
u Lun~j.5~ ape Ecolog) 18: 347-361, 2003. 
li? 7003 Kiult rr Atucirmri Puhti~har~. Prmtrd irr the hretherlurds 

Modeling the spatially dynamic distribution of humans in the Oregon 
(USA) Coast Range 

Jeffrey D. Kline'**; David L. Azurna2 and Alissa Moses" 
'Furarq  Sr-ienc-es hbctrntor3.; Pac$c Nitrthtvest Researclz Station, 3200 SW Jt$krson Way, Con-clflic, 
OR 97331, MA: 'Fcrresfry Sc.i~i?ces kzbomlor?; Pacijic Nor-thtve.5) Resenrrh Station, Portlc~rtu! OK 97208, 
USA: -'nef>nrtfrtefzt qf Forest Science, Oregon Stare Ui~iversiQ, Con*ullis, OR 97.33 1, USA ; *'Author. .for 
corrcr.si?oncfc.~~ce (e-rnilil: .IKline @.f S.fed. us) 

Receivcd 23 Novc-mber 2001; accepted in revised form 30 April 21302 

Key words: Ecological economics, &restfurban interface, Land use change, Landscape modeling, Western 
Oregon, USA 

Abstract 

A common approach to land use change analyses in multidisciplinaq landscape-level studies is to dclineate dis- 
crete forest and non-forest or urban and non-urban land use categories to serve as inputs into sets of integrated 
sub-models describing socioeconomic and ccological processes. Such discrete land use catcpories, ho~ever,  may 
be inappropriate when the socioeconomic and ecological prctcesses under study are sensitive to a range of human 
habitation. In this paper, we characterize the spatial dynaniic distribution of humans throughout the forest fand- 
scape of western Oregon (LISA). We develop an empirical model describing the spatial distril~ution and rate of 
change in historic building densities as a function of a gravity index of devcloprncnt pressure, existing buildirig 
densities, slope. elevation, and existing land use zoning. We use the empirical model to project changes in build- 
ing densities that arc applied to a 1995 base map of building density to describe future spatial distributions of 
buildings over time. The projected building de~isity maps serve as inputs irlto a n~ultidiscipliriary landscape-level 
analysis of socioecoriomic and ecological processes in Oregon's Coast Range Mountains. 

Introduction 

A common approach to multidisciplinary landscape- 
level analysis of socioecono~nic and ecological pro- 
cesses is to treat humans largely as separate from the 
forest landscape. Empirical models of land use 
change commonly have been used in landscape anal- 
yses to delineate discrete forest and nonforest, forest 
and urban, or other similar discrete land use catego- 
ries, to serve as inputs into sets of integrated sub- 
models describing socioecono~nic and ecological pro- 
cesses and conditions (see, for example, Bockstael 
(19961 and Irwin and Geoghegan (2001 1, Kline et al. 
(200 1 1, Schoorl and Veidkanip (2001)). Such delinea- 
tions often are intended to identify where humans are 
and are not present on the landscape. We are aware 

of only two studies that attempt to treat humans as 
part of the laridscape, by describing a range of human 
habitation. Wear and Bolstad ( 1998) develop an em- 
pirical model of building densities to describe thc 
"spatial diffusion" of human popul:ttions, but ulti- 
mately use their building density to dewxibe discrete 
forest and nonforest land use categories. Fagan et al. 
(2001) suggest several modeling approaches for de- 
scribing housing starts near cities, but lack empirical 
data with which to estimate and test empirical ver- 
sions of their models. We build upon these works by 
examining the spatial distributiori and rate of change 
in historic building densities in we\tern Oregon. USA 
and use this information to characterize the future 
spatial distrih~~tion, of humans thrc~ilghout CJregc~n's 
Coast Range Mountains. 



For many applications, a discrete treat~nent of land 
use may be appropriate, when the landscape-level so- 
cioeconomic and ecologicaJ processes under study are 
relatively itisensitive to low levels of human habita- 
tion. For example. in inany studies land use modeIing 
is focused more 011 chwacterjzi~ig changes in land (or 
vegetative) cover than on characterizing the level of 
human htzbitation. Examples of such studies include 
models of agricultural cropping pattems (Serneets 
and Lambin 2001; Wdsh et al. 2001), forest succes- 
sion (Turner et a1. 1995; Helmer 2000), or deforesta- 
tion (Geoghegan et al. 2001; Schneider and Poniius 
2001) to name a few. Also, the specific intent of many 
studies is to characterize the probability of a particu- 
lar tqpe of land use change occurring, to identify po- 
tential priority corlservation arereas for exatnplc (Swen- 
son and Franklin 2000), or to identify causal factors 
of land use change (for example, Nelson and Heller- 
stein (1997)), rather than projecting potential future 
land use scenarios. However, in other applications, 
where a more explicit characterization of potential 
future land uses is desired or where land use projec- 
tions will serve as inputs t(-, other models of socio- 
economic and ecological processes that may be sen- 
sitive to a range of human habitation, discrete land 
use categories may be inadequate to characterize the 
spatial and temporal interactions of humans as agents 
affecting landscape-level processes under study. 

For example, multidiscipli~iary studies of forest 
landscapes commonly delineate discrete forest and 
non-forest land categories as key inputs in sub-mod- 
eis describing timber management and production, 
both as an economic activity and as an iniportant Fac- 
tor affecting landscape-level ecological processes 
such as habitat viability. Reseztrch, however, suggests 
that the intensity of tirnber management and produc- 
tion activities conducted by private forestland owners 
can be negatively correlated with hutnan population 
densities such that they vary across forest landscapes 
depending on human population levds (Barlow et al. 
1998; W a r  et al. 1999). Habitat viability for certain 
species itself may vary according to a range of hu- 
man habitation, in addition to land cover characteris- 
tics associated with general land use categories. Fire 
also may be an important factor in landscape-level 
tiiodcling. Some forestry analysts hypothesize that in- 
creasing numbers of residences located in forested 
landscapes increase the likelihoctd of wildfire and in- 
crease fire suppression costs when firefighting re- 
sources arc re-directed to save homes instead of con- 
taining fires (Milloy 2000). In these and perhaps other 

examples, discrete land use categories may be les\ 
usefi1I as inputs into lanciscape-level model., of socio- 
economic and ecological processes than would be 
more detailetl information describing range\ of hu- 
man habitation on the landscap. 

The empirical methods used to model changer 
among discrete land use categories can involve other 
difficulties. Enipirical land use modeta hahed on dis- 
crete land use data commonly arc: estimated using 
logit or probit techniques that result in projected prob- 
abilities of land use change rather than projections of 
discrete land use categories. These projected proba- 
bilities can be difficult to interpret or incorporate into 
other socioeconomic and ecological models. Discrete 
land use models also may be limited by the specific 
chxacteristics of available land use data. Discsctc 
land use models often are estimated using data col- 
lected from land inventories, such as the National Re- 
sources Inventory (Nusser and Coebel 1997) and the 
USDA Forest Service's Forest Inventory and Analy- 
sis Program inventories (see, for example, Frayer and 
Furnival (1 999)), which niay be designed to meet spe- 
cific intormational t~bjectives. These inventories may 
categorize land according to criteria or definitions that 
may be imperfect or inappropriate for examining so- 
cioeconomic and ecological processes of interest. Ide- 
ally, a motieling approilcli that allowl for a range of 
hit~nan habitrttion, more definitibe prcjections oC 
change, and greater flexibility in its applicability to 
issues under study is desirable. 

In this paper, we build upon the work of (Wear and 
Bolstad 1998: Fagan et a]. 2001) by characterizing the 
spatial distribution of hunians throughout the land- 
scape comprising Oregon's (USA) CIoast Range 
Mountains. We develop an empirical model describ- 
ing the spatial distribution and rate of change in his- 
toric building densities in western Oregon as a func- 
tion of a gruvity index of development pressure, 
existing building densities, slope, elevation, and ex- 
isting land u,e roning. We use the empirical model to 
project pixel-level changes in building densities that 
are applied to a 1995 base year building density base 
map to describe the future spatial distributions of 
buildings through 2055. The building density maps 
are key inputs in other socioecononlic and ecological 
sub-niodels comprising the Coastal Landscape Anal- 
ysis and Modeling Study in western Oregon (VSA). 
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Figure I. Coastal landscape analysis and modeling study rcglon In Western Oregon. 

Study Area 

The Coastal Landscape Analysis and Modeling Study 
(Spies et al. 2002) is a multidisciplinary research ef- 
fort to analy~c the aggregate ecological, economic, 
and social consequences of forest policies in western 
Oregon's Coast Range Mountains. The study region 
borders the Pacific Ocean on the west and the Wil- 
lanlette Valley on the east (Figure l) .  Current forest 
policies in the region attempt to achieve a particular 
mix of forest goods and services by spatially distrib- 
uting different forest practices over watersheds or 
landscapes, and across multiple ownerships. A partic- 
ular policy concern in recent years has been ensuring 
sufficient habitat for spotted owls (Striu occidentnkis 
eaurim) and coho salmon (Ortcorhynch~~ kisutch). 

The project is intended to provide quantitative 
analyses testing the assumptions of current forest pol- 
icies to determine if projected future outcomes are 
consistent with policy goals. Specific objectives in- 
clude: 1 )  characterizing current spatial patterns and 
historical dynamics of ecological, economic, and so- 
cial components of the Coast Range ecosystem; 2 )  
developing ecological, economic, and social models 
describing these components, and the linkages among 
each; and 3 )  pro.jecting the aggregate impacts of cur- 
rent forest pojicies in the Coast Range on ecosystem 
conditions and economic outputs over time. 

One socioeconomic factor that is expected to hake 
a significant impact on projected forest policy out- 
comes in the Coast Range is land-use change rcmlt- 
ing from the conversion of forestland to residential, 
commercial, and industrial uses. Currently, seventy 
percent of Oregon's 3.4 million people live in the 
Willamette Valley, with the valley populatron ex- 
pected to grow by 1.3 million ne\n, residents in the 
next forty years (McGinnis ct al. 1996: Franzen and 
Hunsberger 1998). Projected population growth has 
motivated increasing interest in exatllirling wherc 
land-use changes are most likely to affect forests and 
the goods and cervices they provide throughout the 
region. Urbanization potentially can came the forest- 
land base to become more fragmented, adversely im- 
pacting ecosystem conditions and economic outputs. 
Ecological impacts could illclude direct loss of habi- 
tat or diminished habitat quality. Economic impacts 
could include less intensive forest management for 
comrncrcial timber prc>duction resulting in reduced 
economic output. The goal of land-use modeling in 
the Coastal 1,andscape Analysis and tvlodeling Study 
is to place current and future forest policies in an ap- 
propriate socioeconomic context by accounting for 
the future distribution of hurrlans throughout the study 
region. 
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Figure 2. General mocfelinp procedure. 

Initial land use rnodels developed for the study were 
based on readily available plot-level data describing 
historical changes among discrete forest, agriculture, 
and urban land-use categories provided by the USDA 
Forest Service's Forest Inventory and Analysis Pro- 
gram (Kline arid Alig 1999; Kline et al, 2001). These 
data were used to estimate probit models describing 
the probability that forest and agriculture plots con- 
verted to urban uses in western Oregon and western 
VVashington, as a function of severdl explanatory var- 
iables. Integrating the projected probabilities into 
other sub-models, however, presented difficulties. A 
specific need of the study is the delineation of future 
forestland seas at each modeling time interval. In 
western Oregon, the proportion of land in forest use 
historically has been quite high relative to the propor- 
tion in urban uses, based on Fc~rest Inventory and 
Analysis land use definitions. As a result, prqjcetcd 
probabilities describing the likelihood of future con- 
versions of forestland to urban uses generally are 
quite low. However, analysis based on more recently 
available data describing building densities in west- 
ern Oregon suggests that although the conversion of 

land frorn the discrete forest to urban use categories 
historically has been a relatively slow process, land 
use change has occuned in the forrn of relatively dis- 
persed, low-density development (Azuma et al. 
1999). Cl~aracterizing this particular forrn of develop- 
ment is the fixus of the current land use modcling ef- 
fort. 

We use spatial photo-point data depicting histori- 
cal building densities to estimate an empirical model 
describing historical changes in building densities in 
western Oregon as a function of several explanatory 
variables, including a gravity index of development 
pressure (Figure 2). We combine the empirical tnodel 
with projected future gravity index values to project 
future changes in building densities that are applied 
to a 1995 map of building density to compute pro- 
jected future building densities thmugh 2055. We 
convert projected population densities into discrete 
land usc classcs using a decision rule ihal delines the 
conversion of forestland to low-density and urb:tn de- 
velopinent as a building density threshcjld. 



Data describing building densities in western Oregon 
were de\;eloped by the Pacific Northwest Rcseasch 
Station's Forest Inventoq and Analysis Program. The 
data consist of photo-point observations of building 
density (nt~mber of buildings in an 80-acre (32-ha) 
vicinity) on non-federal land taken from aerial pho- 
tographs in 1974, 1982. and 1994 (Azuma et al. 
1999). With nearly 24,000 photo-points, the data pro- 
vide almost 72,000 photo-point observations of buifd- 
ing density varying in space at three points in time. 
By triicking building densities on individual photo- 
points at each of the three points in timc, we were 
able to construct a data set comprised of two obser- 
vations of change in building density for each photo- 
point. 

A relatively large proportion of the photo-points 
show building densities of zero and do not change 
over the three time points described by the data. This 
results in a large number of zero's in the data set that 
complicates estimation of the empirical models. To 
alleviate these problems, we omitted observations 
showing building densities of zero. Computations of 
prcljectecf values for these omitted observations based 
on estimated coefficients of the estimated empirical 
models suggest that areas where building densities are 
lesc than I building per 80-acre (32 ha) me relatively 
trnlikely to gain a sufficient nttmber of buildings to 
"convert" to low density or urban development as de- 
fined by the landscztpc modeling study, duc to poor 
physical access and steep slopes. We combined the 
building density data with other spatially-referenced 
socioeconolnic and other data using a geographic in- 
formation system to develop explanatory variables in- 
cluding slope, elevation, and land use zoning adopted 
under Oregon's land-use planning program. The re- 
sulting data set used to estimate the empirical models 
is comprised of 12,856 observations of changes in 
building densities from one time point to the next. 

Ghamcierizir?g de~.eloj?rnent pressure 

The value of land for residential, commercial, or in- 
dustrial uses is perhaps the single inost important P'ac- 
tor affecting whether or not land is converted from a 
forest use to a developed use. Conceptually, the value 
of land in developed uses has been viewed as a func- 
tion of the spatial prc3ximity to city centers (Mills 
1980: Miyao 198 1 ; Fujita 1982; Wheaton 1982; Ca- 
pc3zza and Hefsley 1989). The traditional %'on Thunen 

view of spatial proxi~nity to cities had been viewed 
as affecting the profitability of non-developed land 
uses, such as agriculture and forestry, in terms of the 
costs associated with transporting forest and agncul- 
tural commodities to market (Barlow (1978). p. 37). 
However, modern society associates spatial proxim- 
ity more with maximizing the difference between 
quality of' life Factors such as housing and ncighbor- 
hood arnenities, and the costs associated with corn- 
muting to employment locations. Additionally, other 
physical and institutional land characteristics may 
also affect the value of land in developed uses and the 
decisions of individual landowners regarding land 
use. Steeper slopes may increase building construc- 
tion costs. Laud use zoning may restrict certain types 
of development. Wc use a gravity index that inte- 
grates information about the sizes md locatictns of 
cities to describe the influence that cities have on 
land's development potential. UTe combine this with 
other variables describing physical land charttcteris- 
tics, such as slope and elevation, and institutional fac- 
tors, such as land use zoning regulation, to develop 
an empirical model characterizing the value of land 
in developed uses. 

Gravity models were initially cievclopeci by Reilly 
(1929) to describe the degree to xhich cities attract 
retail trade from surrounding locations (xce for exam- 
ple Waynes and Fotheringham (19841). A cornmon 
gravity index specification for a single city is 

Potfulation 
Grct~~ity index - 

(Distctnce) ' (1) 

and is directly proportional to the population of the 
city and inversely proportional to the square of the 
distance between the city and the location of interest. 
Gravity indices also have been used to account for the 
combined influence of population and proximity as 
economic forces effecting land-usc change. For exam- 
ple, Shi et al. ( 1  997) include a gravity index as an ex- 
planatory variable i n  a county-level hedorlic model of 
farmland prices. 'l'heir 'urban influence pc)tenii;ll var- 
iable' is constructed as the cum of the gravity indices 
computed for each of the three lnyjor cities neareclt to 
each county and is a statistically significant variab1e 
in their empirical model of farmland value. Mathe- 
matical specifications other than Equation ( I )  are pos- 
sible by including multiple cities in thc gravity index 
computation and by varying the exponents on p~jptk- 

lation and distizrtcu. In this way, gravity indices can 



be adapted to the specific conditions or 'social con- 
text' of the geographic region under study (ffaynes 
and Fotheringham ( 1  984). pp. 12-1 5). 

One of the most important factors afiecting land's 
development potential is its commuting proximity to 
e~nployment opportunities available in existing cities. 
Land within a short commkttirlg distance to a given 
city likely will have a greater developtnent potential 
than land within a relatively longer commuting dis- 
tance. Similarly. land within a reasonable commuting 
distance of a large city likely will have a greater de- 
velopnlent potential than land within the same com- 
muting distance of a relatively small city. Cities be- 
yond a reasonable commuting distance likely will 
have very little, if any, infiuence on development po- 
tential. We describe these influences using a single 
gravity index computed as 

GRAVITY INDEX, 
K 60 - TIME, 

= EPOPULATIQN, 
I ( 60 ) ' 2 )  

where A' represents the number of cities within a 60- 
minute drive (or commute) of each photo-point i, 
POPUUTl f lN  is the population W.S. Bureau of 
Census 1992) of each city k, and TIME is the driving 
time in minutes between photo-point i and city k .  As 
computed, the gravity is the sum of the populations 
of all cities within a 60-minute commute of each pho- 
to-point, weighted by the estimated driving time to 
each city's edge. The index sets a 60-minute thresh- 
old on the 'reasonable' commuting time, based on our 
assumption that most Oregonians are probably un- 
wilting to commute more than one-hour to work. 
Varying this threshold to reflect somewhat shorter or 
Ionger rnaximur~i reasonable commuting times did not 
substa~~tially affect the sign, magnitude, or statistical 
significance of the gravity index variable in model 
estimation. 

The complete set of cities incorporated into the 
gravity index co~nputation included 45 western Ore- 
gon cities comprising 5,000 or more persons in 1990 
(U.S. Bureau of Census 1992). Adjacent cities were 
combined and treated as larger metropolitan areas, 
reducing the total number of cities and metropolitan 
areas included in the analysis to 30. Driving times 
used to calculate the gravity index were estimated us- 
ing a geographic infclrmation system map of existing 
roads to create a f'riction surface based on average 
dritirlg times assumed for different types of roads. We 

assumed that dnvers could average (tpeeds of 60 miles 
per hour (97 km h-9 on primary roads, 25 mile per 
hour (40 km h-'I on secondary roads, and 10 miles 
per hour ( I  6 krn h-9 where there are no road$. The 
driving times are based on roads data from a single 
point in time. because we lack data describing new 
roads and improvetnents. As a consequence, we ig- 
nore potential endogeneit4 hettvtcn land use change 
and road building noted by Irwin and Geoghegan 
(2001) among others. 

The building density data colisist of observations 
taken at three points in time ( 1  974, 1982, and 1994), 
resulting in two observations of building density 
change per sample point. The dependent variable 
SDENSITY was constructed by computing changes in 
building densities observed at each sample point at 
ten-year intervals between 1974 and 1984, tind be- 
tween 1984 and 1994. Building density data for t 984 
were estimated by interpolation between 1982 and 
1994 values, and rounding to the nearest whole num- 
ber. The dependent variable ADENSlTY is measured 
as a count and so is not cotltinuous. Assuming ADEN- 
SlTY is distributed as a Poisson leads to the negative 
binomial rl~odel 

where y is L+ random variable and cxp(y) has a gamma 
distribution with mean 1 and variance cr. x ,  is a vec- 
tor of independent variables, and P' is a vector of ccr- 
efficients to be estimated (Greene 1997). 

The panel nature of the data - generally two ob- 
servations of building density change per photo-point 
- creates the potential for correlation among the pairs 
of time-series observations for individual photo- 
points to deflate standard errors and him estimated 
coefficients. These potential correlations can be ac- 
counted for using a random effects negative binomial 
model (see Greene ( 19951, pp. 570-57 1 for a deriva- 
tion). Since the group effects are conditioned out (not 
computed), projected values cannot be computed 11s- 
ing the random effects model (Grecne (1  995 f .  p, 567). 
However, the estimated model coefficients can be 



Trihir. I. De\crtptions of Exp1:inatnry Variables Te\ted ~n the Emprrrcai Model 

GRNITY INDEX Equal to the average of the gr'tvtiy tndex computed iustnp Equarton (211 lit the heg~nntrip ot each 

time pen& and the gra-r tty index computed at the end of each time perrod itime.i l/lCftl.H)O) 

C~ty populations for study year\ tor non-Cemur years e\tirnated by ~nterpolat~np between poputa- 

tlrlns reported for Cenius j a r 4  (U S Burcarr cti Cenrus 19Q2). 
Rtlll,DINC DF"uS1TY Nurnber of bu~ldlng\ within an 80-acre circle si~rrounding phob-point (X7ums et a1 1999) st the 

beg~nnjng of each time period ittincs l i l  00) 

SLOPE Percent ?lope at the sample potrlt (ttmec, ti100) 

ELEVATION Elevat~cln in meter?. 
URBAY GRO&TH BOUNDARY Vmable equals 1 ~f plot 1s ic>cated In an urban gritwth boundary or ntral resident~dl land use ronc, 

0 othenvt.;e. 

FARIM ZONE 'CJwirthle equals I ~f pior i, located in  a farm zonc. 0 otheru~se. 

FOREST ZONE Vanable equals 1 t t  plot IF ictcated in a fore\[ lone, O c)thera~re. 

used for comparison with those of the negative bino- 
mial model estimated without random effects. 

A final estimation issue arises from our use of spa- 
tial observatio~ts of land use. Spatial autocorrelation 
can restilt from omitted spatial variables that influ- 
ence the land-use decisions of landowners. such as 
weather-related variables, and spatial behavioral rela- 
tionships, such as common ownership of neighboring 
photo-points, The first leads to inefficient but asymp- 
totically unbiased estimated coefficients, while the 
second can lead to ineficient and biased estimated 
coefticients (Netson and Hellerstein 1997). Altltough 
no standard statistical protocols exist, methods to treat 
spatial autocorrelation in land-use analyses have been 
devised and tested, including the use of spatial lag (or 
neighborhood) variables based on the variable values 
of neighboring pixels (see, for e.g., Bockstael (1996) 
and Turner et al. (1996), Nelson and Wellerstein 
( 1  997). Wear and Bolstad ( 19981, Schneider and Pon- 
tius (200I)) and purposefully sampling to reduce the 
potential of autocorrelation arising from spatial be- 
havioral relationships (see, for e.g., Fortin et al. 
(1989) and Haining (1990), HeImer (2000)). In our 
case, building density data are based on a systematic 
sampling of photo-points roughly spaced on a 2.4-ki- 
lometer grid. We are unable to construct a spatial lag 
variable because pixel-level information regarding 
the actual building density between sample photo- 
points is unavailable. Given the 2.4-kilometer sample 
spacing, we assume that the effects of any spatial be- 
havioral relationships not accounted for by thc grav- 
ity index and other variables are minimal. 

Results 

The general regression equation describes the change 
in building ciensity occurring on individual photo- 
points from one time point to the next a\ 

ADENSITY 

- .fTC;RA VITY INDEX, ,N IJILIIING I>ENSITY, 

SLOPE, ELEVATION, URBAN GROWTH 

BOUNZIAK Y, MRM ZONE, FOREST ZOIVE) 
(4 

where the spccific explanatory variables are described 
in I .  Results from Poisson regression, negative 
binomial regression, and negative binomial regression 
with random effects are shown in Table 2. All tnodels 
are highly significant (P < 0.01). Kandotn effects co- 
efficients are reasonably consistent with negative bi- 
nomial cocfiiciicnts, though thc statistical significance 
of the beta coefficient in the negative binomial regre\- 
sion with random effects suggests that statistically 
significant random effects may be present. 

Estimated coefficients for the linear and quadratic 
GRAVITY INDEX variables are statistically signifi- 
cant (P < 0.01) and together suggest that, oker time, 
building densities increase at an increasing rate with 
greater proximity to existing cities within comsnuting 
distance and greater population sizes of those cities 
(Table 2). Estimated coeficients for the linear and 
quadratic BIJILDING DENSITY variables arc. statis- 
tically significant (1.' < 0.01) and together suggest that 
existing buifding cfcnsitics hake a positite hut ciirnin- 
ishing impact on future building density changes. The 
estimated cocEcients for SLOPE are negative, sug- 



TaJ71e 2 E~trmated CoeEcrents sf the Emptrlcal Modelli Describing Change\ In Bu~ldti~g Densitlei In %stern Oregon 

Variable 
- - 

Pozsson regresslctn Negative hr~iotn~al regresstoll Negatlve br norttial reprei- 

coefificlcnt \rrm wrth randorn effifct5 

Cseffjc~ent PiIargt~~al eftect 

GRAVITY INDEX 

GRA\ f T Y  INDEX' 
BUII,DINC DENSITY 
BUILDING DENSITY' 
SLOPF 
ELEVATION 
URBAN- GROWTH 
BOUNDARY 

FARM %ONE 
IXIREST ZOKE 
Alpha 
Beta 

Slimniur-I? S f n f ~ r l i r  r '  

Note: 'The t-statistics for each estimated coefficient are in parentheses. 

gesting that slope has a negative impact on changes 
in building densities, but the coefficients' statistical 
significance is notable only in the Poisson regression 
model (P < 0.05) and the random effects negative bi- 
nomial regression (P < 0.10). As defined, it is likely 
that the slope variable only poorly represents the im- 
pact of slope on average building density within the 
80-acre vicinity of each sample point. 

The estimated coefficients for ELEVATION are 
positive and statistically significant (P < 0.01, P < 
0.01, and P < 0.05) in each of the three models, sug- 
gesting that elevation has a positive impact on 
changes in building densities. This finding is consis- 
tent with that of Wear and Bolstad (1998) who at- 
tribute their positive elevation coefficient to the pos- 
sibility that higher elevations command better views, 
making them more attractive as building sites. Ex- 
planatory variables included to account for the poten- 
tial impacts of land-use zoning adopted under Ore- 
gon's land-use planning program are negative and 
statistically significant iP c 0.01), suggesting that the 
impleme~itation of land use zoning may have reduced 
the rate at which building densities increase over time 
(TiabIe 2). 

Model validation procedures 

We evaluated the forecasting performance of the es- 
timated negative binomial rnodel in three til;lys: 1 )  
examining thc percentage of correct projectious with- 
in-sample; 2 )  estimating auxiliary models after re- 
serving validation data sets: and 3 )  examining sevcral 
information indices and statistics based on I~IOCICI pro- 
jections. First, we used the estimated negative bino- 
mial model coefficients (Table 2) to compute pro- 
jected changes in building densities, then added the 
projected changes to the initial builtling densities to 
compute within-sample projected ending building 
densities for each observation (N = 1 2,866). We cctm- 
pared projected ending building densities to actual 
ending building densities to compute the percentage 
of correct projections. 

The percentage of correct pro.jections diminishes 
as ending building density increase\, from a high of 
52.0% for observations having an ending building 
density of 2 buildings per 80-acre (32-ha) to a ION of 
15.3% for observations having an ending b~xildi~ig 
density of 8 (Table 3). The percenlage of model pro- 
jections correct within one building is higher. ranging 
from 99.5% for observations having an ending build- 
ing density of 1 building per 80-acre (22-ha) to tt low 
of 63.6% for observations having an ending building 



Table 3. Percentage ot- Correct Prcgections of Ending Bu~ldrng Density arld Bld~np Broad Burlding Dei~\~ty  
Clz5s 

-- -- -- - 

I s  Percent in class Percent correctly projected Percent correctly projected withrn one butldtnp 

Ending bu~ldrng density' 
I 25.4 50.9 
2 17.0 52.0 
3 12.8 43.7 

4 8.6 36.7 

5 6.2 23.6 
6 5.7 71.9 
7 3 6 18.9 
8 3.1 15.3 

> 8 18.1 86.7 

Ending broad building den.;ity class 
c 8  81.9 97.0 

3 8 18.1 86.7 

"Xun~ber of buildings per XU-acre (32-ha), rounded to nearest whole hulldtng if jess tllctn or equal to 8. 

density of 7. Greater accuracy of projections in the 
lower range of ending building densities likely is due 
in part to the relatively large proportion of sample 
observations comprising relatively low ending build- 
ing densities. 

The immediate use of the model within the Coastal 
Landscape Analysis and Modeling Study is to locate 
foresrIand in the study region comprising ending 
building densities of greater than 8 buildings per 80- 
acre (32-ha) (64 per square mile) - the point at which 
timber management and production is assumed to 
cease in study sub-models. This threshold is consis- 
tent with an average forest parcel size of 10 acre (0.04 
km" building (house), which is the minimum forest 
parcel size eligible for preferential assessment as for- 
estland for property t : ~  purposes in the State of Or- 
egon (Oregon Department of Revenue 1998). Based 
on an average household size of 2.45 persons (Azuma 
et al, 1999), the 64 buildings per 2.59 km2 threshold 
is equivalent to 157 people per square mile, which 
also is relatively consistent with the population den- 
sity found by Wear et al. (1999) to be the point at 
which commercial timber production ceases. The per- 
centage of correct projections for the two classes is 
relatively high - 97.0C& for the 6 8 class and 86.7% 
for the > 8 class - suggesting that the model is prob- 
ably adequate for the imrllediate purposes to which it 
is used in the Coastal Landscape Analysis and Mod- 
eling Study (Table 3). 

As a second model evaluatio~~, we estimated five 
auxiliary models after omitting roughly 20% of the 
observations from the full sample (N = 12.866) as 

validation data sets. A common approach to evaluat- 
ing the forecasting pcrfomance of empirical n~odefs 
is to reserve a portion of sample data prior to tnodel 
estimation for later use as a validation data set. We 
initially declined to do this so that we could take full 
advantage of the relatively limited number of obser- 
vatiorrs of actual building density changes. The five 
auxiliary models, however, enable us to evaluate our 
model specification by examining the sensitivity of 
coefficient cstimatcs to the omission of the validation 
data sets and by examining the percentage of cctrrect 
projections resulting from the five auxiliary models 
when applied to the validation data sets. 

The five auxiliary models are highly significant (P 
< 0.01) and all coefficient estimates are consistent in 
sign, magnitude, and statistical significance with 
those of the main model estimated with the full data 
sample ( N  = 12,866). with the exception of the 
SLOPE coet'ficient estimates that are \tatistically in- 
significant (P > 0.20) in all models (Table 4). Vl;e 

compared coefficient estimates of the five auxiliary 
models to 95% confidence bounds computed for the 
coefficient estimates of the main model. All auxiliary 
model coefficient estimates fall within the 95% con- 
fidence bounds, with the sole exception (11' the 
BUILDING DENSITY2 coescient estimate from 
auxiliary model 2, which falls outside the lower 
bound for that variable. Together, these factclrs sug- 
gest that the five auxiliary models do not differ sig- 
nificantly from the main model. The weighted aver- 
age percentage of correct projections of ending 
building classes of S 8 ttnd > 8 buildings per 80 acre 



Tuhie 4. Csirmatcd Coefficient$ of Ftvc tZuxiltat-y Negat~vc Binomial Models Compared to 95Q Confidence Bounds Computcd for Maln 
Model Cnefiic~ents {Table 3) 

Auxiliary negative binomial model estin~ated coefficients," 

Variable 1 2 3 4 5 

95% confidence bctunds ctl main 
model eoeffic~ents" 

Lower Upper 

GRAVITY 
INDEX 

GRAVITY 

ISDEX' 
RU11,DING 
L)ENSITY 
Rt:IL,DING 
DENSITY' 

SI'OPF 
ELEVATION 

URBAN 
GROWTH 

BOUNDARY 

FARM ZONE 
FOREST 

ZONE 
Alpha 
Surtmrni? 

~ t ~ f i s f i c . ~ :  

" Estimated by ornittlng roughly 209  of the sample observattons as validat~on data sets based on a random selectlctn process. Computed for 
negatlvc hlnomial model estimated coefficients reported in Table 2. 

(32-ha) resulting from the five auxiliary models is models. and is defined as 
97.0% for the 6 8 class and 86.6% for the > 8 class. I nt J 

As a third model evaluation, we computed several 
information indices and statistics suggested by Wear 

I(A;X) = - 2 x 6,ln 
l l l l = 1~ = 1 

and Bolstad (19981, based on the ending building 
density projections fro111 the main and auxiliary mod- 
els. The index H(A) describes the total uncertainty 
that potentially can be explained by the estimated 
models, and is defined as 

J 

HiA) = - p(g)ln[p(u)] 
I -  1 

where y(n,) is the proportion of observations in the 
validation data set actually observed in building den- 
sity class a/ and J is the total number of building den- 
sity classes projected. The index T(A:X) describes the 
additional information contained in the estimated 

where 6 ,, = I if' class J is observed at observation i (6 
,r = 0 otherwise), x ,  is the vector of indeperldcnt var- 
iables describing observation i, p(u,lx,) is the model- 
estimated probability of building density class J oc- 
curling at observation i. and m is the number of 
observations in the validation data set. The index 
EI(A;X) describes the expected itiforination provided 
by the estimated models, and is defined as 

(Wear and Bolstad 1998). 



Tul71e 5. Informatiot~ Indices and Statlsiics Computed for the kfifa~n klodai Prr)ject~cln\ ?tppl~ed to the Sample Data ttnd Auxrlrary kfodel 
Proqection., Appltrd it3 Ornrtted Val~datto~? Data Sets 

Index or I-tatisttc A h i n  Mcdel m = 12.866 Auxrliary illc~dels 
1 m = 2,626 I m = 3,605 3 ni = 2.591 J nt = 2.543 5 rn = 2,5tKI 

Projecting ending bu~ldtng density (1, 2, 3, 4, 5, (3, 7, 8, > 8) 
I(A,Sl 0.093 0.098 

EIfr'i,Xt 0 106 0.099 

V(A:X) 0.038 0 025 

M A )  1.288 1 270 
I F  = I(X,X)mtAI 0.072 0.078 
r-staustic 0.066 0.004 

1.I.R = 3nlfA;Xf 2,387.9 517.3 
Project~np ending broad butlding dens~ty c1as.l (s 8, > 8) 

I(A,X) 0.356 0.334 

EI(A;X) 0.1 (% 0.32 1 
V(A:X) 0.345 0.298 

H(Ai  0.472 0.443 
U2 = I(A;X)/H(A) 0.754 0.753 
t-statistzc 0.022 0.024 
LLR = 2nl(A;X) 9.168.3 1.753.6 

a Computed following Mar and Rolstad 11998). The statistics define a pseudo-r' (Uq  nmeasuse of usefulness. a f-test of accuracy (FJ,,: 
1(,4;X) = EI(A:X) where V(A;X) =), and a x test (LLR) of statistical sigi~ificance of the model projections, 

The three indices enable computation of three test 
statistics witfi which to cvaluate the models as pre- 
dictors of ending building density classes. The pro- 
portion of uncertainty explained by the models is a 
pseudo-r? defined as LT2 = I(A;X)/H(A) and is a test 
of the uscfulncss of the models at projccting ending 
building density classes. The index I(A;X) is nor- 
nlally distributed with a mean of EI(A:X) and a var- 
iance of V(A;X), enabling a t-test of the null hypo- 
thesis H,,: I(A;X) = EI(A;X), that provides a test of 
the accuracy ctf the empirical models. The log-likeli- 
hood ratio defined as LLR = 2nI(A;X) is distributed 
as a chi square with degrees of freedom equal to the 
number of estimated coefiicients in the estimated 
models, and is a test of the overall significance c3f the 
empirical models (Hauser 1978; Wear and Bolstad 
1998). 

Information indices and statistics computed based 
on projections of ending building density and ending 
broad building density class resulting from the main 
and auxiliary models are prc~vided in Table 5. The 
lag-likelihood ratios (LLR) and t-statistics comptlted 
based on thc endirlg building density projections sug- 
gest that the empirical models are both statistically 
significant and accurate, but each of the pseudo-rz 
(U') values suggest that the proportion of uncenainty 
explained by the empirical models is relatively low. 

The log-likelihood ratios (LLR) and I-statistics com- 
puted based on the prt~jected ending broad building 
density classes suggest that the empirical rnodels also 
are both statistically significant and accurate. I-iow- 
ever, in these cases, the pseudo-r' (U2) values sug- 
gebt that thc proportion of uncertainty expiai~ied by 
the empirical inodels of ending broad building den- 
sity class is rl~ucll higher. ranging between 73.0% and 
78.5%. Consistent with our earlier examination of the 
percentage of correct prqjections, the U' values sug- 
gest that the model is better at projecting coarser (or 
less precise) ending building density classes. Greater 
accuracy in projecting less precise ending building 
density classes, however, is not the result of a spatial 
scale (or 'grain size") effect (see, for examplc, Jener- 
ette and Wu (2001)). Rather, it is the result of reduc- 
ing through aggregation the number of building den- 
sity classes we are ;ittempting to project with the 
niodcl, from nine ( I ,  2,  3. 4, 5 ,  6. 7, 8, > 8) to two 
( s 8, > 8). 

Integrating building densities with ecological 
models 

The empirical model was used to create geographic 
information system maps depicting spatial prqjcctions 



of future building density distributions throughout the 
Coastal Landscape Analysis and Modeling Study re- 
gion. A base year 1995 map of building densities was 
developed froin the 1994 photo-point data by inter- 
polating between photo-point building density values. 
The estimated negative binomial model coefficients 
(Table 2) were combined with projected gravity in- 
dex values based on pc-tpulation projections for west- 
ern Oregon cities to project changes in building den- 
sities at 10-year time intervals. Projected population 
figures are based on county-level projected popula- 
tion growth through 2010 (McGinnis et a1. 1996) and 
on state-level projected population growth for 2010 
to 2050 reported by the U.S. Bureau of Census. Pop- 
ulation projections for the years 2050 to 2095 are es- 
timated by extrapolation. Projected changes in build- 
ing densities for each 10-year time interval were 
added to the beginning building density map for that 
interval to obtain the ending building density map. 
For example, the projected changes occurring be- 
tween the 1995 base year and 2005 were added to the 
1995 base year building density map, to obtain a 2005 
building density map. The 2005 map was combined 
with 2005 to 2015 projected changes in building den- 
sities to obtain a 2015 map. The resulting maps en- 
able projected future changes of human habitation of 
forestland, as described by building densities, to be 
incorporated into other Coastal Landscape Analysis 
and Modeling Study sub-models describing other so- 
cioeconomic and ecosy stein processes and conditions. 

For the specific purposes of the Coastal Landscape 
Analysis and Modeling Study, the building density 
maps are incorporated into sub-models describing 
timber production and habitat viability according to 
building density thresholds. Initial land use conditions 
distinguish forestlands from agricultural lands using 
a vegetation map depicting forest and non-forest 
cover in 1995. These delineations remain constant 
throughout the modeling time horizon. Forestlands 
are distitiguished froin lands characterized by residen- 
tial, co~nmercial, or industrial uses by applying a set 
of decision 1x1~s to the building density maps at each 
modeling time interval. For timber production mod- 
eling purposes, timber production is assumed to cease 
an forestlands once a building density of 64 buildings 
per 2.59 km%s attained. For habitat viability model- 
ing purposes, habitat is asstrmed to cease functioning 
once a building density of 640 buildings per 2.59 km2 
is attained. Land areas comprised of building densi- 
tics between 64 and 640 buildings per 2-59 km2 are 
assumed to comprise relatively low-density residen- 

tial and other delelopment. Land areas comprised of 
building densities of greater than 640 builtfings per 
square mile are assumed to comprise predominantly 
high-density urban development (Ftgure 3). 

Once the forestland area cot~tributing to timber 
production and habitat viability sub-model\ is delin- 
eated. 1.0.10' rn" open vegetation patches (or build- 
ing footprint\) are created for each prqjectcd new 
building. The bt~ilding footprints are intended to re- 
present the indirect irnpact of buildings on tirnber pro- 
duction and habitat viability in terins of their direct 
impacts on vegetative cover. The 1.0 10' nl" foot- 
prints are consistent with the average vegetation patch 
sizes found among a sampling of buildings in the 
study area. The footprints also are roughly equivalent 
in size to the basic sirnulation un~t used in Coastal 
Landscape Analysis and Modeling Study wb-models. 
The specific locations of building tootprints are se- 
lected randomly according to the estimated building 
density for each unit at each 10-year modeling time 
interval. 

Maps of projected future building densities for 
western Oregon suggest significant expansic~n of  low- 
density and urban development (Figure 3). The pro- 
portion of western Oregon land in low-den\ity and 
urban developed uses is projected to increase from 
4.8% and 2.0% in 1995 to 5.6% and 3.7% in 2025, 
and to 6.2% and 6.6% in 2055. Although the majority 
of new buildings are projected in locations surround- 
ing existing cities, greater numbers of buildings also 
arc indicated in forested areas that remain below the 
low-density development threshold of 64 buildings 
per square mile (8 per 80-acre (32-ha)). These pro- 
jections suggest greater numbers of people living in 
closer proximity to forestlands in the Coastal Land- 
scape Analysis and &lodeling Study region in the fu- 
ture. 

The projected building densities are based on pop- 
ulation values that are outside the range of data used 
to estimate future building density distributions. To 
evaluate the reasonableness of the building density 
projections, we compared the amount of low-densi ty 
and urban development per capita indicated by our 
spatial projections with per capita land use rates in- 
dicated by the 1997 National Resources Inventory 
data for Oregon (NRCS (Natural Resourccs Conser- 
vation Service) 1999). Our projections sugge\t that 
low-density arid urban development will increaw an 
average of 2.7- 10 hm" per new re\ident from 1995 to 
2055. This rate is reasonably close to thc average 
2.1 i O 3  m' increase in "developed land" per new resi- 



Buildings per square mile (per 2.59 km2) Notes: Based on negative binomial 
13 20 - 64 model (Table 2) projections of building 

64 - 640 (low density development) density change applied to 1995 base year 
> 640 (urban development) map. Existing urban development in 

1995 base year shown in gray. 

FTCqrlrt. 3. Projected building dens~ty clasrcs in We5tem Oregon. 

dent between 1982 to 1997 in Oregon and below the 
national average of 0.82 acres per new resident. based 
on National Resources Inventory data (Kline 2000). 

Summary 

Our empirical model of building density change is an 
i~nprovement over the discrete land use modeling ap- 
proach initially used by the Coastal Landscape Anal- 
ysis and Modeling Study. The new model acknowl- 
edges that human habitation of forestland is not 
defined by discrete boundaries, but rather occurs 
along a continuum. The model describes a range of 
liurtlan habitation impacts that potentially can be in- 
corporated into other sub-models describing socio- 
economic and ecological condirions. Because the 
model is not limited to discrete delineations of forest 
and urban land, it potentially can be applied to a 
broader range of research issues. Also, the estimated 
negative binomial model provides projected values 

that are estin-tated changes in building densities, 
which are easier to interpret than projected probabili- 
ties provided by initial probit models based on 
changes among discrete land use categories. 

In this particular application, the specific needs of 
the Coastal Landscape Analysis and Modeling Study 
called for the aggregation of pro-jectcd building den- 
sities above 64 buildings per 2.59 km' into discrete 
land usc categories of low-density (64 to 640 build- 
ings per 2.59 km') and urban developinent (> 630 
buildings per 2.59 km2). Sub-models describing tirn- 
ber production activity and habitat viability were un- 
able to use more detailed infortnation regarding hu- 
man habitation. However. modeling building 
densities, rather than discrete larid use categories, en- 
abled study researchers to select appropriate criteria 
with which to define these categories, rather than hav- 
ing to accept land use categories established by na- 
tional land inventorier or other data source\. The po- 
tential to incorporate the impacts of reIati%ely low- 
density human habitation levels into landscape-level 



ecological models could motivate greater interest in 
multidisciplinary examinations of human interactions 
with landscape-level ecological and socioeconornic 
processes. The recent and increasing migration of hu- 
mans to forested landscapes (noted by Egan arid t u -  
foff (2000) ainctnp others) likely will increase the 
need for such research in the future. 

The results of model validation procedures suggest 
that the likelihood of correctly projecting ending 
building density classes using the model improves 
with the increasing coarseness of ending building 
density classes desired. To some extent, the reason for 
this result is intuitively ctbvious. and stems from the 
error inherent in  estimation of a statistical model of 
building density change. The resulting model will be 
better at projecting close to the actual ending build- 
ing density class than it will be rtt projecting the ac- 
tual ending building density class exactly. However, 
the validation result also illustrates the tradeofr inher- 
ent in choosing between the precision and the xcu- 
racy with which building density classes are pro- 
jected. 

Our particular modeling approach was made pos- 
sible by the ready availability of building density 
data, which is not available from existing national 
land inventories or other cornrnon sources. Although 
obtaining such data through photo-interpretation of 
aerial photography or satellite irnagesy is possible, it 
can be an expensive process and may not be feasible 
in certain applications. When limitations exist, re- 
searchers arc advised to consider the tradeoffs asso- 
ciated with different types o f  data rind models when 
evaluating tire necessity for the additional detail con- 
tained in building density or similar data over more 
readily available discrete land use data. Among the 
many important factors to consider are the potential 
sensitivity of the socioeconomic or ecological pro- 
cesses under study to ranges of human habitation and 
the specific purposcs of land usc rnodeling in thc 
overall landscape model context. 
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