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Abstract
Current information on broad-scale climatic conditions is 
essential for assessing potential distribution of forest pests. 
At present, sophisticated spatial interpolation approaches 
such as the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) are used to create high-resolution 
climatic data sets. Unfortunately, these data sets are based 
on 30-year normals and rarely incorporate up-to-date data. 
Furthermore, because they are constructed on a monthly 
rather than a daily time step, they do not directly measure 
simultaneous occurrence of multiple climatic conditions 
(e.g., days in the past year with appropriate temperature and 
adequate precipitation). Yet, the actual number of days—
especially consecutive days—where multiple conditions 
are met could be significant for pest dispersal or establish-
ment. For the sudden oak death pathogen (Phytophthora 
ramorum), we used National Oceanic and Atmospheric 
Administration daily weather station data to create current, 
national-scale grids depicting co-occurrence of multiple 
climatic conditions.

For each station, we constructed two count-based 
variables: the total number of days and the greatest number 
of consecutive days in a year where the station met several 
conditions (temperature, rain/fog, relative humidity). We 
then employed gradient plus inverse distance squared 
(GIDS) interpolation to generate grids (4-km2 resolution) of 
these variables for 5 years (2000-2004). The GIDS tech-
nique weights standard inverse distance squared interpola-
tion using coefficients based on geographic location (x, 
y) and a spatial covariate such as elevation. Using these 
variables, we determined the GIDS coefficients for each 
output grid cell via Poisson regression on the 30 closest 

stations. We also performed model selection to ensure only 
significant variables contributed to the GIDS coefficients.

We compared the GIDS approach to cokriging and 
detrended kriging using cross-validation and found similar 
accuracies among all three interpolation methods. We also 
compared the output grids to maps assembled from the 
PRISM data depicting the probability all conditions were 
met in a given year. As expected, we found differences in 
areas highlighted as suitable for P. ramorum establishment 
by the two methods. We suggest that using current weather 
data and calculating the variable of interest directly will 
provide more practical information for mapping forest pest 
risk.

Keywords: Climate, forest pests, GIDS, Phytophthora 
ramorum, risk, spatial interpolation.

Introduction
Forest pest risk assessments detail the nature and severity of 
threats posed to particular forest species and ecosystems by 
insects, pathogens, or other organisms (Andersen and others 
2004a). With respect to nonindigenous forest pests, risk 
can be categorized or quantified based on a combination 
of factors: the potential for the pest to become established, 
the potential for it to spread following introduction, the 
potential to cause economic damage, or the potential to 
cause environmental harm (NAFC 2004). A commonly 
desired product of such assessments is a map depicting the 
threat posed by introduction or establishment of a forest 
pest throughout a geographic area of interest (Andersen and 
others 2004a). These maps can facilitate early detection and 
response procedures, providing a template for the design 
of regulatory programs and detection surveys. If a pest 
has already been established in one part of the geographic 
area of interest, threat assessment maps are used to help set 
control priorities for other geographic areas that are at high 
risk of invasion (Andersen and others 2004b).

Importance and Availability of Climate Information
Forest pest risk maps are typically assembled by combining 
spatial data from three principal subject areas: host species 

Modeling Current Climate Conditions for Forest Pest Risk 
Assessment
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distribution, pathways of pest movement, and key environ-
mental factors (Bartell and Nair 2004). Climatic attributes 
such as temperature and moisture strongly shape pest 
behavior, affecting survival, reproductive rate, and in many 
cases, the ability to spread at a continental scale. Thus, 
climatic data provide an important coarse filter for forest 
pest risk analyses. Regularly gridded climate maps covering 
the entire geographic area of interest are typically required 
for analytical purposes. Such maps may be constructed by 
spatial interpolation of weather station data. These data are 
readily available for much of the United States, dating back 
several decades, from the National Oceanic and Atmo-
spheric Administration (NOAA) National Climatic Data 
Center (NCDC).

Spatial Interpolation of Climatic Variables—
A wide array of spatial interpolation algorithms (e.g., geo-
statistical, regression, spline, inverse distance weighting) 
have been used to construct broad spatial-scale climatic 
data sets from weather station data (Daly 2006, Mardikis 
and others 2005, Nalder and Wein 1998, Price and others  
2000, Xia and others 2000). Most currently accepted 
methods acknowledge that terrain is a significant factor 
governing climate at all but the broadest scales, and they 
use elevation measurements to represent terrain and adjust 
climatic variable values accordingly (Daly 2006). One  
well- received interpolation approach is the Parameter-
elevation Regressions on Independent Slopes Model 
(PRISM). Initially developed to generate precipitation 
maps for the Pacific Northwest (Daly and others 1994), 
the approach has since been applied to create maps of 
temperature, relative humidity, snowfall, growing-degree 
days, and many other variables (Daly and others 2000). In 
particular, the PRISM approach was applied to generate 
most of the maps in the recent version of the Climate Atlas 
of the United States (Plantico and others 2002), as well as 
similar products for Canada and China (Daly and others 
2000). The PRISM approach is a knowledge-based system 
integrating a local climate-elevation regression with other 
algorithmic com-ponents: station weighting, topographic 
facets, coastal proximity, and a two-layer atmosphere (Daly 
and others 2002). When initially tested on precipitation in 
the Pacific Northwest, the PRISM approach outperformed 

other interpolation methods in comparative analyses (Daly 
and others 1994).

Limitations of Existing Interpolated Climatic Data 
Sets—
There are several limitations of PRISM-de rived or similar 
data sets with respect to their use for forest pest risk maps. 
First, most national-scale climatic data sets are calculated 
as normals, meaning an average of the variable of interest 
across a window of time, typically a 30-year period. For 
example, most data sets in the recent version of the Climate 
Atlas of the United States are based on inputs from 1961 
through1990 (Plantico and others 2002). Current weather 
data are not incorporated into the maps, so any pest risk 
map constructed from them will not include current 
events—and the accompanying variability—that may be 
relevant to an assessment of immediate risk.

Second, there are related issues of cost and data format. 
The Climate Atlas contains polygonal maps for a large 
number of potentially relevant climatic normals but does not 
include the regularly gridded data from which the maps are 
derived. These polygonal maps have limited attribute reso-
lution, with the range of the original gridded data typically 
compressed into nine or fewer classes. Monthly gridded 
maps of a few variables—precipitation amount, mean 
minimum temperature, mean maximum temperature, and 
mean dewpoint—are available for public download from 
the PRISM group at Oregon State University (http://www.
ocs.orst.edu/prism/. [Date accessed unknown]). Notably, 
these maps are fairly current (finalized maps are available 
from 1997 through mid-2006), and the database is regularly 
updated, but it does not include many climatic variables that 
might be of interest for forest pest risk assessment (e.g., rela-
tive humidity, number of days above freezing, or number of 
days with measurable precipitation). Regularly gridded data 
of these and other (30-year normal) variables, derived using 
the PRISM method, are available, but at substantial cost 
(from the Climate Source: http://www.climatesource.com/. 
[Date accessed unknown]).

Third, most available climatic spatial data sets, whether 
derived using PRISM or other methods, are monthly or 
annual summaries depicting mean or extreme values over 
the time period. For some forest pests, the short-term, 
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even daily status of multiple weather conditions may be 
relevant to the pest’s growth, persistence, or invasive-
ness. Fungal pathogens are particularly affected by the 
interaction of temperature and moisture availability. For 
example, the pathogen that causes late blight of potato 
(Phytophthora infestans) develops best at cool temperatures 
during extended periods of wet weather, as do many other 
Phytophthora species (Davidson and others 2002, Harvell 
and others 2002, Marshall-Farrar and others 1998). The 
interaction of climatic variables can also be important for 
some insect pests (Harrington and others 2001, Peacock and 
others 2006). Nevertheless, although there has been some 
effort to create maps of daily precipitation and temperature 
at a broad scale (Hunter and Meentemeyer 2005), there has 
been little attention paid to the co-occurrence of multiple 
weather conditions favorable to pest persistence and spread. 
Daily weather data allow the counting of how often, and for 
how long, variables meet certain threshold values. Creation 
of broad-scale maps from data derived in this manner 
may require a different spatial interpolation approach than 
that used for continuously distributed variables (van de 
Kassteele and others 2005).

Objectives
Given the limitations of existing climatic data sets, we 
explored the use of NCDC daily weather station data for 
the United States as an alternate source for maps relevant to 
forest pest risk assessments. We had three basic objectives: 
(1) spatially interpolate annual counts of the number of days 
with co-occurrence of multiple climatic variables relevant to 
the growth and spread of a specific forest pest—the patho-
gen that causes sudden oak death (P. ramorum); (2) identify 
a spatial interpolation method appropriate for count-based 
data and compare it to some common geostatistical 
approaches; and (3) assess the utility of the derived maps for 
depicting risk.

Case Study Species: Phytophthora 
ramorum
Phytophthora ramorum was first recognized in the United 
States in 1994 and was likely introduced via international 
trade of commercial plants (Ivors and others 2006). Since its 

introduction, the pathogen has infected western live and red 
oaks in coastal forests of California and Oregon, sometimes 
causing mortality greater than 40 percent (Garbelotto and 
others 2001, 2003). In addition, P. ramorum infects dozens 
of commercial shrub host species that can yield large num-
bers of aerially dispersed spores (Davidson and Shaw 2003, 
Davidson and others 2002, Tooley and others 2004). Many 
of these shrubs (e.g., rhododendrons, azaleas, camellias) are 
sold as nursery stock (Garbelotto and others 2001, Tooley 
and others 2004). In the past few years, wholesale nurseries 
on the west coast have unknowingly shipped infected plants 
to retail and wholesale outlets in roughly 40 States (Stokstad 
2004), although surveys have not detected the pathogen in 
natural forests outside California and Oregon. 

A large portion of the Eastern United States is con-
sidered at high risk for establishment of P. ramorum if 
it is introduced into forested areas. Much of the concern 
has to do with climatic conditions believed to be favor-
able for the pathogen. Growth, sporulation, and infection 
are all affected by moisture and temperature. Optimal 
temperatures for P. ramorum growth, based on laboratory 
analysis, appear to be between 64.4 °F and 71.6 °F (Werres 
and others 2001), but some growth occurs across a wider 
temperature range (up to at least 80 °F). Peak sporangia for-
mation appears to occur at 59 to 68 °F (Davidson and others 
2005). Persistent moisture on foliage is considered critical 
to spread. Laboratory inoculation trials on California bay 
laurel (Umbellularia californica (Hook. & Arn.) Nutt.), a 
major source of P. ramorum spores in California, suggest 9 
to 12 hours of free moisture on leaf surfaces under appropri-
ate temperatures are necessary for significant leaf infection 
(Garbelotto and others 2003). Further studies suggest that at 
least 24 to 48 hours of generally wet conditions are neces-
sary for sporulation, with infection requiring additional 
time (Davidson and Shaw 2003, Davidson and others 2002, 
Rizzo and Garbelotto 2003). Fog and high relative humidity 
may be important for spread of aerial Phytophthora species 
within forest stands (Werres 2003), as high air moisture 
can keep leaf surfaces wet and enable spore production. 
Nevertheless, despite regular summer fog in California, P. 
ramorum sporulation and infection seem to be restricted 
to the winter-spring rainy season (Rizzo and others 2005). 
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Isolated rains during otherwise dry summer months do not 
appear to facilitate spore production or dispersal (David-
son and others 2002). Ultimately, it is unknown how the 
pathogen’s behavior on the west coast will translate to the 
Eastern United States, where warm season and cool season 
precipitation are similar (Akin 1991).

Methods
We downloaded 5 years (2000 to 2004) of daily surface 
data from the NCDC online climate data clearinghouse 
(http://cdo.ncdc.noaa.gov/CDO/dataproduct. [Date accessed 
unknown]). The downloaded data included dozens of 
climate variables recorded for more than 19,000 stations 
nationwide. We processed the data to extract four variables: 
total precipitation, minimum and maximum temperature, 
and relative humidity. For each station, we tallied (1) the 
total number of days and (2) the longest number of consecu-
tive days in a given year that met the following conditions: 
maximum temperature greater than 60 °F, minimum 
temperature less than 80 °F, and at least a trace amount of 
precipitation or relative humidity of greater than 85 percent. 
These threshold values were selected to reflect current 
knowledge about the climatic conditions favorable for P. 
ramorum survival and spread.

We recorded the latitude, longitude, and elevation 
values for each weather station from an associated data set. 
We dropped any stations that fell outside the conterminous 
United States and any stations with more than 30 days of 
missing data for any variable in a given year. This filtering 
process reduced the number of usable stations (Table 1), 
but still yielded consistent national coverage. For stations 
missing 1 to 30 days of data, we normalized the total-day 
and consecutive-day count values by dividing them by the 

proportion of days in the year for which data were available 
and then rounding to the closest integer.

Gradient Plus Inverse Distance Squared 
Interpolation
We interpolated gridded maps of the conterminous United 
States for both the total-day and consecutive-day variables 
using a gradient plus inverse distance squared (GIDS) 
approach. This statistical method was first proposed as a 
way to interpolate climatic data on a broad spatial scale as 
input for plant growth models (Nalder and Wein 1998). The 
GIDS technique combines multiple linear regression with 
inverse distance weighting interpolation, and like other 
recently developed interpolation techniques, incorporates 
elevation as a covariate. For a given unmeasured location k 
and climatic variable Z, an ordinary least squares regression 
is performed using the N closest neighboring locations to 
calculate coefficients (Cx, Cy, and Ce) representing x, y, and 
elevation gradients: Z = a + Cx X + Cy Y + Ce E + ε, where a 
is the intercept and ε is error. Then, the basic GIDS formula 
is

 N  Zi + Cx(Xk – Xi + Cy (Yk – Yi ) + Ce (Ek – Ei )    S
           i=1                                        di 

        		                   N     1		      S d     		             i=1       i		    

where Zk = the predicted value at an unmeasured location k, 
Zi = the measured value at location i, X = the x-coordinate 
for the specified location, Y = the y-coordinate, Ei = the 
elevation value, and di = the distance from measured loca-
tion i to Z (Nalder and Wein 1998). 

Nalder and Wein (1998) compared GIDS with several 
other methods for interpolating monthly normals of precipi-
tation and temperature in the Canadian boreal forest region. 
The tested methods included inverse distance squared 
weighting, nearest neighbor interpolation, ordinary krig-
ing, universal kriging, co-kriging, and detrended kriging. 
Based on cross-validation using a held-out subset of the 
data, the GIDS method resulted in the lowest mean absolute 
errors (MAE), which averaged 0.5 °C for temperature and 
3.6 mm, or 11 percent, for monthly precipitation. Price and 

Table 1—Number of NCDC weather  
stations used in interpolations
Year	 Number of stations
2000	 4,310
2001	 4,258
2002	 4,302
2003	 4,144
2004	 3,926
NCDC = National Climatic Data Center.

2

2

Zk =
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others (2000) compared the GIDS method with thin-plate 
moving splines and noted that GIDS, as an inverse distance 
approach, may have greater occurrence of extreme errors. 
However, they also noted its transparency and ease of use.

Modification of GIDS for a Count-Based Variable—
The ordinary least squares regression implemented in the 
GIDS approach is intended for continuous, normally distrib-
uted variables. Because each of our variables of interest was 
a count, with large values being rare, we instead performed 
Poisson regression (Neter and others 1996). For each 
location of interest, we fitted a Poisson regression model, 
based on the 30 closest neighboring weather stations, using 
a maximum likelihood approach. We acknowledged that 
all three gradient variables (x, y, and elevation) could prove 
insignificant for a given prediction location and its closest 
measured neighbors. As a result, we evaluated a sequence 
of the full and all possible reduced models for statistical 
significance:
log(Z) = a + Cx X + Cy Y + Ce E + ε,
log(Z) = a + Cx X + Ce E + ε,
log(Z) = a + Cy Y + Ce E + ε,
log(Z) = a + Cx X + Cy Y + ε,
log(Z) = a + Cx X + ε,
log(Z) = a + Cy Y + ε,
log(Z) = a + Ce E + ε.

For each prediction location, we tested all seven 
regression models using the 30 closest stations and identi-
fied those models in which all variables were significant. In 
cases where more than one of the models had all significant 
variables, we identified the one that yielded the smallest 
value for Akaike’s Information Criterion (AIC). If the 
best-performing model was not the full Poisson regres-
sion model, then the coefficient(s) for any insignificant 
variable(s) were set to zero in the GIDS equation. If none of 
the tested models proved to have significant variables, then 
the GIDS interpolation reverted to inverse distance squared 
weighting (i.e., all variable coefficients were set to zero).

Interpolation Using GIDS—
We implemented the Poisson-based GIDS formulation in a 
script written for R statistical software (R Core Develop-
ment Team 2006), which we then used to interpolate values 

for cells covering the conterminous United States. We 
created a regular grid (with x, y, and elevation values) for 
the country by resampling an 8100-m2 resolution digital 
elevation model (DEM) generated from U.S. Geological 
Survey data to 4-km2 cells using a nearest neighbor method. 
Notably, this is the same spatial resolution used in most 
of the data sets that are publicly downloadable from the 
PRISM Group as well as the data sets available for purchase 
from the Climate Source (see “Limitations of Existing 
Interpolated Climatic Data Sets”). For each 4-km2 cell, we 
determined the 30 closest NCDC weather stations using 
three-dimensional Euclidean distance measured from the 
cell’s centroid. We rounded the GIDS-predicted value for 
each grid cell to the nearest integer.

Evaluation
For comparison to the GIDS-derived total-day and 
consecutive-day count maps, we created gridded maps for 
2000 to 2004 using two spatial interpolation methods avail-
able through the ArcGIS Geostatistical Analyst extension 
(Johnston and others 2003). First, we performed cokriging 
on the count data using elevation as a covariate. Second, we 
performed detrended kriging, where we removed a second-
order trend from the data and then performed ordinary 
kriging on the residuals. For both methods, we fit a spheri-
cal semivariogram model to the input data, calculating the 
model parameters (nugget, range, and sill) using a weighted 
least squares approach (Cressie 1993). As with the GIDS 
maps, we generated a predicted value for each 4-km2 cell 
based on the 30 closest NCDC stations, and rounded the 
predicted value to the nearest integer.

We compared the accuracy of the three methods via 
station-by-station cross-validation. Using each interpolation 
method, we derived a predicted total-day and consecutive-
day value for each station based on its 30 closest neighbors. 
We calculated errors by subtracting the actual observed 
counts for each station from the interpolated values. We 
then calculated three mean error measures: mean error 
(ME) indicates bias (positive = over-prediction, negative = 
underprediction); mean absolute error (MAE) indicates the 
magnitude of error regardless of sign; and root mean square 
error (RMSE) is sensitive to outliers and can be used to 
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assess the magnitude of extreme errors (Daly 2006, Nalder 
and Wein 1998).

To provide a basic visual reference, we used 30-year 
normal PRISM-derived data sets to construct U.S. maps 
depicting the total number of days and longest string of 
consecutive days when weather conditions are typically 
favorable for P. ramorum. We started with 12 monthly 
grids depicting the number of wet days (i.e., the number 
of days with precipitation) throughout the conterminous 
United States. For each monthly wet-days grid, we masked 
out any cells where temperatures did not fall within the 60 
to 80 °F range at some time during the month. Using map 
algebra, we added the 12 monthly grids together to develop 
a total-day count for each grid cell in our output map. 
The consecutive-day count map was, by necessity, more 
approximately constructed. First, we standardized values 
in each of the masked monthly grids by converting the 
number of wet days to a proportion (number of wet days / 
total number of days in the month) and then multiplying this 
proportion by 30. Then, using map algebra, we recorded the 
maximum standardized monthly value for each cell in our 
output map. This approximated the range of values in the 
GIDS-derived consecutive-day maps. Nonetheless, because 

we used monthly rather than daily data to build the PRISM-
derived maps, any comparison to the GIDS-derived maps 
must be done with care.

Results
In terms of cross-validation errors, the three spatial 
interpolation methods performed similarly for both the 
total-day and consecutive-day count variables (Tables 2 
and 3). The GIDS approach, as suggested by the ME values 
as well as the actual versus the predicted means, tended to 
over-predict slightly more than the other two techniques. 
The RMSE results indicate that, for some years, the GIDS 
approach yielded a few more extreme errors, although GIDS 
had a lower RMSE than cokriging for the total-day variable 
in 2002 and 2003, as well as a lower MAE in 2001, 2002, 
and 2003. In general, error differences among the three 
were not substantial, with MAE consistently holding at 
approximately 16 percent of the total-day mean value and 
25 percent of the consecutive-day mean value for all three 
techniques.

The GIDS-derived maps for the two count variables 
(Figures 1 and 2) most obviously show a great deal of 
annual variability. For the consecutive-day variable, the 

Table 2—Interpolation method comparison for total-day variablea 

	 Interpolation
 	 Method	 2000	 2001	 2002	 2003	 2004

Mean 	 Observed		 62.94		 61.77		 58.77		 64.43		 70.32
	 GIDSb		 63.44		 62.21		 59.23		 64.93		 70.86
	 Cokriging		 62.97		 61.81		 58.89		 64.64		 70.36
	 Detrended kriging		 62.98		 61.79		 58.79		 64.41		 70.37
RMSE 	 GIDS		 13.52		 13.13		 12.82		 13.42		 14.27
	 Cokriging		 13.07		 13.07		 13.19		 14.35		 14.00
	 Detrended kriging		 13.22		 12.85		 12.52		 13.39		 14.09
MAE 	 GIDS		 10.39		  9.97		  9.61		 10.14		 10.81
	 Cokriging		 10.10		 10.03		  9.94		 10.92		 10.59
	 Detrended kriging		 10.24		  9.82		  9.44		 10.18		 10.66
ME 	 GIDS		  0.508		  0.438		  0.464		  0.500		  0.532
	 Cokriging		  0.033		  0.037		  0.114		  0.216		  0.029
	 Detrended kriging		  0.046		  0.018		  0.025		 -0.018		  0.040
a Cross-validation results for each interpolation method based on five annual data sets. Errors calculated as 
observed values minus the predicted values; see text for interpretation of root mean square error (RMSE), 
mean absolute error (MAE), and mean error (ME).
b GID = gradient plus inverse distance squared.
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Eastern United States generally tended to have higher 
values than the Western United States, with parts of the 
Appalachian Mountain region and States along the Gulf 
of Mexico typically exhibiting high values. However, the 
extent and spatial distribution of the highest-value area 
fluctuated substantially year to year. The total-day maps 
exhibited a similar spatial pattern, but more clearly high-
lighting some relatively high-value areas in the southern 
and central Rocky Mountains. Perhaps unsurprisingly, the 
patterns of the GIDS-derived maps were quite different than 
the patterns depicted in the PRISM-derived maps.

Discussion
Four main points of emphasis emerge from the results. 
First, for the tested data sets, the interpolation method did 
not significantly influence the resulting error. There are 
several possible explanations for this. Foremost, although 
the GIDS approach may be technically more appropriate 
than geostatistical approaches for count-based variables, the 
Poisson model may not have been a good fit for these data, 
or the data may have been approximately normal enough 
to remove any advantage of a Poisson-based process over 

geostatistical approaches. Furthermore, among weighted-
average interpolation approaches—a category that includes 
GIDS—kriging is often the best unbiased predictor for data 
that are not normally distributed (Johnston and others 2003). 
Another count-oriented approach—Poisson kriging—has 
recently emerged in health geography and ecological litera-
ture, and this may be a promising future direction for count-
based spatial interpolation (Goovaerts 2005, Monestiez 
and others 2006). In the meantime, GIDS has a number of 
positive characteristics. It violates fewer assumptions than 
geostatistical approaches—in particular, the assumption 
of second-order stationarity (Cressie 1993). Furthermore, 
the GIDS approach is transparent and easily implemented. 
To use more complex approaches, particularly PRISM, 
requires estimation of numerous parameters, so a certain 
degree of subjectivity is involved. The GIDS approach can 
easily accommodate covariates besides elevation, and, in 
fact, could easily be adapted for multiple covariates in order 
to refine the results. Finally, the GIDS approach has been 
implemented in R code (R Core Development Team 2006), 
and as such is an open source resource that may be more 
readily available than GIS-based interpolation approaches.

Table 3—Interpolation method comparison for consecutive-day variablea 

	 Interpolation
 	 method	 2000	 2001	 2002	 2003	 2004

Mean 	 Observed	 5.73	 5.72		 5.21	 6.03		  6.25
	 GIDS	 5.78	 5.77		 5.25	 6.08		  6.30
	 Cokriging	 5.74	 5.73		 5.21	 6.04		  6.25
	 Detrended kriging	 5.73	 5.74		 5.20	 6.03		  6.25
RMSE 	 GIDSb	 2.14	 1.98		 1.89	 2.15		  2.35
	 Cokriging	 2.10	 1.97		 1.83	 2.14		  2.30
	 Detrended kriging	 2.09	 1.98		 1.85	 2.15		  2.30
MAE 	 GIDS	 1.46	 1.41		 1.28	 1.51		  1.62
	 Cokriging	 1.44	 1.41		 1.24	 1.51		  1.59
	 Detrended kriging	 1.45	 1.42		 1.25	 1.51		  1.60
ME 	 GIDS	 0.053	 0.052		 0.039	 0.048		  0.051
	 Cokriging	 0.009	 0.009	 -0.001	 0.006		 -0.002
	 Detrended kriging	 0.005	 0.018	 -0.007	 0.003		 -0.001
a Cross-validation results for each interpolation method based on five annual data sets. Errors calculated as 
observed values minus the predicted values; see text for interpretation of root mean square error (RMSE), 
mean absolute error (MAE), and mean error (ME).
b GID = gradient plus inverse distance squared.
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Second, the interpolations of the two-count variables 
appear to have an acceptable degree of error. The distribu-
tion of cross-validation errors for the GIDS interpolations 
are revealing in this regard. For the consecutive-day 
variable, across all 5 years, only 25 percent of values were 

exactly predicted, but nearly two-thirds of predicted values 
were within 1 day of the observed value. For the total-day 
variable, only 4 percent of values were exactly predicted, 
but nearly 50 percent were within 5 days and greater than 
75 percent were within 10 days. This should be adequate for 

Figure 1—Annual maps of the total number of days with weather conditions favorable for Phytophthora ramorum, interpolated using the 
gradient plus inverse distance squared method: (a) 2000, (b) 2001, (c) 2002, (d) 2003, and (e) 2004; (f) for visual comparison, a total-day 
map approximated using monthly Parometer-elevation Regressions Independent Slopes Model.
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broad-scale ranking of areas according to their relative risk 
based on climatic and weather conditions.

The third and perhaps more important point is that the 
information provided by the constructed annual count maps 
is substantially different from results that can be captured 

using monthly climatic data sets based on 30-year normals. 
For P. ramorum and other currently emerging threats, it 
may be advantageous to identify areas that have exhibited 
favorable conditions in a given year and determine whether, 
for example, the pathogen was positively detected at any 

Figure 2—Annual maps of the longest string of consecutive days with weather conditions favorable for Phytophthora ramorum, interpo-
lated using the graident plus inverse distance squared method: (a) 2000, (b) 2001, (c) 2002, (d) 2003, and (e) 2004; (f) for visual compari-
son, a total-day map approximated using monthly Parometer-elevation Rrgressions Independent Slopes Model
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nurseries in those areas during that time period. In fact, 
this suggests a need for a regularly updated database, and 
the GIDS method may be one way to generate a regularly 
updated data set from the NCDC data. Recent annual maps 
can be used in conjunction with 30-year normal data to 
create a strong picture of current risk.

Fourth, if the count-based variables we calculated are 
reasonable representations of the level of favorable climatic 
conditions for P. ramorum, then this suggests that large 
portions of the Eastern United States—perhaps more than 
originally estimated—have periods during each year where 
they may be especially susceptible to infection. Because 
climate and weather may not be severely limiting factors, 
detailed analyses of potential pathways and potential host 
species distribution may be in order for much of the Eastern 
United States.
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