

*These results reported as m³/km channel bank. All other results reported as m³/km² drainage area. Results are generalized to order of magnitude from a table that originally appeared in Roberts and Church (1986).
TABLE 2. Sediment Yield and Delivery to Channels in Several British Columbia Basins.

<table>
<thead>
<tr>
<th>Location</th>
<th>Area (km²)</th>
<th>Percent Logged</th>
<th>Sediment Delivery To</th>
<th>No. of Slope Failures</th>
<th>Yield (m³/km²/yr)</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natural</td>
<td>Logged</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natural</td>
<td>Logged</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapman Creek (API)</td>
<td>56.0</td>
<td>36.3</td>
<td>Permanent Streams</td>
<td>9</td>
<td>45</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>5</td>
<td>65</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>2</td>
<td>54</td>
<td>1.9</td>
</tr>
<tr>
<td>Centre Creek (API)</td>
<td>38.0</td>
<td>28.2</td>
<td>Permanent Streams</td>
<td>4</td>
<td>18</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>21</td>
<td>30</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>4</td>
<td>21</td>
<td>3.9</td>
</tr>
<tr>
<td>Nesakwatch Creek (API)</td>
<td>48</td>
<td>10.1</td>
<td>Permanent Streams</td>
<td>5</td>
<td>28</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>19</td>
<td>68</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>8</td>
<td>25</td>
<td>7.4</td>
</tr>
<tr>
<td>Howe Sound (API)</td>
<td>26.8</td>
<td>25</td>
<td>Permanent Streams</td>
<td>48</td>
<td>43</td>
<td>65.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>6</td>
<td>22</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>2</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>San Juan River1 (API)</td>
<td>517</td>
<td>25</td>
<td>Permanent Streams</td>
<td>83</td>
<td>246</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>39</td>
<td>115</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>12</td>
<td>91</td>
<td>1.3</td>
</tr>
<tr>
<td>Capilano River2 (API and ground checking)</td>
<td>12.9</td>
<td>27.9</td>
<td>Permanent Streams</td>
<td>69</td>
<td>25</td>
<td>175.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gullies</td>
<td>35</td>
<td>20</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>9</td>
<td>13</td>
<td>3.7</td>
</tr>
<tr>
<td>Queen Charlotte Islands3 (API)</td>
<td>350</td>
<td>13.4</td>
<td>Permanent Streams</td>
<td>264</td>
<td>119</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gully Connected</td>
<td>309</td>
<td>150</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchannelled Slopes</td>
<td>543</td>
<td>411</td>
<td>79</td>
</tr>
</tbody>
</table>

Notes: API = Air photo interpretation.
1Modified from Rood (1984).
2Modified from Brardinoni et al. (2003).

(Hungr et al., 1984; Fannin and Rollerson, 1993; Bovis et al., 1998). Typically, only a few hundred cubic meters are involved in initial mobilization, but flows commonly grow to volumes of order 10^3 to 10^5 m3.

Sediment from the stream bank is also entrained by water. In forested streams, roots provide strength to the bank so that bank material is much more susceptible to erosion below the rooting zone (e.g., Hickin, 1984). In boreal and temperate coniferous forests, even quite small streams (depth approximately 1 m) may scour below laterally spreading root systems. LWD positioned along banks can reduce bank erosion whereas diagonally oriented LWD may increase erosion by diverting flow toward a bank section (Keller and Swanson, 1979).

The response of a channel to external sediment supply depends on flood history (i.e., magnitude and sequence) and the sediment supply history. The temporal and spatial variation in the amount of within-channel sediment storage depends significantly on the supply from external sources (e.g., Swanson et al., 1982a; Benda, 1990). Consequently, flow events of the same magnitude may create different channel morphologies and sediment mobility (e.g., Buffington and Montgomery, 1999; Lisle et al., 2001). Ryan (2001) compared three streams which differ in rate of sediment supply and consequent channel morphology. Streams with a relatively large sediment supply have typically fine surface sediments and high sediment transport rates. In creeks with low sediment supply, the sediment transport rates are relatively low and the bed surface is well structured and typically coarse-textured (Ryan, 2001), consistent with experimental findings of Parker et al. (1982), Dietrich et al. (1989), and Hassan and Church (2000).

Internal sources of sediment supply occur within the stream channel. Bed material is entrained from sediment stored in pools or behind obstructions such as logs and boulders, including rarely moved clastic keystones and pieces of LWD (e.g., Whittaker, 1987; Lisle and Hilton, 1992). Mobilization may result from the displacement of the obstruction, suddenly releasing large volumes of sediment (Sidle, 1988; Smith et al., 1993a, 1993b). The localized release of large
sediment stores results in the movement of sediment in waves or pulses. Swanson et al. (1982a,b) and Megahan (1982) noted that the volume of temporarily stored material is usually more 10 times the average annual export of total particulate sediment. Thus changes in sediment storage can cause major changes in sediment yield even if there are no external sources. On the other hand, within channel sediment storage also delays and attenuates sediment waves introduced from external sources. Within channel storage of sediment can produce an event-scale hysteresis effect on transport, the sense and magnitude of the hysteresis loop depending on the amount of stored sediment and position along the channel (Meade, 1985) and the timing of sediment mobilization within the event.

Initiation of Motion

An outstanding characteristic of small channels is the high boundary roughness created both by the large clasts and by the frequent obstructions and rough banks that make up the boundary. This extracts much energy that might otherwise be available to mobilize bed material. The force exerted on the grains may be a small fraction of the total force exerted by the flow. The standard approach to predict sediment transport in stream channels is to suppose that an unrestricted supply of material is available in the channel, and that it is moved in quantities that are fundamentally correlated with the forces imposed by the water flow. However, it is first necessary for the flow to pass some threshold required to entrain any material at all.

The pioneering modern investigation of the shear stress needed to initiate the movement of uniform grain sizes was by Shields (1936). On the basis of experiments with narrowly graded sediments, he determined that, for particles larger than 5 mm, the scaled shear stress (dimensionless mobility number scaled by grain size) is constant at about 0.06. This means that the dimensioned critical shear stress increases in simple proportion to grain size. Assuming that individual grain size fractions in a mixture have no influence on each other, the force needed to initiate movement of a given size would be equal to that in a uniform bed composed of that size. Larger material in narrowly graded sediments would be left behind when fine material moves away.

While Shields’ equation appears to work well in fine and well sorted sediments, its application to the poorly sorted sediment typical of small forested channels has proven more difficult. Prediction of the initiating conditions for nonuniform sediment motion remains an open question requiring consideration of bed surface texture and structures.

If there is a wide range of grain sizes in the bed, the larger grains may be moved more easily because they are more exposed and the position of the pivot point about which they move is lower than that of smaller grains (e.g., Komar and Li, 1988). Correspondingly, the smaller grains may be sheltered from the flow and their movement may be obstructed by the larger ones (e.g., Parker and Klingeman, 1982). In steep streams, Shields’ criterion may be modified to take into account the particle’s downslope weight (e.g., Graf, 1971; Mizuyama, 1977; Rickenmann, 1990, 2001). The effect of gravity on the relative motion of small and large particles in steep channels has been examined by Solari and Parker (2000). They found that large particles are more mobile than small ones on gradients greater than about 2 percent. These phenomena tend to reduce the range of dimensioned shear stresses over which mobilization of all sizes occurs.

Still, in heterogeneous sediments, there is no single flow (or mobility number) above which all clasts of the same size will move (Wilcock and McArdell, 1993, 1997). Furthermore, bed surface structures, such as imbrications and bed forms, restrain part or all of the beds until higher forces are applied (Church et al., 1998). Large parts of the bed remain stable during small and medium size events (e.g., Lauffer and Sommer, 1982) while, during large events, the bed surface structures are destroyed and the channel is freighted with a large amount of sediment (Jaeggi, 1995). In summary, for poorly sorted sediments a range of threshold mobility numbers has been reported from 0.01 to more than 0.1 (e.g., Church, 1978; Buffington and Montgomery, 1997).

Sediment mobilization in steep headwater streams is ultimately controlled by sediment supply from outside the channel and by the step pool and boulder morphology. These morphologies are controlled by the large individual grains that form stable steps or by woody debris that performs a similar role. While some of the key material is moved by running water, many of the channel morphological elements are supplied to the channel by nonfluvial processes such as debris flows and debris slides. Fluvial sediment entrainment depends upon the particle location within the highly structured (e.g., step pool) morphology. The overlap between fluvial and nonfluvial processes (e.g., Montgomery and Buffington, 1997) in controlling the bed stability makes modeling of the system difficult (see Benda and Dunne, 1997b). Therefore, the question of channel stability in these streams is still largely an open question in fluvial geomorphology that needs to be further studied.
Bed Material Transport Phases

Field studies of sediment transport in gravel bed rivers have identified two (e.g., Jackson and Beschta, 1982; Klingeman and Emmett, 1982; Andrews, 1983) or three phases (Ashworth and Ferguson, 1989; Warburton, 1992) of transport (Figure 1). In two-phase models, Phase I occurs when fine material, mainly sand, moves over a stable bed; Phase II occurs during higher flows when coarser material is entrained locally. In Ashworth and Ferguson's (1989) three-phase model of transport, Phase I consists of over passing sand; Phase II occurs during moderate flows when size selective entrainment and transport of local bed material occurs; and Phase III occurs during the highest flows under conditions of effectively equal mobility of all sizes (Parker et al., 1982). Ashworth and Ferguson's Phases I and III correspond to Wilcock and McArdell's (1993, 1997) partial mobility (only some of the exposed grains in a given size range experience entrainment within a period of time) and to classical full mobility, respectively (Figure 1). In Figure 1b, the scaled fractional transport rate is computed as \(q_b \rho_i / f_i \), where \(q_b \) is the sediment transport rate (g/m s), \(\rho_i \) is the proportion of each size fraction \(i \) present in the transported material, and \(f_i \) is the proportion of each size fraction in the bulk bed sediment. Distinctions are made between overpassing, partial mobility, and full mobility.

Phase I conditions cover a relatively narrow range of discharges. Gravel sizes are likely to be mobile only at the transition to and during Phase II (e.g., Andrews, 1983). In almost all places and times in forest streams, Phases I and II dominate the sediment transport regime while Phase III occurs at relatively extreme flows. In sufficiently steep channels, Phase III transport may develop into a "debris flood," a condition of very high transport in which substantially the entire bed moves (e.g., Warburton, 1992). Debris floods give rise to lobate wedges of gravel when the material is deposited. It is likely that they are restricted to intermediate gradients (< 15 degrees) since, on steep gradients (> 15 degrees), they are apt to propagate into debris flows. The essential difference between these phenomena is that, whereas the former remains essentially a fluid flow with sediment traction, the latter is a landslide like flow of a more or less homogeneous sediment-water mixture possessing distinct rheology. There is little systematic documentation of debris floods, which should be distinguished from so-called "hyperconcentrated flows." The latter entail sediment concentrations in the water column of greater than 40 percent by weight (20 percent by volume) (see Costa, 1988; Jakob and Jordan, 2001). Such unusually high suspended sediment concentrations modify the turbulent flow. Debris floods feature unusually high bed load transport in steep, coarse grained channels which may, or may not, be associated with suspended sediment hyperconcentration.

In channels with strongly structured beds, the onset and duration of Phase II and Phase III transport is strongly constrained. Long term measurements of bed material yield in steep streams in Austria revealed very little sediment movement during floods and showed that the actual sediment transport rate is much lower than the theoretical (that is, functionally estimated) transport capacity (Lauffer and Sommer, 1982). Furthermore, the size distribution of the bed load material was much finer than the armor surface layer, implying that the surface remained intact during most observed floods (see Lauffer and Sommer, 1982, Figure 6, p. 442).

Recently, Zimmerman and Church (2001) identified three distinct sediment populations in a step pool.
channel, each exhibiting a characteristic degree of stability. The coarsest population includes the boulders that form the step keystones, which appear to be immobile under commonly recurring flows (keystones have been reported by Grant et al., 1990 to be mobilized during flows with return period of 25 to 50 years). The loose cobble population in the pools appears to be mobile once every few years. There is also a granule gravel population which is found as lee side "shadow" deposits and is the most mobile sediment found in the channel. At the bankfull flow condition measured by Zimmerman and Church (2001) it appeared that the loose cobble population was on the threshold of motion. Ryan (1994), Adenlolf and Wohl (1994), and Blizard and Wohl (1998) similarly found that a relatively small amount of fine material moves during a flow event and most of the channel bed remains stable. The distinct sediment populations identified by Zimmerman and Church (2001) probably can be associated with the three transport phases in such channels.

Ryan and Troendle (1996) developed rating curves for bed load transport in St. Louis Creek, a cobbie boulder stream in Colorado. They then related the rating curves to bed load transport phases and flow conditions relative to bankfull discharge. Phase I (phase zero in their terminology) transport occurred at half bankfull discharge, Phase II was observed between 70 and 100 percent bankfull discharge, and it seems that Phase III is associated with flow well beyond bankfull stage (Andrews, 1984; Ryan and Troendle, 1996). Bankfull discharge in the study site occurs typically between 5 and 20 days per year (or about 1.4 to 5.5 percent of the time). These estimates concur with that of Andrews (1984), who lists a range for the bankfull discharge between 0.12 and 6.5 percent of the time for a number of streams in Colorado. The return frequency and duration for Phase III type transport are difficult to estimate but might be related to the decades length estimates of Grant et al. (1990) for boulder mobilization.

In summary, streambed structure and particle caliber appear to dictate the transport mechanisms of bed material within the channel. Phase III transport likely occurs only in debris floods, and sediment transport normally is restricted to Phase I even though this phase may encompass the transport of only granule gravel. With a characteristically wide spread in particle size distribution, the unavoidably selective transport results in bed load being finer — usually much finer — than the streambed surface material (e.g., Lisle, 1995).

Measurement of Bed Material Load

In forest headwater streams, measurement of bed material load is customarily considered to be equivalent to measuring bed load. Bed load measurements have been made using box or basket samplers, pit traps, and magnetic detection devices, and by observing weir ponds and tracers. Bed material transport occurs under relatively high flow conditions for a very short period of time (previous section), and therefore it is difficult to measure. This is particularly true in step-pool and boulder streams in which the operation of bed load sampling devices is difficult.

Weir ponds provide volumetric total bed material transport between surveys and particle size distribution of the integrated sample (e.g., Ryan and Troendle 1997; Gomi, 2002). Data of this nature provide a record of long-term sediment yield but the information is limited in temporal detail (Troendle et al., 1996). Pit traps have been deployed successfully in small gravel bed rivers in a wide range of environments (e.g., Milhou, 1973; Hayward, 1980; Reid et al., 1980; Sawada et al., 1983; Kuhnle, 1992; Reid and Laronne, 1995). Traps are assumed to yield relatively good estimates of event bed load transport (Sterling and Church, 2002) and are recommended for small forested streams. However, they provide only period average or event transport rates, unless continuous weighing devices such as pressure transducers (e.g., Reid et al., 1980) are installed beneath them.

Box and basket samplers provide site specific or cross-sectional averages of transport rate and sediment texture. A large number of samples are needed in order to derive an acceptable estimate of sediment transport rate, which is expensive, time-consuming, and labor intensive (e.g., Emmett, 1980; Hubbell et al., 1985; Ryan and Emmett, 2002). The Helley-Smith sampler is the most commonly used, however, it was designed for use in coarse sand and granule-gravel beds (Helley and Smith, 1971) and is known to produce biased results in coarse materials (Sterling and Church, 2002).

Automatic detection systems can track the movement of natural or artificial, inserted magnetic tracers. The underlying principle is that when a magnet passes over an iron cored coil of wire, a measurable electrical pulse is generated (e.g., Ergenzinger and Custer 1983; Reid et al., 1984; Bunte, 1996). This type of system provides in situ continuous measurements of bed load movement during flow events, and an unlimited number of stones can be recorded. A system has been developed and tested by Tunnard et al. (2000) that promises a high resolution picture of bed load transport activity. The main advantage of these systems is the automatic detection of the traced
particles, but they require relatively sophisticated data recording and analysis. There also remain difficulties to translate stone count rates into mass flux rates.

Recovered tracers can be used to estimate volumetric sediment transport, three-dimensional dispersion of sediment, and flow competence, but their deployment and recovery are labor intensive. Studies using magnetic tracers have been conducted in the Pacific Northwest, including Hassan and Church (1992, 1994), O'Connor (1994), Gottesfeld (1998), and Haschenburger and Church (1998). Hassan and Ergenzinger (2003) provide a comprehensive review of the available techniques.

Finally, scour chains have been used to estimate depth of scour and fill, depth of the active layer, and sediment mixing between the surface and the subsurface (e.g., Leopold et al., 1964; Hassan, 1990; O'Connor, 1994; Montgomery et al., 1996a; De Vries, 1997; Haschenburger, 1999; De Vries et al., 2001). This information is directly related to bed material flux.

Box or basket type bed load samplers remain the most frequently used method because of their logistical simplicity, even in headwater streams, but there is little agreement as to what is considered to be a valid sampling scheme in any fluvial system. The best sampler for obtaining true sediment transport rates in gravel bed rivers remains undecided (Ryan and Troendle, 1996).

Variations in Sediment Transport

A number of studies have examined the short term variation in sediment transport through a flood hydrograph (cf., Williams, 1989). For a given flow, the sediment transport rate on the rising limb of the hydrograph often is higher than that on the falling limb (clockwise hysteresis) (Figure 2a) (O'Loughlin et al., 1978; Paustian and Beschta, 1979). This variation is due to sediment supplied between floods that are mobilized as soon as flow increases. Counter-clockwise hysteresis (Figure 2b) occurs on a well packed and armored stream bed where little sediment moves until the armor layer is disrupted, usually near peak flow. Then, relatively large amounts of sediment move during the falling limb (Milhous, 1973; Reid et al., 1985; Lisle, 1989). Gomi (2002) reported both clockwise and counter-clockwise hysteresis in bed load transport, depending on the amount of sediment stored within the channel system and the inputs from adjacent slopes and bank collapses. During a flood the bed load transport rate often peaks with or after the peak discharge (e.g., Paustian and Beschta, 1979; Reid et al., 1985; Moog and Whiting, 1998). The latter authors further demonstrated clockwise variation in bed load at seasonal time scale.

![Figure 2](image-url)

In almost all reported cases, the bed load fluctuates for a given flow condition with time scale ranging from a few minutes to two or three hours, depending on the channel size (e.g., Reid et al., 1985). The texture of the mobile sediment also may vary significantly during the course of a flow event (Hayward, 1980; Hassan and Church, 2001). It has been suggested that short term variations result from partial destruction of the armor layer (e.g., Milhous, 1973), the differential pattern of scour and fill in relation to channel morphology (e.g., Andrews, 1979), turbulent fluctuations in flow velocity (DeJong, 1995), the development and destruction of small scale bed forms such as pebble clusters or stone cells, and micro-scale eddies developing around obstacles (Reid et al., 1985; Hassan and Reid, 1990; Hassan and Woodsmith, 2004).

Variations in the sediment transport rate over longer periods of time are associated with episodic sediment supply from slopes and banks (Gintz et al., 1996; Ryan, 1997) and from sediment stored within the fluvial system behind LWD and bars (e.g., Lisle, 1986; Adenlof and Wohl, 1994). Gomi (2002) examined the influence of woody debris on sediment movement and storage in relation to timber harvesting and
episodic sediment supply in headwater streams. He found that the availability of sediment and woody debris alters the threshold for sediment entrainment, transport processes, and sediment storage. Sediment supply and the abundance of woody debris are the main controls of particle travel distance. For example, a large sediment supply results in an increased distance of movement (Gomi, 2002). Rice and Church (1996) related scour depth and particle travel distance to log jam characteristics such as age, integrity, and span: old jams are likely to be more permeable than younger ones, allowing more sediment to move through. They found that tracers placed on the upstream side of young, impermeable jams remained in place whereas tracers placed on the downstream side of the jam moved for a relatively short distance. In the case of old, permeable jams, most of the upstream tracers moved and surpassed those placed on the downstream side of the jam. These results strongly suggest that jam conditions exert significant influence on sediment mobility.

A number of studies have linked temporal variations in sediment transport to secular variations in sediment supply from outside the channel system (e.g., Dietrich et al., 1989; Ryan, 2001). Mass wasting inputs triggered by large storms or caused by forest practices or fire increase the sediment supply to channels. In streams where the transport capacity exceeds normal sediment supply, little sediment is stored within the channel so sediment transport is directly linked to episodic mass wasting inputs (e.g., Nanson, 1974). Major sediment supplies due to mass wasting may have a long term influence on both sediment transport and channel morphology.

There is evidence that episodic, rapid wedge deposition and relatively slow fluvial erosion operate cyclically with time scales ranging from decades to centuries (Pearce and Watson, 1983; Benda, 1990). This may be the case after mass wasting events associated with timber harvesting (e.g., Megahan, 1982; Wohl et al., 1993; Madej and Ozaki, 1996; Benda and Dunne, 1997a) or fire (Swanson, 1981; Meyer et al., 1992; Benda and Dunne, 1997a). However, Lancaster et al. (2001) suggested that LWD attenuates the movement of sediment in headwater streams such that coherent waves of sediment, as observed by Roberts and Church (1986), Miller and Benda (2000), or as modeled by Benda and Dunne (1997b), are not likely to occur where wood debris dominates the channel. However, LWD can act as a “valve” by temporarily storing and then releasing sediment from an advancing wave front. The Lancaster et al. (2001) model does not account for such a sediment wave. LWD jams are rarely tight, but release sediment as they partially float during a high flow event, when they often shift or break up. Thus, the wave does not disappear but is modified by punctuated and complex storage and releases by wood.

Models of Bed Material Transport

In headwater streams, predictions of sediment transport rate via hydraulically-based functional relations are often an order of magnitude greater than measured rates. These discrepancies have been explained by the dominance of step pool and boulder morphology, heavy bed surface armoring, and low sediment availability. Sawada et al. (1983) examined the impact of step pool morphology on the total bed load. They showed major shifts in bed load discharge relations as a result of variations in the volume of gravel stored in the pools. Discrepancies also are related to the assumptions that underlie the models: uniform sediment, general movement of sediment, and no consideration of the impact of sediment supply on sediment mobility. For modeling sediment transport in headwater streams it is important to distinguish between phases of transport and to recognize supply-limitation or transport limitation. More than two orders of magnitude variability in sediment transport have been attributed to in-channel scour (e.g., Jackson and Beschta, 1982) and to episodic supply of sediment from external sources (e.g., Hayward, 1980).

Recognition of the distinct character of steep mountain streams has prompted focused flume and field studies (e.g., Mizuyama, 1977; Smart and Jaeggi, 1983; Rickenmann, 1990; D'Agostino and Lenzi, 1999; Lenzi et al., 1999). After experimental trials, Smart and Jaeggi (1983) extended the well known Meyer-Peter and Muller (1948) bed load formula to gradients of about 20 percent (11 degrees). Bathurst et al. (1987) modified Schoklitsch's (1962) formula for channels with up to 9 percent (5 degrees) gradient, but noted limited predictive success in rivers where sediment supply limitation is an important problem. Rickenmann (1990) conducted steep flume experiments using various clay concentrations in water. He developed a formula to calculate sediment transport for both clear water (no clay) and hyperconcentrated flows on gradients ranging between 5 and 20 percent by modifying the Bathurst et al. (1987) formula through the addition of a suspension density factor.

A large number of deterministic and stochastic mathematical models have been developed to describe sediment transport. Most formulae are based on tractive force or on the concept of stream power, both of which are highly correlated, in the mean, with streamflow. The complex nature of sediment transport leads to a situation in which almost all bed load equations contain, directly or indirectly, an empirical element. The performance of bed load formulae in steep
Incorporate some information about sediment supply. These circumstances greatly complicate information from headwater streams remains limited. In the dominant, channel morphologies associated with falling flow stages, or to all events (Klingeman and Bettess, 1984; Ferguson, 1994; Lenzi (1999). They reported good agreements between measured and computed bed load volumes, over time interval ranging from a few tens of minutes to the whole flood, using Bagnold's (1956) formula, the Smart and Jaeggi (1983) extension of the Meyer-Peter and Muller formula, and Rickenmann's formula (1990, 1992). Modification of the Bathurst et al. (1987) formula also provided reasonable estimates for instantaneous transport rates and limited sediment supply conditions.

The relevance of formulated transport relations in headwater streams remains limited. In the dominant, tractive force approach, flow depth is part of the stream force calculation. Due to the difficulty of measuring depth accurately in boulder bed streams, estimates of the mean flow depth using conventional methods are highly unreliable and are often subject to significant errors. Field studies often report water discharge, and so the transport function is converted to a discharge-based correlation (e.g. Schoklitsch, 1962; Bettess, 1984; Ferguson, 1994; Lenzi et al., 1999; D'Agostino and Lenzi, 1999).

Since bed material transport occurs during short periods of time, seasonally and within single flow events, wholly empirical rating curves relating sediment transport rate to flow discharge have also been studied, but results are highly unstable and site specific (Hassan and Church, 2001). Where hysteresis is present, no single rating relation between sediment and water discharge can be applied to both rising and falling flow stages, or to all events (Klingeman and Emmett, 1982; Hassan and Church, 2001). For these reasons only a limited number of studies have explored the possibility to apply rating curves to the prediction of sediment transport rates (e.g., Adenlof and Wohl, 1994; Moog and Whiting, 1998; Emmett and Wolman, 2001).

For the development of a reliable model, a better understanding of the relations amongst flow, sediment transport, and sediment supply is needed. A sophisticated model of channel bed stability will be required to describe conditions in structured mountain channels, and it appears that a successful model for sediment transport in such channels will have to incorporate some information about sediment supply. These circumstances greatly complicate information requirements for modeling.

CHANNEL MORPHOLOGY

The channel morphology of headwater streams is influenced by nonfluvial inputs of sediment and wood from adjacent slopes. Boundary elements include bedrock, hillslope colluvium, and rooted vegetation. There is also a continuum of particle sizes in upland channels from those that move frequently to those that do not move at all. The channel may incorporate lag boulders of the same size as channel depth (Grant et al., 1990; Church, 1992) or larger. Accordingly, their morphology reflects the irregular addition of non-alluvial elements and alluvium forced into storage by those elements. The objectives of this review include the following: to describe reach morphology in small, forested streams; to describe channel unit morphology in small alluvial streams; and to describe briefly the forced channel morphologies associated with LWD.

Reach Morphology

A reach is a length of channel under the influence of uniform governing conditions, hence exhibiting uniform morphology. Channel reaches are several (usually > 10) to many channel widths in length (Montgomery and Buffington, 1998). The reach may be characterized by hydrology, bed material, bed forms, channel planform, ecology, or a combination of all these features (Wohl, 2000). Headwater reaches are classified into bedrock, colluvial, and alluvial types, described briefly in the following paragraphs (for more detailed descriptions see Benda and Dunne, 1987; Grant et al., 1990; Montgomery and Buffington, 1997; and Wohl, 2000).

Bedrock reaches lack alluvial deposits. They are characteristically steep and sediment supply limited (sediment transport capacity is greater than supply rate). Bedrock reaches are usually located in the uppermost part of steep drainage basins. Constrained by rock outcrops, they differ in form and development from alluvial reaches. Their characteristics are determined jointly by flow and sediment transport rate — which influence abrasion of the rock boundary — rock jointing and/or bedding, and the resistance of bedrock to abrasion and weathering processes, which influence the rate and style of erosion (see Tinkler and Wohl, 1998). Temporary storage of material supplied by episodic events can change bedrock reaches into colluvial reaches (Benda, 1990) whereas debris flows may scour the reach, exposing bedrock (Swanson and Swanson, 1976; Grant et al., 1984).

Colluvial reaches are channels that contain material derived from adjacent hillslopes. A variety of processes supply sediment to the reach, including soil creep, surface erosion, debris slides, tree throw, and burrowing by animals (Roberts and Church, 1986; Benda and Dunne, 1987; Montgomery and Dietrich, 1988; Montgomery and Buffington, 1998). Such reaches normally have insufficient stream power available to transport the boulders and wood pieces introduced...
into the channel (Montgomery and Buffington, 1998) which, along with bedrock steps, constitute large roughness elements.

Alluvial reaches are channels that contain stream deposited sediments. They are transport limited channels characterized by a wide range of bed morphologies reflecting the interactions amongst flow regime, sediment supply rate and characteristics, sediment transport regime, and geomorphic and geologic setting (e.g., gradient, confinement, lag deposits). Channel morphologies in alluvial reaches in small, forested streams are described in the section following.

Montgomery et al. (1996b) examined the distribution of reach types in forested streams. They described the threshold between bedrock and alluvial channels using a model that relates the local sediment transport regime to the sediment supply. The threshold for the excess of either sediment or sediment transporting capacity is expressed in terms of slope and drainage area (Figure 3).

Montgomery et al. (1996b) found that inputs of LWD to bedrock reaches could force the establishment of alluvial reaches. In a more detailed, field-based study, Massong and Montgomery (2000) examined the influences of lithology, local variation in sediment supply, and LWD on the distribution of bedrock and alluvial reaches in mountain streams. Their field evidence confirms the assumption that LWD can change a bedrock reach into an alluvial reach. Average gradient is reduced significantly where the change occurs. Furthermore, they reported that the bedrock alluvial threshold varies with lithology, sediment supply, and local flow obstructions. They concluded that, in their study area, the LWD distribution exerts a strong influence on the distribution of bedrock and alluvial reaches.

Channel Unit Morphology

A channel unit is a morphologically distinct portion of channel, usually one to a few channel widths in length. Mountain headwaters exhibit very variable units (Grant et al., 1990; Hawkins et al., 1993), over which there is some confusion of terminology. Here, the most commonly used terms are adopted, following the summary given in Table 3. For practical reasons, also, “forced” and “free” morphologies are distinguished. This distinction creates some problems because step-pool is included in the free morphologies (as is usual in the literature) yet it is in fact a forced one.

Boulder Cascade. Boulder cascades are steep channels characterized by longitudinally and laterally disorganized cobbles and boulders with small, non-channel spanning “pocket” pools among them (Sullivan, 1986; Montgomery and Buffington, 1993, 1997, 1998). During low to moderate flow events in cascade reaches, fine gravels move whereas boulders are rarely mobile (Grant et al., 1990). Grant et al. (1990) described the flow in cascade reaches as water tumbling over boulders and turbulence around them which dissipates flow energy (see also, Sullivan, 1986; Montgomery and Buffington, 1997). Relative roughness is near or greater than 1.0. Such reaches are found on gradients greater than 4 percent, mainly considerably greater and, in the smallest channels, may be as steep as 45 percent (Halwas and Church, 2002). They probably form by limited movement and stabilization of lag colluvial boulders and quite probably should be regarded as a colluvial, rather than an alluvial, morphology.

Step-Pool. Channel steps, formed by boulders or logs, create significant channel morphologies in small streams (e.g., Hayward, 1980; Likens and Bilby, 1982; Chin, 1989; Grant et al., 1990). At low flows, they appear as a series of steps with water moving slowly through pools and flowing over steps into the next pool, forming a waterfall (Hayward, 1980). At high flow, relative roughness is near 1.0. Step-pool sequences are characteristic features of headwater streams with average reach gradients greater than 3 percent (Hayward, 1980; Whittaker, 1987; Chin, 1989; Abrahams et al., 1995; Gomi et al., 2003) and occur at gradients up to 30 percent (Montgomery and Buffington, 1997; Halwas and Church, 2002). Judd and Peterson (1969) reported that the more steep the channel gradient becomes, the more prominent and
regularly spaced the steps. Abrahams et al. (1995) suggested that step pools maximize resistance, therefore stabilizing the bed surface. Both field and flume studies support these findings.

Grant et al. (1990) listed conditions for the development of step pools: low sediment supply, large boulders, immobile except during the largest events (hence the claim that these are forced morphologies), and channels with a low width-to-depth ratio. There remains controversy over the mechanism of step formation (compare Grant, 1994; Abrahams et al., 1995; Chin, 1999; Zimmerman and Church, 2001). Step height is largely controlled by the size of the forming boulders, whilst step length and slope are negatively related (Whittaker, 1987; Chin, 1989; Grant et al., 1990). This implies that step size is close to constant along a reach, any increase in channel slope being modulated by reduced spacing between the steps (Knighton, 1998). It has been suggested that step pools are insensitive to change in flow regime even during extreme conditions (Ryan, 1994) and to both sediment yield and flow regime changes caused by timber harvesting (e.g., Madsen, 1995; Montgomery and Buffington, 1997).

Rapid (plane bed). Ikeda (1975) and Montgomery and Buffington (1997) described relatively featureless gravel channel units with moderate gradients in which pools are typically absent as “plane beds.” To avoid confusion with the plane bed regime well established in sand bed hydraulics, Zimmerman and Church (2001) suggested the term “rapid” for this morphology. The typical range of gradients is 2 to 10 percent and relative roughness is of order 0.5 to 1.0. The well armored surface (Buffington, 1985; cited in Montgomery and Buffington, 1998) is associated with features such as clusters, stone lines, and stone nets (Church et al., 1998) that indicate relative stability.

Table 3. Summary of Channel Unit Morphology and Gradient Ranges of Steep, Erosional Channels.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Pool</th>
<th>Glide</th>
<th>Rifflle</th>
<th>Rapid</th>
<th>Cascade</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisson et al., 1981</td>
<td>S < 0.01</td>
<td>0.01<S<0.02</td>
<td>0.01<S<0.04</td>
<td>S > 0.04</td>
<td>Steepest rock, boulder, or LWD jams</td>
<td></td>
</tr>
<tr>
<td>Sullivan, 1986</td>
<td>S < 0.01</td>
<td>0.01<S<0.02</td>
<td>0.01<S<0.04</td>
<td>S > 0.04</td>
<td>Many channel subunits identified</td>
<td></td>
</tr>
<tr>
<td>Grant et al., 1990</td>
<td>S ~ 0.005</td>
<td><S> = 0.11</td>
<td><S> = 0.029</td>
<td><S> = 0.055</td>
<td>Channel subunits 0.4-0.8w; channel units 1-10w; channel reach 100-1,000w; steps have <S> = 0.17</td>
<td></td>
</tr>
<tr>
<td>Wood-Smith and Buffington, 1986</td>
<td>closed topography</td>
<td>S_b<0.02</td>
<td>0.02<S_b<0.04</td>
<td>-</td>
<td>S_b>0.04</td>
<td>Modified from Bisson et al. (1981), and Sullivan (1986); overall stream gradients <0.025</td>
</tr>
<tr>
<td>Montgomery and Buffington, 1997</td>
<td><S> = 0.01 for “plane bed”</td>
<td>-</td>
<td>“step pool”</td>
<td><S> = 0.11</td>
<td>Gradients are means over several channel widths</td>
<td></td>
</tr>
<tr>
<td>Halwas and Church, 2002</td>
<td>Closed topography</td>
<td><S_b> = 0.06</td>
<td>step pools</td>
<td><S_b> = 0.45</td>
<td>Small channels, S_b<0.25, generally</td>
<td></td>
</tr>
</tbody>
</table>

Notes: S = water surface slope; S_b = bed slope; <S> = mean water surface slope; <S_b> = mean bed slope; D/d = relative roughness (D = particle size; d = water depth). Most results follow Bisson et al. (1981), and Sullivan (1986), with amendments by Grant et al. (1990). The results of Montgomery and Buffington (1997), and of Halwas and Church (2002) are not comparable with the rest. Montgomery and Buffington (1997) measured mean gradients over some distance; Halwas and Church (2002) observed much smaller streams than all others (from Church, 2002, Table 1:547; and Halwas and Church, 2002, Table 6:255).
and a supply limited sediment transport regime (cf., Dietrich et al., 1989). Partial destruction of the bed surface, typically at near-bankfull flow, may increase the transport rate from Phase I to Phase II (Church et al., 1998; Sullivan and Church, 2001). According to Montgomery and Buffington (1997) rapid reaches represent a transition between supply limited and transport limited reaches.

Pool and Ripple. Pool and ripple morphology is associated with floodplains and they are important aquatic habitat (e.g., Leopold et al., 1964; Sullivan, 1986). In gravel bed rivers the channel bed undulates in alternating shallow zones called riffles and deep zones called pools (e.g., Leopold et al., 1964; Keller, 1971; Sullivan, 1986; Grant et al., 1990; Montgomery and Buffington, 1997). Pool ripple morphology forms in reaches with gradient less than 2 percent and is well expressed at gradients of order 1 percent and less. The ripples and associated barforms consist of vertically piled accumulations of many clasts, so relative roughness is much less than 1.0. Ripples mediate energy expenditure in a manner that promotes channel stability. These elements appear to develop by selective scour and deposition along the channel so that relatively large material collects (or remains exposed) on the ripples. Alternatively, nonfluvial features, such as exposed bedrock, rockfall or landslide debris may form such a feature.

In free formed pool ripple reaches, the pool/pool spacing averages five to seven channel widths (Leopold et al., 1964). Shorter spacing, between 1 and 5 channel widths, has been reported for forest streams (e.g., Keller et al., 1981; Grant et al., 1990; Hogan et al., 1998). It has been suggested that the wide range of values obtained for forest streams is related to non-alluvial pool forming features such as LWD jams (Myers and Swanson, 1997; Hogan et al., 1998). Montgomery et al. (1995) reported that pool spacing indeed depends on LWD loading as well as channel type, slope, and width.

Forced Morphology. In forested streams, LWD and bedrock outcrops influence channel morphology, flow and sediment transport (e.g., Lisle, 1986; Hassan and Woodsmith, 2004). These elements cause "forced" morphologies (Montgomery and Buffington, 1993, 1997). Log steps are one of the most common features in small, forested streams. They form when individual pieces of wood come to rest across a channel (e.g., Hogan, 1986). Like boulder or rock steps, log steps create a stepped longitudinal profile, alter flow, dissipate energy, and store sediment (e.g., Keller and Swanson, 1979). Transversely oriented logs are associated with plunge pools and hydraulic jumps which are very effective in dissipating energy and storing sediment (Keller and Swanson, 1979; Montgomery and Buffington, 1997, 1998). Obliquely oriented logs are associated with scour pools and store sediment on both sides by upstream buttressing and downstream low energy zones (Smith et al., 1993b; Montgomery and Buffington, 1998). In forested streams, LWD alters the flow pattern and sediment passage, which may lead to the development of forced riffle pool morphology on a gradient reduced by sediment accumulation (Montgomery and Buffington, 1997, 1998). Forced pool riffles associated with LWD may replace rapid or bedrock channels (Montgomery et al., 1995). Furthermore, Montgomery and Buffington (1998) speculated that LWD might force the development of step-pool features in cascade or bedrock channels.

Stream Classification

Streams are complex systems that defy simply classification. Stream classification depends upon the purpose and the type of data available and remains essentially subjective. Several methods of stream classification have been suggested, based on hydrological, geomorphological, and ecological characteristics of the fluvial system. Stream classifications for hydrological research have been based, among other criteria, on flow regime classifications (Jones and Peters, 1977), average monthly flow, average daily flow (Poff and Ward, 1989), and on flow indices (Hughes and James, 1989). From a practical point of view these classifications are probably most appropriate at a regional scale.

Most stream classifications used in ecological research are based on the premises that channels consist of distinct physical elements (units) such as ripples, pools, and steps, and that these features each have intrinsic and distinct ecological value (Bisson et al., 1981). Therefore, underlying most habitat classifications is a geomorphological framework, but rarely is that connection formally made. The ecological value of a habitat type may be defined, for example, in terms of fish density, insect production, or primary production. All animals including fish are habitat specialists and habitat classifications attempt to recognize which channel features (i.e., habitat types) are used by which species throughout its various life stages. The "limus test" for a habitat classification is whether or not ecological patterns (e.g., species distribution and production) along a channel match the boundaries of the physically defined habitat units (Hawkins et al., 1993).

Few geomorphologically-based stream classification systems have been proposed that discriminate amongst smaller streams. Rosgen's (1994) channel classification scheme produced 41 channel types...
based on channel boundary conditions, entrenchment ratio (which expresses the degree of lateral confinement), sinuosity (the degree of meandering), width/depth ratio (channel shape), and channel slope. Small, forested streams are classified as Rosgen Types A and B. In Type A, the entrenchment ratio is less than 1.4, width/depth ratio is less than 12, sinuosity is less than 1.2, and the gradient is greater than 0.04; in Type B, entrenchment ratio is 1.4 to 2.2, width/depth ratio greater than 12, sinuosity greater than 1.2, and gradient 0.02 to 0.1. Superficially, the gradients assigned to these types appear to distinguish channels apt to have structured beds (rapids, step pool, cascades) and limited sediment supply from ones without (riffle pool). Insofar as the latter channels are usually larger, being found farther down the drainage system, the discrimination of width/depth ratio is superficially plausible, as well. But there seems to be no essential reason for consistency in the remaining characteristics.

Montgomery and Buffington (1998) point out that the Rosgen classification is not process-based and lacks any rational explanation of response potential for each channel type. However, a superficially similar classification was proposed by the Scientific Panel for Sustainable Forest Practices in Clayoquot Sound (1995) for purposes of headwater channel management. Fundamental distinctions were made between alluvial and nonalluvial channels (reaches), between ones with gradient less than 8 percent and greater, between entrenched and not entrenched, and width classes less than 3 m (“small channels” herein), less than 30 m (“intermediate channels” herein), and larger ones. For very steep channels (S > 20 percent) discrimination was also made between seasonal and ephemeral flow regimes. The gradient distinction was based on probability for fish presence. Such a classification was adopted by the Panel for purely pragmatic reasons: it was considered possible to identify and classify channels on these criteria using map evidence and walk through inspections only, the usual sources of information in land management exercises.

The British Columbia channel classification system (British Columbia Ministry of Forests, 1996a,b; Hogan and Bird, 1998), again developed explicitly for aquatic resource management purposes, is based on field measurements and makes use of earlier typologies by both Grant et al. (1990) and Church (1992). It combines channel relative size and boundary conditions with the bed material and LWD conditions to produce seven channel types (Table 4). Each of the seven channel types is then assigned a disturbance state based on field indicators of disturbance, which include sedimentological, bank, morphological, and LWD features.

Whiting and Bradley (1993) have developed a process-based classification of headwater streams based on the domains in which various processes act (Figure 4). The primary variables that are likely to control the stream ecosystem and sediment mobilization in headwater streams include: (1) hillslope gradient, which determines slope stability and mass movement magnitude, frequency, and type; (2) channel gradient which determines stream power (shear stress); (3) valley bottom width (defined as the distance between opposing valley sideslopes at the base of these slopes), which influences flood hydrology and determines whether debris flows coming off adjacent slopes will enter the stream; and (4) sediment caliber, which determines movement modes and the amount of sediment transport. They included two response elements: (1) channel width, which indicates the degree to which the hillslope contributes material directly to the channel (e.g., a wide valley bottom, but

<table>
<thead>
<tr>
<th>Code</th>
<th>Morphology</th>
<th>Subcode</th>
<th>Bed Material</th>
<th>LWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>Riffle pool</td>
<td>RP<sub>g</sub>,w</td>
<td>Gravel</td>
<td>Present, major function</td>
</tr>
<tr>
<td>RP</td>
<td>Riffle pool</td>
<td>RP<sub>c</sub>,w</td>
<td>Cobble</td>
<td>Present, major function</td>
</tr>
<tr>
<td>CP</td>
<td>Cascade pool</td>
<td>CP<sub>c</sub>,w</td>
<td>Cobble</td>
<td>Present, minor function</td>
</tr>
<tr>
<td>CP</td>
<td>Cascade pool</td>
<td>CP<sub>b</sub></td>
<td>Boulder</td>
<td>Absent</td>
</tr>
<tr>
<td>SP</td>
<td>Step pool</td>
<td>SP<sub>g</sub>,w</td>
<td>Boulder</td>
<td>Present, minor function</td>
</tr>
<tr>
<td>SP</td>
<td>Step pool</td>
<td>SP<sub>b</sub></td>
<td>Boulder</td>
<td>Absent</td>
</tr>
<tr>
<td>SP</td>
<td>Step pool</td>
<td>SP<sub>c</sub></td>
<td>Boulder block</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Notes: Wood functioning implies that the arrangement of the channel is controlled largely by wood and sediment transport occurs in conjunction with wood transport. Minor function is when wood is present and may influence small portions of the channel but sediment transport is largely controlled by flow hydraulics and channel morphology.
Sediment transport and channel morphology of small, forested streams

One entirely taken up by the channel, will not have a valley flat on which to trap sideslope debris flows; and (2) channel depth, which, with channel gradient, determines the shear stress. The resulting classification is presented in Figure 4.

![Figure 4](image)

Figure 4. Process-Based Stream Classification System (a) Characterizing the Degree of Hillslope Interaction With the Channel, and (b) Characterizing the Transport of Material in the Channel (modified from Whiting and Bradley, 1993, Figure 1:607).

There are six domain classes in Figure 4b. Class 0 represents channels in which sediment remains immobile in all but extreme events. In Class 1, sediment is above the criterion for motion in formative events and grain size is coarser than 64 mm. In Class 2, the mobile fine gravels to cobbles are armoured and shear stresses are never greater than three times the critical value needed for initial movement. In Class 3, the mobile gravel to cobble bed is unarmoured because shear stresses are more than three times the threshold for motion. In Class 4, the unarmoured, and primarily sand, bed carries most of its load in saltation. In Class 5, sediment finer than sand moves primarily in suspension.

The foregoing classifications, except the British Columbia channel classification system, are not comprehensive because they do not consider the impact of wood on channel morphology in forested streams (Montgomery and Buffington, 1998). Montgomery and Buffington (1993, 1997) proposed a framework for classifying mountain streams based on the fundamental relation that exists between bed surface roughness, sediment supply, and sediment transport capacity, which links processes to form in stream channels. Because channel morphology is likely to be affected by external controls such as coupling and LWD, they combined these external conditions with the sediment transport regime to classify channel units into reach scale aggregations. Their classification scheme was tested using data collected from Oregon and Washington streams. The results of this test suggest that each channel type occurs within a limited range of slope classes, confirming the findings of Grant et al. (1990). Myers and Swanson (1997) have subsequently detected a significant link between pool spacing and Montgomery and Buffington’s (1993) stream types.

Slope Channel Interactions

The Disturbance Cascade

A cascade is a system through which mass and energy passes, a formal representation of a process involving mass transfer. This usage is entirely distinct from that which denominates a channel type, described earlier. A range of geomorphic processes operates in mountain watersheds that can be linked sequentially to define a disturbance cascade which moves from slopes into the channel network.

Although the importance of coupling between stream channels and the adjacent hillslopes has been long acknowledged, relatively little work has attempted to characterize its role in the context of the sediment cascade through the fluvial system. In coupled systems, both hillslope and fluvial processes control channel morphology; the former are likely to be dominant. Nakamura et al. (2000) considered two classes of hillslope processes: small, rapid movements of debris from hillslopes to channels and large, slow movements of earth material. Small, (10 to 1,000 m^3) episodic debris slides are initiated on slopes and move into headwater streams. Slow but large (1-100 ha) movements of material include earthflows and rock sags that slowly force material into the channel by
the mechanism of bank erosion. Low order streams in steep mountainous regions are typically small, steep, and contain coarse material. The hydrological regime is flashy and channel stability is controlled by forced bed forms (e.g., step pool). Field work shows that first order streams might become clogged with sediment delivered from hillslopes and that stream flows generated by small drainage basins are too small to remove all of the supplied material, especially the coarser material (e.g., Benda, 1990).

Debris slides initiated on steep hillslopes enter channels and may propagate into debris flows that eventually come to rest somewhere downstream near tributary confluences or in low gradient reaches (Benda, 1990). The region of debris flow deposition is still well upstream in the channel network (often at junctions of first-order and second-order channels, at the base of valley side slopes). In some situations, high pore pressure at the head of steep first-order channels directly generates debris flows, thereby extending the channel network headward (cf., Montgomery and Dietrich, 1988).

In third order and larger streams, side slope colluvium and episodic side slope debris slides continue to supply coarse material to the channel. Basin history governs the volume of sediment and wood stored on hillslopes and in channels, hence controlling their redistribution by flow events. In contrast to upstream sites, the flows are sufficient to move most of the sediment downstream. Channel morphology is dictated by the location and volume of sediment and wood supplied to streams. Long term effects of sediment and wood transport are the creation of LWD jams, log steps, accumulation of boulders, and the construction of alluvial fans (Benda, 1990; Benda et al., 1998). Channels are often bounded by narrow flats that may represent flood benches, debris flow berms, and/or side slope colluvial fans (e.g., Benda, 1990; Church and Ryder, 2001).

Processes in channels control how sediment and wood are transported onward through linked stream reaches. Benda and Dunne (1997b) developed a sediment routing model which is based on the stochastic supply of sediment to the channel network in a drainage basin. Episodic sediment inputs condition pulse like movement of dispersing “waves” through the channel system. Consequently, it appears that, for most of the time, headwater streams are sediment-starved (Lancaster et al., 2001). It is apparent from both experimental and field studies (Lisle et al., 1997; Sutherland et al., 2002, and references therein) that gravelly inputs to streams are dominantly dispersive (Lisle et al., 2001), with little or no translation. Material caliber and the selectivity of fluvial transport will have a substantial influence on the results. Hence, the condition of channels anywhere in the network will, in the end, depend upon the relative time scales of sediment supply and in-channel dispersion. In the very long term, weathering of lag materials also may become important.

Impact of Timber Harvesting and Roads on Sediment Mobilization

Forest harvesting practices consisting of road building, logging and slash burning can significantly alter the production and transport of elatic sediment. The impacts of forest harvesting have been studied for several decades, allowing some general inferences to be made. In most cases, study basins have been drained by relatively steep, low order streams with rock or gravel bed channels.

Harvesting can indirectly influence sediment transfer by altering the hydrology of harvested basins. Road building and clear cutting can alter both the timing and the magnitude of storm runoff events, which can cause changes in fluvial sediment transport. However, land use may have more direct effects by making much more sediment available for transfer as the result of soil exposure and disturbance, altered slope stability, damage to streambanks, and the emplacement of forest debris in gullies and stream channels. The consequences of harvesting related changes of streamflow are almost always confounded with changes in sediment mobilization due to surface disturbance and altered stability of stored sediment. This review emphasizes sources and mobilization of sediments.

Most studies in the Pacific Northwest have emphasized acceleration of mass wasting processes following road construction and clearcutting (e.g., Brown and Krygier, 1971; O’Loughlin, 1972; Swanson et al., 1982c; Rood, 1984; Sauder et al., 1987; Rood, 1990; Grant and Wolff, 1991; Megahan and Ketcheson, 1996). Logging activities affect hillslope stability by reducing or removing root reinforcement, increasing site disturbance, and modifying water interception and conveyance (Sidle et al., 1988; Bovis et al., 1998). Forest practices may increase the incidence of episodic mass wasting events up to ten times and sediment yield by two times or more (Table 1). Hence, postharvest mass wasting alters the balance between sediment supply and transport in stream channels, thereby changing the channel morphology.

The deposition of sediment in channels alters channel gradient (Hogan et al., 1998; Montgomery and Buffington, 1998). A large accumulation of sediment may force a lateral shift in unconfined channels, diverting the flow and causing bank erosion. These sediment inputs change through the drainage network, leading to changes in channel stability and
Sediment Transport and Channel Morphology of Small, Forested Streams

stream ecology. The impact of episodic mass wasting events depends on whether they occur in close succession (Montgomery and Buffington, 1998) or only occasionally (Gomi, 2002). Bunched events are likely to clog confined channels with large amounts of sediment and wood over a relatively short period of time and are likely to bury the pre-existing local morphology (e.g., Benda and Dunne, 1997a; Montgomery and Buffington, 1998). Occasional events are likely to sustain chronic, though less extreme, impacts on the channel over longer periods of time (Gomi, 2002).

Road related mass wasting is a major source of sediment (Reid et al., 1981; Reid and Dunne, 1984). Several studies (Schwab, 1983; Reid and Dunne, 1984; Rood, 1984; Rollerson, 1992) have shown that logging roads alone can account for up to 90 percent of the increases in slope failures and sediment delivery to stream channels. Slaymaker (2000) asserted that the failure to avoid unstable terrain during road construction and lack of maintenance of road drainage structures are the main factors causing road related failures. Unsurfaced roads also increase the rates of fine sediment production and the amount which is delivered to streams (e.g., Megahan and Kidd, 1972; Janda et al., 1975; Reid and Dunne, 1984), with consequent impacts on downstream water quality and aquatic habitat. Reported road surface erosion rates encompass a wide range from a few millimeters per acre per year to tens of millimeters per acre per year (e.g., Dyrness, 1970; Megahan et al., 1983; Riley, 1988). Although roads increase sediment transport rate by both mass wasting and fluvial processes, they also can function as storage sites by trapping sediment in ditches (e.g., Wemple et al., 2001) and mass movement transported soil and debris in the road prism.

Wemple et al. (2001) examined the impact of forest roads on the initiation, movement, and interception of sediment during an extreme storm event in the Lookout Creek and Blue River basins, Oregon. Despite the dual function of roads as both sediment source and depositional sites for mass wasting, the net effect of roads was an increase in the basin sediment production. Fransen et al. (2001), in a New Zealand study, reported an increase of three orders of magnitude in erosion rates, but also a decline of mass wasting rates with road age (Fransen et al., 2001). Luce and Black (2001) monitored sediment loss from road segments that covered a range of soil textures, gradients, plot lengths, and cut slope heights. In general, however, the particular location of study sites, the recent history of the roads, and the small scale of study plots make it difficult to extrapolate results to watershed scale (Dunne, 2001).

The timing of logging activity relative to large storms is important. Using a paired watershed approach, Grant and Wolff (1991) documented 30 years of sediment mobility (suspended and bed load) from three small basins with different road building and forest cutting treatments. A single event in 1964 transported about 85 percent of the total 30-year load. Consequently, they believe that even long term studies using paired watersheds have limited generalizing value, hence applicability, in places where episodic supply and transport dominate the landscape.

There are two ways to mitigate sediment delivery to streams: reduce the volume of erosion through on-site control practices and reduce sediment delivery by increasing sediment retention on the hillside (Megahan and Ketcheson, 1996). Madej (2001) examined the impact of different types of treatment to abandoned logging roads in California. She found that sediment production from treated roads contributed about 25 percent of the sediment produced from untreated roads. Also, hillslope position was an important variable in explaining the post-treatment erosion of road reaches; erosion problems were most common on steep, lower hillsides. She concluded that road treatment significantly reduced the long term sediment risk from abandoned roads.

The influence of roads on slope stability and sediment delivery to channels depends on road location, construction practices, physiographic conditions of the basins, and storm characteristics (Wemple et al., 2001). Within the last 20 years, there have been major changes in accepted road management practices which have resulted in better road designs and decreased sediment transport to channels (Slaymaker, 2000). There remains a significant need to extend knowledge of road effects from individual segments to road networks.

Closing Remarks

Channel processes and morphology in forested, small streams are controlled by several governing conditions including water discharge, availability, and texture of sediment supplied to or stored in channels, wood supply to channels, channel gradient, and the conditions of bank vegetation. Sediment supplied from slopes and stored within the channel is the main control on channel morphology. Sediment transport in these streams reflects the balance between supply and transport capacity. Episodic sediment supply causes the channel to alternate over time between supply limited and transport limited situations. The impact of episodic sediment supply on channel morphology remains poorly understood and needs to be addressed in future research.
Channel morphology and bed surface structures control channel stability in headwater streams. Channels are considered to be stable with little sediment movement between major sediment supply events from the adjacent hillslopes. Based on field measurements, three phases of sediment transport have been identified: overpassing fine sediment (Phase I), partial mobility of local sediment (Phase II), and mobilization of most of the sizes found in the bed (Phase III). In headwater streams, Phases I and II dominate the sediment transport regime, while Phase III occurs only during relatively extreme flow events. In steep channels, Phase III transport leads to debris flows. Due to the major impact of bed surface structures on sediment mobility, the usefulness of current sediment transport models developed for lowland streams is limited. A successful model should take into account the bed surface structure. Such a model still needs to be developed.

Forest management in small, forested basins is likely to change water, sediment, and wood inputs to channels and significantly affect channel morphology, channel stability, and aquatic habitat. However, due to the conditionally stable nature of the step pool and log step morphologies, changes in the flow alone are not likely to have a real impact on the stability of such structures (Grant et al., 1990). Poor harvesting practices on relatively unstable slopes and poor road design can lead to changes in the amount and texture of sediment supplied to channels, and the amount and characteristics (e.g., piece size) of wood inputs. High quality roads and better maintenance are likely to reduce the amount of material supplied to channels from hillslopes, reduce the amount of sediment mobilized along low order streams, and reduce the sediment delivery rate to high order streams (Slaymaker, 2000).

In a review paper, Dunne (2001) provided a critical assessment of the limitation of field and modeling programs in the context of land management. According to Dunne (2001), one of the main problems of measuring and predicting the influence of forest management practices is that monitoring programs in most forested area are typically too short to sample the variability of natural and disturbed hydrological regimes, increasing the likelihood of missing significant sediment mobilization events. This implies that sample sizes are often too small to address questions such as "Does logging increase the risk of mass wasting and flooding?" Furthermore, the number of monitoring sites remains small, which leads to another constraint on the ability to assess the impact of forest harvesting on channels and slopes (Dunne, 2001). To solve these problems, well designed long term field programs are needed that pay appropriate attention to spatial variation of hydrological and geomorphological processes in the landscape, as well as to accumulating adequate temporal records. Many of the observations will have to be made as part of operational management of the land. Accordingly, the authors' advice to land managers is "tuum est," or "it is yours."

ACKNOWLEDGMENTS

The authors thank Steve Bird, John Buffington, Takashi Gomi, Dan Hogan, Dave Montgomery, Sandra Ryan, and Rick Woods for data, suggestions, and/or review comments received during the writing of this paper. The authors also acknowledge the constructive comments of two anonymous reviewers.

LITERATURE CITED

SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY OF SMALL, FORESTED STREAMS

Hughes, R.M. and B. James, 1989. A Hydrological Regionalization of Streams in Victoria, Australia, With Implications for Stream

Sediment Transport and Channel Morphology of Small, Forested Streams

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 875

JAWRA

