The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and Christensen 2002). Among disturbances to elk habitat, roads have been viewed as a major factor influencing distributions of elk across the landscape (Leege 1984, Lyon 1984, Lyon et al. 1985, Roloff 1998, Lyon and Christensen 2002, Wertz et al. 2004). Evidence from a variety of studies, such as those conducted at the Starkey Experimental Forest and Range (Starkey) in northeastern Oregon, has corroborated this view (Lyon 1983, 1984; Witmer and deCalesta 1985; Cole et al. 1997; Johnson et al. 2000; Rowland et al. 2000; Ager et al. 2003).

Early studies of elk were among the first to address effects of roads on wildlife, establishing a precedent for subsequent research on a wide range of terrestrial and aquatic species. These early elk-roads studies included those
reported in a symposium on the topic in 1975 (Hieb 1976), the seminal studies of Jack Lyon in Montana and northern Idaho (Lyon 1979, 1983, 1984), the Montana Cooperative Elk-Logging Study (Lyon et al. 1985), and work by Perry and Overly (1977) in Washington and by Rost and Bailey (1979) in Colorado.

As research and analysis techniques have become more sophisticated, particularly with the advent of geographic information systems (GIS) and high-resolution remote imagery, the study of effects of roads on terrestrial and aquatic communities has evolved into a unique discipline of “road ecology” (Forman et al. 2003). Road effects are far more pervasive than originally believed and include such disparate consequences as population and habitat fragmentation, accelerated rates of soil erosion, and invasion of exotic plants along roadways. Indeed, “in public wildlands management, road systems are the largest human investment and the feature most damaging to the environment” (Gucinski et al. 2001:7). Summaries of the effects of roads on wildlife habitats and biological systems in general have been compiled by Forman and Alexander (1998), Trombulak and Frissell (2000), Gucinski et al. (2001), Forman et al. (2003) and Gaines et al. (2003).

Well-designed research that furthers our understanding of road effects and road management on key species, such as elk, and their habitats is critical for enhancing the long-term functioning of ecosystems impacted by the vast network of roads in North America. Moreover, addressing effects of roads on elk and elk habitat often is mandated on public land, e.g., through standards and guidelines developed for national forests.

Our goals in this paper are three-fold: (1) to describe current knowledge about effects of roads on elk, emphasizing results of research conducted at Starkey, (2) to describe an example in which a distance-band approach, rather than the traditional road density method, was used to evaluate habitat effectiveness (HE) for elk in relation to roads, and (3) to discuss the broader implications of road-related policies and land management with regard to elk.

Effects of Roads on Elk in Forested Ecosystems—What Do We Know?

Effects of roads on elk can be divided into two broad categories: indirect effects on habitats occupied by elk and direct effects on individual elk and their populations. Effects of roads in forested ecosystems in general have been well summarized (Gucinski et al. 2001, Gaines et al. 2003). With regard to elk habitat,
the primary effect of roads may be habitat fragmentation; heavily roaded areas may contain few patches of forest cover large enough to function effectively as habitat for elk, especially where elk are hunted (Leege 1984, Rowland et al. 2000). The total loss of elk habitat from road construction is unknown; a rough estimate of 5 acres per linear mile (1.4 ha/km) of road is often applied (Forman et al. 2003). Across the United States, the area occupied by public roads and associated corridors is estimated to be 27 million acres (10.9 million ha); these numbers do not include private roads or unofficial roads on public land (Forman et al. 2003). Roads may also exert more subtle influences on habitat; for example, they may facilitate the spread of exotic vegetation (Gelbard and Belnap 2003), which may subsequently reduce quality and abundance of forage available to elk. Gaines et al. (2003) listed five road-associated factors in relation to elk: hunting, poaching, collisions, displacement or avoidance, and disturbance at a specific site.

The direct impacts of roads and associated traffic on elk, in addition to outright mortality from collisions with motorized vehicles, can be summarized as follows.

1. **Elk avoid areas near open roads.** A plethora of studies have demonstrated an increasing frequency of elk occurrence or indices of elk use, such as pellet groups, at greater distances from open roads (defined here as any road where motorized vehicles are allowed). This response varies in relation to traffic rates (Wisdom 1998, Johnson et al. 2000, Ager et al. 2003), the extent of forest canopy cover adjacent to roads (Perry and Overly 1977, Lyon 1979, Wisdom 1998, Wisdom et al. 2004b), topography (Perry and Overly 1977, Edge and Marcum 1991), and type of road (e.g., improved versus primitive; Perry and Overly 1977, Lyon 1979, Witmer and deCalesta 1985, Marcum and Edge 1991, Rowland et al. 2000, Lyon and Christensen 2002, Benkobi et al. 2004), which also correlates with traffic rates. Responses may also differ between sexes, with bull elk demonstrating a stronger avoidance of areas close to roads than do cow elk (Marcum and Edge 1991). Shifts in distribution of elk away from roads may occur across a range of temporal and spatial scales. For example, elk at Starkey were generally farther from open roads during daytime but moved closer to roads during nighttime (Wisdom 1998, Ager et al. 2003). This pattern was also observed in South Dakota (Millsbaugh 1999). In addition, both daily movements and size of home ranges of elk may decrease when open road density

Transactions of the 69th North American Wildlife and Natural Resources Conference
decreases. These reductions could lead to energetic benefits that translate into increased fat reserves or productivity (Cole et al. 1997). On a larger scale, entire ranges can be abandoned if disturbance from traffic on roads and the associated habitat loss and fragmentation exceed some threshold level. The ultimate effect of displacement of elk, by motorized traffic as well as other disturbances, is a temporary or permanent reduction in effective habitat for elk. Concomitant with loss of effective habitat are reduced local and regional populations (Forman et al. 2003).

2. **Elk vulnerability to mortality from hunter harvest, both legal and illegal, increases as open road density increases.** Many factors affect elk vulnerability to hunter harvest, but the evidence is compelling that survival rates of elk are reduced in areas with higher road density (Leege 1984, Leptich and Zager 1991, Unsworth et al. 1993, Gratson and Whitman 2000a, Weber et al. 2000, Hayes et al. 2002, McCorquodale et al. 2003). Closing roads offers more security to elk and may decrease hunter densities (fewer hunters may be willing to hunt without vehicle access). Also, poaching losses may decrease when roads are closed (Cole et al. 1997).

3. **In areas of higher road density, elk exhibit higher levels of stress and increased movement rates.** Higher levels of physiological indicators of stress, such as fecal glucocorticoids, have been observed in elk exposed to increased road density and traffic on roads (Millspaugh et al. 2001). In addition, the energetic costs of moving away from disturbance associated with roads may be substantial (Cole et al. 1997). Research to estimate such costs to elk in relation to recreational use on roads is underway at Starkey (Wisdom et al. 2004a). Conversely, elk may conserve energy by traveling on closed roads to avoid woody debris and downfall (Lyon and Christensen 2002).

Knowledge has been gained not only about elk response to roads, but also about modeling of this relationship. Results from research at Starkey suggested that a road-effects model based on distance bands provides a more spatially explicit and biologically meaningful tool than a traditional model based on road density (Rowland et al. 2000). This analysis, based on more than 100,000 radiolocations of cow elk during spring and summer, found no relation between numbers of elk locations and HE scores based on open road density in 15 elk.
analysis units. (We define habitat effectiveness as the "percentage of available habitat that is usable by elk outside the hunting season" [Lyon and Christensen 1992:4].) However, elk preference increased strongly (as measured by selection ratios) as distance to open roads increased. Such distance-to-roads analyses are readily accomplished using widely available spatial data layers in a GIS.

Despite the wealth of information about how roads and motorized traffic affect elk and their habitats, gaps in our knowledge remain. For example, although we know that elk response to roads generally varies depending on the level and type of motorized traffic, we have little knowledge about the precise levels of such disturbance that elicit a response and the duration of that response. Research at Starkey has demonstrated threshold rates of traffic above which a response by elk is elicited but below which open roads are functionally equivalent to closed roads (A. A. Ager, personal communication 2003; Wisdom et al. 2004b). Measurements of traffic rates and elk response to these rates are needed in other locations to better understand these thresholds. Though more costly to obtain than maps of roads, information about traffic rates can be used to improve management of roads in elk habitat in ways that are both cost-effective and beneficial to elk. Further research also is needed to better understand the interaction of roads, topography and forest cover in affecting elk distributions, primarily in relation to providing security for elk.

Also needed is a better understanding of the effectiveness of road closures; examples abound about the lack of effectiveness of closures on public land, especially when few resources are made available for enforcement (Havlick 2002, Wertz et al. 2004). More than half of 802 road closures inventoried on national forests in Idaho, Montana, Washington and Wyoming were found to be ineffective, even after accounting for administrative use (Havlick 2002). In Idaho, elk mortality was positively correlated to densities of both closed roads and open roads, suggesting that road closures were ineffective in reducing mortality from hunting (Hayes et al. 2002). Systematically collected data on use by all motorized vehicles, including off-highway vehicles, of closed roads would benefit management of elk and other resources (e. g., soils) affected by vehicle traffic on roads. And last, HE models for elk, including the roads variable, need further validation. Beyond the Starkey research (Rowland et al. 2000) and a few other studies (e. g., Roloff et al. 2001, Benkobi et al. 2004), such validation has not been conducted, especially of the most commonly applied models (Wisdom et al. 1986, Thomas et al. 1988). Given the continued widespread use of elk HE models in
land-use planning on national forests and on other land occupied by elk, such validation is a critical research need.

A final cautionary note: much of what has been learned about elk and roads to date has resulted from field studies that had no experimental component and, thus, no sound basis from which to infer cause-effect relations. Experimental studies underway at Starkey—in which road densities and traffic rates are manipulated according to strict sampling protocols and distributions of elk are closely monitored—will greatly enhance our understanding of elk response to roads (Wisdom et al. 2004b).

Current Management Approaches to Elk-Roads Issues

In light of the deleterious effects of roads on elk as described above, both ungulate biologists and land managers have developed methods to address their respective concerns. During the 1970s and 1980s, biologists created a suite of models, based on empirical data, to predict effects of land management activities on habitat effectiveness for elk (e.g., Lyon 1979, 1983; Thomas et al. 1979, 1988; Leege 1984; Wisdom et al. 1986). All of these models incorporated a road-density component. In addition to the more general elk HE models, specific habitat guidelines related to roads were written. For example, guidelines developed in Montana specified that elk security areas be located more than 0.5 mile (0.8 km) from open roads (Hillis et al. 1991). Elk habitat models that include a roads component also have been used to evaluate the suitability of sites for restoration of elk populations (Didier and Porter 1999). Further, ungulate biologists have constructed resource selection models that include a roads variable to predict spatial distributions of elk (Cooper and Millspaugh 1999, Johnson et al. 2000).

Land managers, in turn, have incorporated concerns about elk and roads into formal planning processes through the application of standards and guidelines. How management agencies address elk-roads issues varies widely, however, both within and across agencies. For example, elk are designated as a management indicator species (MIS) within some national forests but not others. This designation, or lack thereof, subsequently affects how elk habitat is addressed in forest planning and environmental assessment.

Forest plans for many national forests contain specific standards and guidelines for elk HE, using one or more of the various elk HE models that have been developed. For example, the forest plan for the Wallowa-Whitman National
Forest in northeastern Oregon provides direction to maintain HE at greater than 0.5 during timber sale planning in management area 1 (MA1; timber production emphasis), but only, "where this can be done without reducing timber harvest volumes" (U. S. Department of Agriculture, Forest Service 1990b:4-57).

(Habitat effectiveness scores range from 0 to 1.0 in most HE models.) Furthermore, the plan assumes that, in the long-term, elk HE will be maintained at 0.62 in MA1. Open road density in this management area is targeted not to exceed 2.5 miles per square mile (1.6 km/km²) in general but no more than 1.5 miles per square mile (0.9 km/km²) in selected elk summer and winter ranges. In the adjacent Umatilla National Forest, elk HE is projected to range between 0.67 and 0.70, and open road density from 2.0 to 2.2 miles per square mile (1.2–1.4 km/km²), forest-wide during the five decades beyond 1990 (U. S. Department of Agriculture, Forest Service 1990a). In addition, the standard for elk HE on big game winter range is 0.70 (U. S. Department of Agriculture, Forest Service 1990a). Generally, if habitat for elk is identified as an issue for a proposed management activity, such as timber restoration, or if elk have been identified as a MIS, evaluation of elk habitat is mandated during the environmental assessment process. Such evaluation commonly entails the application of an elk HE model to the affected area under the various alternatives, with the results incorporated into an effects analysis for evaluation of alternatives.

A more recently developed approach incorporates evaluations of habitat effectiveness for elk into the initial stages of forest planning, rather than using HE models to evaluate effects of single management activities, such as timber harvests (Bettinger et al. 1999). This approach incorporates elk HE into the objective function of a mathematical forest-planning model. Various scenarios can be simulated, with maximization of elk HE scores, timber output, or both. Likewise, Roloff et al. (1999) developed a decision support system that allows evaluation of effects of various management strategies on habitat for elk and other wildlife within the context of forest planning models.

Applying a Distance-Band Model of Elk-Road Effects in Forest Planning: A Case Example

A method to evaluate effects of roads on elk using a distance-band approach has been suggested both by Roloff (1998) and by Rowland et al. (2000), as described above. Based on radiolocations of elk at Starkey, Rowland et al.
(2000) found no relation between number of elk locations and HE based on open road densities. By contrast, the authors found a strong, linear increase in selection ratios of elk as distance to roads increased. For this analysis, elk locations were assigned to 109-yard- (100-m-) wide bands away from open roads. Roloff (1998) also developed a road-effects module in which habitat adjacent to roads was buffered into distance bands in a GIS. Habitat effectiveness in the bands was adjusted according to level of security cover, as well as road use or road type. Regardless of the exact approach selected, ongoing planning efforts within national forests and other land that provide habitat for elk may benefit from consideration of a revised, spatially explicit road-effects variable.

The mechanics of calculating HE related to roads (HE_R) using distance bands are similar to those for another variable in elk HE models—the size and spacing of cover and forage (HE_S). Both variables involve buffering outwards from linear features—either roads, for HE_R, or the cover and forage edges, for HE_S—to create distance bands. Each band is assigned a weight, with lower weights corresponding to lower HE. A weighted average is then calculated, based on the proportion of the analysis area in each of the bands and the weight of the appropriate band (see Hitchcock and Ager 1992). The sum of these products yields the final HE value, which cannot exceed 1.0.

To examine how the method of calculation (i. e., the traditional road-density method versus distance bands) might affect HE_R for elk, we applied both methods in an evaluation of the effects of a timber sale in the Wallowa-Whitman National Forest in northeastern Oregon. The Dark Meadow Restoration Project was proposed to restore and enhance ecosystems within the project area, through thinning, prescribed fire and mechanical fuels-reduction treatments over the next 10 to 15 years (U. S. Department of Agriculture, Forest Service 2003). Project goals include reductions in fuel loading, promotion of old-growth habitat, improvement in big game habitat and initiation of tree regeneration. Under the two action alternatives of the project, open road density will be lower than that under the no action (existing condition) alternative (Table 1, Figure 1).

The Dark Meadow Restoration Project encompasses 17,700 acres (7,169 ha) of the Blue Mountains and is completely contained within the Starkey Game Management Unit. The elk population in this unit is estimated to be at the objective (5,300) set by Oregon Department of Fish and Wildlife. The area functions primarily as summer range for elk, with smaller portions used as
Table 1. Comparison of two methods for modeling effects of roads on elk habitat effectiveness (HE) under three alternatives in the Dark Meadow Restoration Project, Wallowa-Whitman National Forest, northeastern Oregon.

<table>
<thead>
<tr>
<th>Variable</th>
<th>"No action" alternative</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total miles (km) of open roads in analysis area</td>
<td>138.1 (222.2)</td>
<td>114.2 (183.7)</td>
<td>106.5 (171.4)</td>
</tr>
<tr>
<td>Open road density in miles per square mile (km/km²)</td>
<td>4.99 (3.09)</td>
<td>4.13 (2.56)</td>
<td>3.85 (2.39)</td>
</tr>
<tr>
<td>HE₉-ORD</td>
<td>0.20</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>HE₉-DB</td>
<td>0.17</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>HE₉</td>
<td>0.60</td>
<td>0.59</td>
<td>0.61</td>
</tr>
<tr>
<td>HE₉</td>
<td>0.84</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>Total HE (ORD method)</td>
<td>0.47</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>Total HE (DB method)</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
</tr>
</tbody>
</table>

*This alternative is the existing condition.

*Open roads include any road available to motorized traffic; these are roads officially designated as open as well as closed roads that have no promulgation.

*Habitat effectiveness for roads (HE₉) based on open road densities (ORD); HE₉-DB uses distance bands (DB) to calculate HE₉.

*Habitat effectiveness as related to cover quality.

*Habitat effectiveness as related to size and spacing of cover and forage areas.

Total habitat effectiveness, which is the geometric mean of HE₉, HE₉, HE₉ and HE₉. HE₉ (habitat effectiveness as related to forage quality and quantity) was not derived empirically for this analysis; rather, a default value of 0.5 was input for this variable.

transitional or winter range. Lack of elk security habitat was identified as a key issue in planning for the Dark Meadow Restoration Project; thus, roads were a primary consideration in the crafting of alternatives (U. S. Department of Agriculture, Forest Service 2003).

To calculate HE₉ for elk in Dark Meadow Restoration Project, all roads open to motorized vehicles were counted. No traffic rate data were available; thus, roads were not weighted according to level of use. We defined open roads as those officially designated as open as well as closed roads for which no promulgation was planned. Promulgated road closures are those for which the Code of Federal Regulations is applied; such closures are legal and enforceable. In the Wallowa-Whitman National Forest Plan, closed roads were assumed to be physically impassable to full-sized vehicles and also assumed to be seldom traveled by off-highway vehicles (U. S. Department of Agriculture, Forest Service 1990b). Roads designated as closed but not promulgated, however, are often traveled by off-highway vehicles (Havlick 2002).
Figure 1. Open roads under three alternatives of the Dark Meadow Restoration Project, Wallowa-Whitman National Forest, northeastern Oregon: the "no action" alternative (A); Alternative 1 (B); and Alternative 2 (C). Open roads were defined as any road available to motorized traffic, including roads officially designated as open and closed roads that have no promulgation.
The HE_r variable based on open road densities (ORD) (hereafter referred to as HE_r-ORD) was then calculated with the equations of Hitchcock and Ager (1992) for the existing condition and the two action alternatives (Table 1). To calculate HE_r based on distance bands (HE_r-DB), all open roads were buffered in a GIS. The analysis area was partitioned into five bands, each 394 yards (360 m) wide, with the sixth band containing any area greater than 1,969 yards (1,800 m) from an open road. This distance (i.e., 1,969 yards) is equivalent to that at which elk response to open roads diminished markedly at Starkey (Rowland et al. 2000). Each band was assigned a weight, reflecting a linear increase in elk selection ratios as distance from open roads increased at Starkey: band 1 was 0.17, band 2 was 0.33, band 3 was 0.50, band 4 was 0.67, band 5 was 0.83 and band 6 was 1.0. HE_r-DB was then calculated as a weighted average, with the proportion of the analysis area in each band multiplied by the appropriate weight. Finally, we calculated total HE for the analysis area, based on the four variables of the elk HE model, with only HE_r differing between the two calculations (Table 1).

Open road density in the Dark Meadow Restoration Project area was relatively high under all three alternatives, and HE_r-DB was consistently lower than HE_r-ORD (Table 1). However, this difference was more pronounced with lower open road densities; under the no action alternative, HE_r-DB was only 15 percent less than HE_r-ORD, but, under the two action alternatives, this difference increased to at least 32 percent (Table 1). Compared to the no action alternative, the density of open roads declined 17 and 23 percent, respectively, under alternatives 1 and 2. Concomitant with this decline in road density were increases in HE_r-ORD of 40 and 55 percent for the two action alternatives, respectively; however, HE_r-DB increased only 12 and 18 percent (Table 1). These results suggest that the spatial arrangement of remaining open roads was such that the amount of effective habitat for elk improved only marginally (Figure 1). Thus, HE_r-ORD may overestimate habitat effectiveness for elk under certain conditions.

Because total HE is the geometric mean of all four input variables, differences in total HE between the two methods were not as substantial as were those for HE_r alone (Table 1). Among the four variables used to calculate HE, all of which are equally weighted in computing the mean, values for HE_r were substantially lower than those of the other three variables (Table 1). Thus, in the Dark Meadow Restoration Project, the relatively high open road densities were
largely responsible for the low total HE scores. These scores exceeded only slightly the recommended standard of 0.5 for total HE in timber planning on the Wallowa-Whitman National Forest and only when HE$_r$-ORD was used for the roads variable (Table 1). By contrast, when HE$_r$-DB was used, total HE was below the standard for all alternatives (Table 1).

We did not alter band weights, or back buffer them, based on the level of security cover in each band (see Roloff 1998). This additional refinement may be warranted in situations where cover quality varies widely across the analysis area, or is predicted to vary under proposed management alternatives. In addition, band weights could be adjusted by accounting for topographic relief, such that areas providing topographic barriers to human disturbance would have weights adjusted upward, or by traffic rates, if such data were available.

Implications for Management and Policy Involving Elk-Roads Issues

Road management inevitably involves tradeoffs between the benefits of increased access that roads provide versus the ecological and economic costs associated with roads (Gucinski et al. 2001, Forman et al. 2003). Because the U. S. Department of Agriculture, Forest Service manages about 10 percent of the public road system in the United States (Forman et al. 2003), road-management decisions made by that agency strongly influence current road systems. U. S. Department of Agriculture, Forest Service policy regarding road closures and construction continues to engender controversy, exemplified by the multiyear debate over the national roadless rule. The rule, first published in the Federal Register in January 2001 (U. S. Office of the Federal Register 2001), has been challenged by at least nine lawsuits in federal district courts. Decisions about roads, including construction, reconstruction, closure, obliteration or decommissioning, are complex because they affect a multitude of resources, not just wildlife. All resource values in a watershed must be evaluated when making decisions about roads; these may include human safety (e. g., access to combat wildfires), soils, recreation, commercial timber harvest and restoration activities. In addition, decisions about roads are closely tied to available funding. Expenses are involved both in constructing, maintaining and decommissioning roads and in enforcing road closures (Forman et al. 2003). Complicating the issue of evaluating effects of roads is that roads in forested ecosystems currently are not well inventoried (Gucinski et al. 2001).
The potential implications of road-related policies for elk management are diverse and complex. Benefits of road closures may include:

- decreased energy expenditure by elk, a result of less frequent disturbance by motorized vehicles, with potential improvements in animal performance
- increases in total amount of effective habitat for elk in the area affected by the closures
- increased hunting opportunities on public land, when roads are closed on public land adjacent to comparatively less-roaded private land, thereby enticing elk to remain on public land rather than moving to private land where hunting may not be allowed or is prohibitively expensive (Wertz et al. 2004)
- decreased damage to crops and haystacks from elk on private land, due to lessened disturbance from traffic on public land, which in turn causes elk to remain on public land longer during the fall and winter seasons
- improvements in diet quality when elk are able to forage undisturbed in areas previously avoided due to excessive motorized traffic; these changes may translate into improvements in animal fitness and population performance
- increased hunter satisfaction, defined as either the ability to hunt in a roadless area or the access to roads and the use of all-terrain vehicles on closed roads or other off-highway sites (Gratson and Whitman 2000b)
- decreased vulnerability of elk during hunting seasons, due to fewer hunters willing to hunt without a vehicle or able to access the area.

Road closures alone may not be effective in eliminating effects of roads and traffic on elk because of inadequate enforcement. For this reason, the U. S. Department of Agriculture, Forest Service may promulgate road closures in addition to designating roads as closed, as in the Dark Meadow Restoration Project discussed above. Careful assessment of how roads are being used, rather than their official status, is important to credibly evaluate effects of roads on elk and other wildlife. Likewise, judicious closing of certain road segments, particularly road spurs (Forman et al. 2003), may retain or create blocks of habitat that serve as security areas for elk while allowing sufficient road access for other management needs. Spatially explicit models and tools are currently available to aid in evaluating among road closure alternatives.
Elk continue to exert tremendous impact on local economies, through their status as a premier game species, and on forested ecosystems, through their role as abundant, widespread large herbivores. Given the indisputable effect of roads on distribution of elk, roads and their management will undoubtedly remain, as stated by Lyon and Christensen (2002:566), "central to elk management on public and private lands."

Reference List

Transactions of the 69th North American Wildlife and Natural Resources Conference

Transactions
of the
Sixty-ninth North American Wildlife
and Natural Resources Conference

Conference Theme:
Resource Stewardship in the 21st Century:
A Voyage of Rediscovery

March 16 to 20, 2004
DoubleTree Hotel and Spokane City Center
Spokane, Washington

Edited by
Jennifer Rahm

Published by the
Wildlife Management Institute
Washington, DC
2004
Wildlife for Persons with Disabilities: Making the Outdoors Accessible through the Use of Motorized Vehicles .. 439
Kirk Thomas and Illana Burkhart

Special Session Six. Policy Implications from Long-term Studies of Mule Deer and Elk: A Synthesis of the Starkey Project

The Starkey Project:
Long-term Research for Long-term Management Solutions 443
Thomas M. Quigley and Michael J. Wisdom

Overview of the Starkey Project:
Mule Deer and Elk Research for Management Benefits 455
Michael J. Wisdom, Mary M. Rowland, Bruce K. Johnson, and Brian L. Dick

The Starkey Databases: Spatial-Environmental Relations of North American Elk, Mule Deer and Cattle at Starkey Experimental Forest and Range in Northeastern Oregon 475
John G. Kie, Alan A. Ager, Norman J. Cimon, Michael J. Wisdom, Mary M. Rowland, Priscilla K. Coe, Scott L. Findholt, Bruce K. Johnson and Marvin Vavra

Effects of Roads on Elk:
Implications for Management in Forested Ecosystems 491
Mary M. Rowland, Michael J. Wisdom, Bruce K. Johnson and Mark A. Penninger

Spatial Partitioning by Mule Deer and Elk in Relation to Traffic 509
Michael J. Wisdom, Norman J. Cimon, Bruce K. Johnson, Edward O. Garton and Jack Ward Thomas

Effects of Off-road Recreation on Mule Deer and Elk 531
Michael J. Wisdom, Alan A. Ager, Haiganoush K. Preisler, Norman J. Cimon and Bruce K. Johnson
Issues of Elk Productivity for Research and Management..........................551
Bruce K. Johnson, Michael J. Wisdom and John G. Cook

Influence of Age of Males and Nutritional Condition on Short-
and Long-term Reproductive Success of Elk..572
James H. Noyes, Bruce K. Johnson, Brian L. Dick
and John G. Kie

Nutritional Condition Indices for Elk:
The Good (and Less Good), the Bad and the Ugly.......................................586
Rachel C. Cook, John G. Cook, Dennis L. Murray, Pete
Zager, Bruce K. Johnson and Michael W. Gratson

Nutrition and Parturition Date Effects on Elk:
Potential Implications for Research and Management.................................604
John G. Cook, Bruce K. Johnson, Rachel C. Cook, Robert
A. Riggs, Tim DelCurto, Larry D. Bryant and Larry L.
Irwin

Elk and Mule Deer Responses to Variation in Hunting Pressure..................625
Bruce K. Johnson, Alan A. Ager, James H. Noyes and
Norm Cimon

Movements and Habitat Use of Rocky Mountain Elk and Mule Deer..............641
Alan A. Ager, Haiganoush K. Preisler, Bruce K. Johnson
and John G. Kie

Spatial and Temporal Interactions of Elk, Mule Deer and Cattle..................656
Priscilla K. Coe, Bruce K. Johnson, Kelley M. Stewart and
John G. Kie

Diet Composition, Dry Matter Intake and Diet Overlap
of Mule Deer, Elk and Cattle...670
Scott L. Findholt, Bruce K. Johnson, Daalkhaijav
Damiran, Tim DelCurto and John G. Kie
Landscape Simulation of Foraging by Elk, Mule Deer and Cattle on Summer Range..687
 Alan A. Ager, Bruce K. Johnson, Priscilla K. Coe and Michael J. Wisdom

Thermal Cover Needs of Large Ungulates:
A Review of Hypothesis Tests...708
 John C. Cook, Larry L. Irwin, Larry D. Bryant, Robert A. Riggs, Jack Ward Thomas

Cattle and Elk Responses to Intensive Timber Harvest..................727
 Michael J. Wisdom, Bruce K. Johnson, Martin Vavra, Jennifer M. Boyd, Priscilla K. Coe, John G. Kie, Alan A. Ager and Norman J. Cimon

Management Implications of Ungulate Herbivory in Northwest Forest Ecosystems...759
 Robert A. Riggs, John G. Cook and Larry L. Irwin

The Role of Ungulate Herbivory and Management on Ecosystem Patterns and Processes: Future Direction of the Starkey Project..................785
 Martin Vavra, Michael J. Wisdom, John G. Kie, John G. Cook and Robert A. Riggs

Has the Starkey Project Delivered on Its Commitments?...............798
 Jack Ward Thomas and Michael J. Wisdom

Registered Attendance..813

2004 WMI Distinguished Service Award...823

2004 WMI Touchstone Award..825