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ABSTRACT 
' We analyzed the long-term effects of fuels reduction treatments around a wildland-urban interface located in the Blue 

Mountains near La Grande, Oregon. The study area is targeted for fuels reduction treatments on both private and federal 
lands to reduce the risk of severe wildfire and associated damage to property and homes. We modeled a number of hypo- 
thetical fuel treatment scenarios and exarninegbthe resulting changes in fuel characteristics, fire potential, and stand structure :' 

over time. Aggressive thinning alternatives showed significant reductions in stand characteristics that contribute to severe 
crown fires, such as height to live crown and crown bulk density for the landscape as a whole. However, simulations with 
extensive thinning showed larger overall flame lengths and torching compared to a no management scenario. Significant 
changes in stand structure and other characteristics were noted for the thinning versus no management scenarios. Work is 
ongoing to refine the simulation methods and test a wider range of treatment alternatives. The study motivated a discussion 
of the long-term problem of managing forest fuels in areas like the Blue Mountains. 

INTRODUCTION 

Fuels reduction programs have been initiated on many 
areas throughout the western US, even though the long-term 
effects of these treatments for reducing severe wildfires on 
large landscape has not received much attention. While case 
studies show that stand-level treatments can reduce fire 
severity (Fule and others 2001; Kalabodkidis and Omi 1998; 
Pollet and Omi 2002; Stephens 1998), the effect of treatments 
on large forested landscapes over time and the considera- 
tion of other resource constraints remains an experimental 
topic (Finney 2001; Johnson and others 1998; Barbour and 
others 2004). Also problematic are the mechanics of using 
existing stand-based fire and vegetation simulation models 
(Wykoff and others 1982; Reinhardt and Crookston 2003) 
on large landscapes and extracting landscape-scale meas- 
ures of fwe behavior that are meaningfbl to the general 
public. Methods for the latter are in wide demand for use 
in project-level planning for fuels reduction treatments on 
Federal and other lands. 

As part of a larger project to examine landscape man- 
agement issues in the Blue Mountains of Eastern Oregon 
(Hayes and others 2004) we simulated a number of fuel 
management scenarios on a key wildland-urban interface 
near La Grande, Oregon. The Mt. Emily area and s~rround- 
ing community was identified in the National Fire Plan as 
"high risk" due to the intermingling of homes and vegeta- 
tion, potential fire behavior, and existing fire protection 
capabilities (Wallace 2003). The forests have accumulated 
high loadings of live and dead fuels after decades of fire 
exclusion and a large spruce budworm epidemic in the 1980s 
that resulted in extensive mortality (Quigley and others 
2001). A number of state, federal, and local agencies and 
organizations are coordinating efforts to reduce stand den- 
sity and ladder and surface fuels with the goal of reducing 
flame heights, spotting, and crown fire potential, as well as 
provide defensible space for fire-fighting crews to safely 
approach future wildfires (Wallace 2003). 
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Figure 1-Vicinity map of the Mt Emily Study area. 

The Mt. Emily project provided an opportunity to 
explore a number of questions related to landscape analysis 
of fuel treatment initiatives. We analyzed a broad set of 
hypothetical management alternatives that are beyond those 
being proposed for the Mt. Emily area in terms of treatment 
extent and intensity, with the goal of examining a num- 
ber of strategic issues including: 1) How often are treat- 
ments needed to maintain desired vegetation conditions; 
2) How effective are different types of treatments; and 3) 
What is the long-term effect of fuels treatments on fire 
behavior, fuels, and other resources. We report prelimi- 
nary results 
of our work to address these and related questions. 

MATERIALS AND METHODS 

Study Area 
The Mt Emily wildland-urban interface (WUI) is a 16- 

mile long area immediately north of La Grande, Oregon 
where the forested slopes'of Mt. Emily and adjacent ridges 
descend to the agricullral lands in the Grande Ronde 
Valley (fig 1). For analysis purposes, a boundary around 
the area was established, containing 40,368 acres including 
federal, state, and privately owned lands. About 30,348 

acres within the study area are classified as forested lands 
based on potential vegetation data. Approximately 25,139 
acres within the larger analysis area are Forest Service 
lands, administered by the Wallowa-Whitman (9,346 
acres) and Umatilla (14,230 acres) National Forests. 
Forest Service lands are managed for a number of objec- 
tives including big game winter and summer range, dedi- 
cated old growth and roadless. Surface fuel loading ranges 
from 15 to 80 tons per acre with excessive dead ladder 
fuels in a large number of the stands. Fuel accumulations 
accelerated after the 1980s spruce budworm epidemic that 
caused extensive mortality within the grand fir (Abies 
grandis) and Douglas- fir (Pseudotsuga rnenziesii) stands 
in the project area (Wallace 2003). The area has experi- 
enced 129 documented fire starts since 1970, including 
both lightning and human caused fires. Ninety-nine percent 
of the fires have been contained within the first twenty-four 
hours, and only one fire has grown to any significant size 
(Frizell fire, 250 acres) in recorded fire history. 

Treatment Scenarios 
Fuels specialists on the Wallowa - Whitman National 

Forest developed a range of different fuel treatments for 
about 3,000 acres that prescribe: 1) mechanical thinning 



trees under 21 inches to reduce crown bulk density and 
ladder fuels; 2) Site removal of fuels when they exceed 25 
tons per acre; 3) Underburning after treatment to reduce 
surface fuels (Wallace 2003); and 4) Piling and burning of 
surface fuels. The choice of treatment(s) for a given stand 
was dependent on a number of factors related to stand con- 
ditions, management goals, and management restrictions, 
and was the subject of considerable debate among special- 
ists and managers. The treatments were strategically located 
to reduce fire spread, create defensible space for suppres- 
sion activities, and protect utilities like the Mt. Emily elec- 
tronic site. 

For the purpose of examining long-term effects of 
fuel treatments, we used the general treatment methods 
described above and simulated a broader, simplified set 
of seven hypothetical scenarios as follows: 

1. No Management or Natural Disturbance [NOMAN]. 
2. Long Term Aggressive Thinning [LTAT]. Thin from 
below all stands that exceed 55 percent of the maximum 
stand density index (SDI) to 35 percent of the maxi- 
mum SDI; site removal of fuels followed by underbum- 
ing. Management is applied to all ownerships over time 
as needed. 
3. Long Term Moderate Thinning [LTMT]. Same as 
LTAT except that thinning is triggered at 65 percent of 
maximum SDI and trees are removed until 45 percent 
of SDI is reached. 
4. Thinning with Maintenance Burns [LTATMBURN] . 
Same as LTAT with the addition of decadal underburn- 
ing of stands that are thinned for the entire period of the 
simulation. 
5. Long Term Aggressive Thinning with Maintenance 
Burns on Forest Service lands only [LTATMBURNFS]. 
Same as LTATMBURN except that treatments are only 
applied on Forest Service lands administered by the 
Wallowa - Whitman National Forest. The remaining 
Forest Service lands in the project area are in a roadless 
area administered by the Umatilla National Forest and 
were not considered for treatment in any of the scenar- 
ios. 
6. Long Term Aggressive Thinning with Maintenance 
Burns on Forest Service lands only, 2 1-inch diameter 
limit [LTATMBURNFS2 11. Same as LTATMBURN- 
FS2 1 except that the Region 6 old growth screens that 
prevent harvesting of trees greater than 21 inches is 
implemented. 
7. Short Term Aggressive Thinning [STAT]. Same as 
LTAT except that stands are treated in the first decade 
only of the simulation. Management is applied to all 
ownerships. 

We emphasize that these scenarios are hypothetical, and 
were formulated to better understand how existing models 
and typical Blue Mountain landscapes respond to long term 
management scenarios. 

Vegetation and Fuels Data 
We developed an initial vegetation database consisting 

of data on trees per acre by species and 1-inch diameter 
class for each stand using data from stand exams, photo- 
interpretation, and field reconnaissance. The resolution of 
the data was coarse in some areas, but adequately repre- 
sented the project area for purposes of the present study. 
Where stand exam data did not exist we generated approxi- 
mate tree lists from photo-interpretation of 1 : 12000 color 
resource photos from 1998. Photo-interpreted data consisted 
of canopy closure estimates by size class and species. These 
data were converted to trees per acre by diameter class 
using relationships between crown diameter and tree diam- 
eter developed from stand exam data at the La Grande 
Ranger District. Extensive field checks of the data were 
completed over the copse of the study. 

Detailed fuels data were obtained fkom stand exams 
and supplemented with a sub-sample of stands that were 
chosen to represent average fuel conditions for different 
fire regimes and commonly observed fuel models (Wallace 
2003, Anderson 1982). Fuels were sampled with line tran- 
sects according to Hilbruner and Wordell (1992) on a 
sample of 6 stands chosen to represent dominant fuel con- 
ditions. These data were used to adjust the initial fuels and 
default fuel loadings for the dense conifer stands (fuel 
models 8 and 10, Anderson 1982). Default values (Reinhardt 
and Crookston 2003; Anderson 1982) were used for the 
remaining fuel models found in the project area. 

Models 
For each of the 1060 stands in the project area we pro- 

jected vegetation with the Blue Mountains Variant of the 
Forest Vegetation Simulator (FVS) (Wyckoff and others 
1982), a distance-independent individual tree growth model. 
We simulated decadal time steps and report simulations for 
60 years. We used a forest regeneration model (Wilson and 
Maguire in prep.) that was developed h m  extensive seedling 
survey data obtained from the La Grande Ranger District. 
Mechanical thinning was simulated within FVS using 
prescriptions developed for thinning studies in the Blue 
Mountains (Rainville 2002). Specifically, stands were 
thinned once they exceeded 55 percent of maximum SDI, 
thinning from below until the stand SDI was 35 percent of 
maximum. Maximum SDI values were specific to each plant 



association and target species (Cochran and others 1994). 
The thinning prescriptions targeted removal of late-sera1 
species like grand fir in mixed-species stands, favoring 
early sera1 species like western larch (Larix occidentalis) 
and ponderosa pine (Pinus ponderosa). Although the pre- 
scriptions used were relatively generic for the diversity of 
ecological settings and management goals in the project 
area, they were adequate for the present study. 

Potential fire effects, dead and down fuel dynamics, 
and underburns were simulated with the Fire and Fuels 
extension (FFE) to FVS (Reinhardt and Crookston 2003) 
and FlamMap (Finney in prep). Due to space limitations 
the FlamMap results are not presented here. The FFE 
FUELMOVE keyword was used to simulate removal of the 
larger surface fuels, under the assumption that 90 percent 
of the 3 to 6 inch and 40 percent of the 1 to 3 inch materials 

,; would be removed from the site. Underburning followed 
thinning and fuel removal treatments, and was simulated 
with the FFE SIMFIRE keyword using typical weather for 
burning treatments on the La Grande Ranger District 
(table 1). Potential wildfire effects on each stand were 
simulated using the FFE POTFIRE keyword. Weather con- 
ditions for simulating potential wildfire effects were derived 
from the J Ridge (Station 35 1414), Black Mountain (Station 
35 13 14), and Black Mountain 2 (Station 35 13 17) remote 
automated weather stations. The Black Mountain Stations 
are located 10 miles east, and the J-Ridge stations are 
located 25 miles south of the project area on national 
forest land. Weather data for June to September from the 
years 1986 to 2002 were analyzed in Fire - Family Plus 
(Bradshaw and McCormick 2000) to generate goth and 97h 
percentile temperature, wind speed, and fuel moisture val- 
ues (table 1). Outputs were analyzed for crown fire activity, 
flame length, crowning and torching index, and changes in 
fuel models over time. The 10-minute average wind speeds 
generated in Fire- Family Plus were converted to maximum 
velocity gusts using the tables developed by NOAA 
(http://www. seawfo.noaa.gov/fire/olmlfire/ 1 Otogust .htm). 

We measured forest structure (O'Hara and others 
1996) for the scenarios using the cover extension to FVS 
(Crookston and Stage 1999). 

RESULTS 

Stand Development 
The scenario that simulated long-term thinning of all 

lands in the study area (LTAT) resulted in the treatment 
of about 23 percent (7,032 acres) of the forested area per 
decade, averaged over the 60 year simulation (table 2). The 
same prescription with decadal maintenance burns thinned 

stands in about 15 percent of the study area (4,568 acres) 
per decade (LTATMBURN). Thus the addition of the main- 
tenance burns reduced the area thinned by 8 percent per the 
decade. The LTAT scenario removed an average 6,394 MCF 
of merchantable material per decade (table 2), with the 
other scenarios resulting in lesser values commensurate 
with the acres treated. Thinning only Forest Service lands 
within the study area (LTATMBURNFS scenario) called 
for thinning only about 1,2 12 acres, and removed 1,154 
MCF per decade (table 2). Thinning to the upper SDI man- 
agement zone (LTMT) called for thinning about 6,291 
acres per decade, or 2 1 percent of the forested area (table 
2). For the landscape as a whole, the overall SDI was 
maintained at 135 for the LTAT scenario, while SDI for the 
no management scenario rapidly increased and eventually 
tapered off at 2 15 over the 60-year simulation period (table 
2). The thinning schedule over time was most irregular for 
the LTAT scenario, and it was apparent that heavy thinning 
in the beginning of the simulation produced pulses of 
regeneration that required thinning in the future. The pulse 
of regeneration in the first decade is consistent with field 
observations. A large number of stands in the cool moist 
ecological settings have experienced severe mortality from 
spruce budworm, which has opened up the stands and set 
the stage for regeneration. 

The LTAT and LTATMBURN thinning management 
scenarios resulted in large changes in crown bulk density 
and crown base height (fig. 2). By 2020 the average crown 
bulk density under both scenarios was reduced to 0.04 
kg/m3 compared to almost 0.1 kg/m3 for the no manage- 
ment scenario. Crown base height was higher for the thin- 
ning scenarios, the difference being almost 15 feet by the 
year 2020. Trends in both crown bulk density and live 
crown height were strongly affected by regeneration in 
the early decades. 

Stand structural characteristics showed a number of 
changes over time and differences among the scenarios 
were apparent (fig. 3). In the no management scenario, 
simulations indicated large increases in the stem exclusion 
(SE) structural stage, and by 2030, over half of the forested 
lands were in this structural stage. The effect of thinning 
within the LTAT or LTATMBURN scenarios was to convert 
the stem exclusion stage to single-stratum old forest. Thin- 
ning also increased the proportion of stands in the under- 
story re-initiation stage as well (UR, fig 3). 

The STAT scenarios that called for only a single thin- 
ning at the beginning of the simulation had little effect on 
the landscape through time (table 2). Likewise, recurrent 



Table 1-Weather and fuel moisture parameters used in potential fire simulations and prescribed fires. The 
9oth and 97" percentile conditions were determined from analysis of local weather stations. See methods for 
additional details on weather station data and calculation of percentile values and velocity of wind gusts. 

Variable 9oth Percentile Values 97th Percentile Values Maintenance Burns 

Temperature (degrees F) 
1 hour fuel moisture (percent) 
10 hour fuel moisture (percent) 
100 hour fuel moisture (percent) 
1,000 hour fuel moisture (percent) 
Live fuel moisture (percent) 
Duff moisture (percent) 
lo-minute average wind speed 
(mph) at 20 feet above ground 

Maximum gusts 

thinning and underburning of only Forest Service lands 
(LTATMBURNFS) showed relatively minor changes com- 
pared to the no action alternative (table 2) which could be 
expected given that only about 25% of the area is available 
for treatment in this scenario. 

Fuels 
Changes in fuel models among the scenarios generally 

followed expected trends (fig. 4). For the no management 
scenario, there was a rapid decrease in fuel model 5 acres 
(brush type), an increase in model 8 acres (closed canopy 
conifer), and, after 50 years, a dramatic increase in fuel 
model 10 acres (closed canopy with high surface fuels) 
(fig. 4). The change in fuel models reflected a landscape 
with active regeneration in the early part of the simulation, 
with stands building up down fuels and increasing mortali- 
ty through time. In contrast, the LTAT alternative showed 
a large reduction in fuel model 8 as stands were thinned 
and converted to fuel models 2 and 5 (fig. 4). There was 
also an increase in fuel model 11 (closed canopy with high 
activity fuels) in the first 20 years, from thinning residue. 
The thinning treatments did not result in an overall decrease 
in surface fuels (table 2) even though we assumed that a 
large portion of the residual fuels (90 percent of the 3 to 6 
inch and 40 percent of the 1 to 3 inch materials would be 
removed from the site as part of the treatments. Scenarios 
that called for lighter thinning (LTMT) and 10-year main- 
tenance burns did not significantly reduce downed fuels 
either when measured as an average for the landscape. 

Potential fire analysis 
Acres of potential active crown fire increased in the first 

30 years for all scenarios, with the no management sce- 
nario exceeding all other scenarios (fig. 5). For the LTAT 

scenario, acres increased from about 500 to 3000 acres 
between years 2000 to 2020, declining thereafter, and at 
2030, acres of potential active crown fires were reduced to 
nearly 0. Acres of potential active crown fire also showed 
a decreasing trend for the no management scenario after 
about 30 years, although the acres with a crowning index 
less than 24 (meaning that they will carry a crown fire in 
24 mph wind) remained high throughout the simulation 
while rapidly decreasing for the thinning scenarios (table 
2). Although the LTAT and LTATMBURN simulations 
showed reduced acres of potential active crown fire, they 
resulted in a significant increase in passive crown fires 
(torching) throughout the simulation (fig. 5). The increase 
in torching was not simply the net result of decreased active 
crown fire (fig 5.) since the increases were much larger than 
the decrease in active crown fires. Also, the future trend in 
passive crown fxe acres continued to increase in the LTAT 
scenario after the acreages of active crown were negligible. 
Passive crown fire for the no management scenario initially 
decreased until 2030 and stayed relatively constant there- 
after. Increased torching in the aggressive thinning alterna- 
tives was caused by the increased fuel loadings and acreages 
of the grass and brush fuel models, which have a higher 
inherent flame length (Anderson 1982). 

DISCUSSION 

Our simulations oversimplified the design of fuel treat- 
ment scenarios on the Mt. Emily landscape by not con- 
sidering the spatial arrangement of treatments over time 
(Finney 200 1, Finney and Cohen 2002). We also relied pri- 
marily on landscape averages to present the results, which 
can mask important trends at the stand level. In addition, 
there are many aspects of the FVS Fire and Fuels Extension 



Table 2-Results of simulations for selected management scenarios examined in the study. See text for definition of scenario labels. Variable 
CI24 is the acres that had a crowning index below 24, meaning that the stand can carry a crown fire in the presence of 24 miles per hour 
wind (97th percentile gust wind speed, Table 1). 

NOMAN LTAT LTATMBURN LTATMBURNFS 
Year Year Year Year 

Acres 
thinned 
per decade 0 0 

Stand 
density 
index 95 199 

Decadal 
thinning 
volume 
(merch. 
MCF) 0 0 

Flame 
length 
moderate 
fire (ft) 3.2 1.8 

Flame 
length 
severe 
fire (ft> 11.7 11.4 

C124 
(acres) 10663 20148 



Figure 2-Results of simulations showing changes over time in crown bulk density (top) and live crown height (bottom) for selected 
scenarios examined in the study. 
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Figure 3-Results of simulations showing changes over time in forest structure for the no management (NOMAN, top) and long- 
term aggressive thinning (LTAT, bottom) scenarios. Structure classifications follow O'Hara et al. (1996) and were determined with 
the FVS cover extension (Crookston and Stage 1999). 

both of which are strong determinants of crown fire activity. and O'Hara 2002). These changes were reflected in the 
For instance, the average crown bulk density after 30 years lower proportion of the stands that exhibited active crown 
of treatment was 0.01 kg/m3, which is below the 0.050 fire behavior in the potential fire simulations, and later on, 
kg/m3 level required to sustain active crown fires (Keyes a decrease in the crowning index. It was interesting to find 
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Figure 4--Results of simulations showing changes over time in fuel models for the no management (NOMAN, top) and long-term 
aggressive thinning (LTAT, bottom) scenarios. 

that acreage of active crown fire sharply decreased after 40 a large portion of the project area could sustain a crown 
years for the no management scenario. Examination of the fire spreading from an adjacent stand. If we had simulated 
acreages that could sustain a crown fire under 97th per- small disturbances like windthrow and root disease pockets, 
centile weather conditions for the no management scenario regeneration would probably provide the ladder fbels needed 
(table 2) showed that while crown fire could not be initiated, to initiate a crown fire and alter the results. 
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Figure 5-Results of simulations showing changes over time in acres of potential passive (top) and active (bottom) crown fire for 
the no management (NOMAN) and long-term aggressive thinning @TAT) scenarios. 

It was also interesting to find that thinning resulted in a of the area assigned to fuel models 2 and 5 (grass, brush), 
large increase in passive crown fires (torching) and a small which by default, have higher flame lengths and spread rates, 
increase in average flame length for the landscape as a contributing to a higher potential for torching (Anderson 
whole. Thinning treatments resulted in a larger proportion 1982). In addition, activity fuels most likely contributed 



to the torching potential. Although the fuel models 2 and 5 
have relatively high flame lengths and spread rates, they 
burn at low intensities relative to crown fires, and fire sup- 
pression in these fuel types is more effective (Finney 
2001). A number of empirical observations have shown 
that treatments like those simulated here lower the intensi- 
ty, spread rates, and tree mortality from wildfires. 

The scenarios that simulated treatment of the Forest 
Service lands only showed a relatively minor response for 
the study area as a whole (table 2), although in part this 
result is strongly influenced by the size of the study area 
relative to the Forest Service land base. In any case, the 
LTATMBURNFS scenario reinforces the importance of 
cooperation among landowners to bring about fuels treat- 
ments on all areas. It is important to recognize that we did 
not attempt to model an array of resource constraints on 
Forest Service lands that would further limit treatments. 

The mechanical thinning scenarios provide some indi- 
cation of hture treatment schedules for landscapes like the 
Mt. Emily WUI, which is useful information for strategic 
planning efforts that are underway on the National Forests 
in the Blue Mountains province. Treatment schedules for 
different scenarios can be used to forecast fiber supply and 
net revenues of thinning treatments over the long run. Under 
a scenario that calls for thinning based on a relative density 
measure like SDI, a shorthand method to calculate treat- 
ment rates can be approximated as 

Treated acreslyear = (Watershed Acres)/ (F9[SDImax] - 
F ' [SDImin]) 

Where SDImax and SDImin are the values of SDI at 
the upper and lower management threshold and F'(t) is the 
inverse of the function that predicts SDI change over time. 
The latter can be derived from stand growth simulations 
and averaged for all stands in a landscape. 

The current and future density problems in areas like Mt. 
Emily demand additional ecological discussions (Tiedeman 
and others 2000) and perhaps new and innovative solutions. 
Thinning, fuels treatments, and underburning have well- 
documented beneficial effects on overstocked stands in 
terms of general forest health and wildfire risk. However, 
thinning overstocked stands induces waves of regeneration 
and sets the stage for future development of ladder fuels 
and high crown bulk density. If recurring treatments are not 
applied, the initial thinning will be counter to long-term 
landscape goals (Keyes and O'Hara 2002). The long - term 
treatment of fbels is made difficult by the finding that most 
restoration treatments in the Blue Mountains have negative 
net values under current economic conditions (Rainville 

2000) and a variety of resource values must be considered 
on the Federal land base. 

While fm suppression and removal of fire tolerant 
species has been a major factor in the development of fire- 
prone conditions, there are many processes besides wildfire 
that regulate stand density through time in coniferous forests. 
For instance, thinning treatments can enhance seed produc- 
tion in residual trees (Reukema 1961), leave a favorable 
substrate for seed germination (Schopmeyer 1974), and 
degrade habitat for small mammals (Tiedemann and others 
2000) that consume conifer seed (Sylvester and others 1994). 
Thus treatments may set the stage for prolific conifer regen- 
eration and, eventually, dense stands with high crown fire 
potential. New research is needed to find ways to manage 
seed production, seed survival, germination and seedling 
establishment after underburning and mechanical treat- 
ments. 

There are many issues that need to be explored with the 
simulation approach we have used here, such as the spatio- 
temporal patterns of treatments (Finney 2001), interactions 
between wildfire and other disturbances (Quigley and 
others 2001), and secondary effects of fuels treatments on 
other resources including wildlife and forest productivity 
(Tiedemann and others 2000; Johnson and Miyanishi 1995). 
For instance, optimal spatial patterns of shaded fuel breaks 
(Finney 2001) could fragment stands of late-old structure 
considered important to keystone wildlife species like 
American marten (Martes americana) (Hargis and others 
1999). On the oth& hand, these treatment patterns might 
create desired foraging habitat for Canada lynx (Lynx 
canadensis) (Aubry and others 2000) and Rocky Mountain 
elk (Cewus elaphus). Frequent burning can reduce forag- 
ing substrate (down wood) for a number of important 
avian and mammal species that feed on ants and other 
insects (Torgersen and Bull 1995). Economic questions 
about the kinds of investments that will be needed in the 
long term to finance forest restoration treatments (Christiansen 
and others 2002) have not been addressed in a way that 
reflect spatially explicit harvesting and transportation costs. 
All of these issues contribute to a long-term landscape 
design questions of how to achieve restoration goals in the 
Blue Mountains (Quigley and others 2001) within a con- 
straint matrix that includes riparian buffers, roadless area, 
visual objectives, and habitat for listed species. 

Many improvements are needed to the simulations we 
presented here, and work is in progress towards that end. 
We are analyzing the different scenarios in terms of wood 
utilization, habitat for selected wildlife species, and insect 



and disease risks for the Mt Emily WUI. We are also devel- 
oping mortality models for insects and disease using a multi- 
agent approach (Roberts and Weatherby 1997). Mechanical 
thinning prescriptions are being refined for the different 
ecological settings and management goals within the proj- 
ect area. These refinements will be used for additional sim- 
ulations on the Mt Emily area to gain further insights into 
the long-term problem of managing for multiple resource 
objectives in the Blue Mountains. 
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