Laminated Root Rot in Western North America

Walter G. Thies and Rona N. Sturrock
Disclaimers

Canada
The exclusion of certain manufactured products does not necessarily imply disapproval nor does the mention of other products necessarily imply endorsement by the Canadian Forest Service. Any application of a pesticide in Canada must be in accordance with directions printed on the label of that pesticide as prescribed under the Pest Control Products Act of Canada. Always read the label. Any pesticide used in Canada should also be recommended by provincial authorities, who should be consulted for specific advice.

United States
This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Authors
Walter G. Thies is a research plant pathologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, OR 97331; and Rona N. Sturrock is a forestry research officer, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5.

For additional copies of this publication, please contact:

USDA Forest Service
Natural Resources, Forest Insects and Diseases
P.O. Box 3623
Portland, OR 97208-3623

PNW Research Station
Publications
P.O. Box 3890
Portland, OR 97208-3890

Canadian Forest Service
Pacific Forestry Centre
506 West Burnside Road
Victoria, BC V8Z 1M5

B.C. Ministry of Forestry
Silviculture Practices Branch
Forest Health Section
2d Floor, 31 Bastion Square
Victoria BC V8W 3E7
Laminated Root Rot in Western North America

Walter G. Thies
Rona N. Sturrock

U.S. Department of Agriculture
Forest Service
Pacific Northwest Research Station
Portland, Oregon
General Technical Report
PNW-GTR-349
April 1995

Published in cooperation with:
Natural Resources Canada
Canadian Forest Service
Pacific Forestry Centre
Victoria, British Columbia
Abstract

Laminated root rot, caused by *Phellinus weirii* (Murr.) Gilb., is a serious root disease affecting Douglas-fir and other commercially important species of conifers in northwestern North America. This report gives an overview of the disease as it occurs in the Pacific Northwest in Canada and the United States. Information on recognizing crown symptoms and signs of the disease is presented. The disease cycle of laminated root rot, from initiation to intensification and distribution within infected stands, is described. Finally, disease management strategies during stand development and at stand regeneration are discussed. Features on the nomenclature of the fungus and on its management by silvicultural and mechanical approaches also are included. The report is intended as a general reference for a wide audience.

Keywords: *Inonotus sulphurascens*, laminated root rot, *Phellinus sulphurascens*, *Phellinus weirii*, *Poria weirii*, root diseases.

Preface

The information presented here has been compiled from many sources and represents both published research findings and observations of forest pathologists and resource managers in the Pacific Northwest in Canada and the United States. Some of the management recommendations are based on research still in progress. Although much of the information focuses on high volume coastal stands, it can be generally applied to both coastal and inland (east of the crest of the Cascade Range) stands. This report is intended as a general reference for a wide audience including laypersons, resource managers, students, and members of the research community. Although many primary references are listed, a complete literature review or listing of all publications on laminated root rot is beyond the scope of this presentation.

This report updates information in earlier publications intended to provide a guide to resource managers: Hadfield 1985, Hadfield and others 1986, Morrison and others 1992, Thies 1984, and Wallis 1976. These earlier publications are recommended as sources for additional color illustrations to augment those shown here.
Table 1: Susceptibility of western North American tree species to laminated root rot

<table>
<thead>
<tr>
<th>Level of susceptibility* and species</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly susceptible:</td>
<td></td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>Pseudotsuga menziesii (Mirb.) Franco</td>
</tr>
<tr>
<td>Grand fir</td>
<td>Abies grandis (Dougl. ex D. Don) Lindl.</td>
</tr>
<tr>
<td>Mountain hemlock</td>
<td>Tsuga mertensiana (Bong.) Carr.</td>
</tr>
<tr>
<td>Pacific silver fir</td>
<td>Abies amabilis Dougl. ex Forbes</td>
</tr>
<tr>
<td>White fir</td>
<td>Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.</td>
</tr>
<tr>
<td>Intermediately susceptible:</td>
<td></td>
</tr>
<tr>
<td>California red fir</td>
<td>Abies magnifica A. Murr.</td>
</tr>
<tr>
<td>Engelmann spruce</td>
<td>Picea engelmannii Parry ex Engelm.</td>
</tr>
<tr>
<td>Giant sequoia</td>
<td>Sequoiadendron giganteum (Lindl.) Buchholz</td>
</tr>
<tr>
<td>Noble fir</td>
<td>Abies procera Rehd.</td>
</tr>
<tr>
<td>Pacific yew</td>
<td>Taxus brevifolia Nutt.</td>
</tr>
<tr>
<td>Sitka spruce</td>
<td>Picea sitchensis (Bong.) Carr.</td>
</tr>
<tr>
<td>Subalpine fir</td>
<td>Abies lasiocarpa (Hook.) Nutt.</td>
</tr>
<tr>
<td>Western hemlock</td>
<td>Tsuga heterophylla (Raf.) Sarg.</td>
</tr>
<tr>
<td>Western larch</td>
<td>Larix occidentalis Nutt.</td>
</tr>
<tr>
<td>Tolerant:</td>
<td></td>
</tr>
<tr>
<td>Lodgepole pine</td>
<td>Pinus contorta Dougl. ex Loud.</td>
</tr>
<tr>
<td>Sugar pine</td>
<td>Pinus lambertiana Dougl.</td>
</tr>
<tr>
<td>Western white pine</td>
<td>Pinus monticola Dougl. ex D. Don</td>
</tr>
<tr>
<td>Resistant:</td>
<td></td>
</tr>
<tr>
<td>Alaska-cedar</td>
<td>Chamaecyparis nootkatensis (D. Don) Spach</td>
</tr>
<tr>
<td>Incense-cedar</td>
<td>Libocedrus decurrens Torr.</td>
</tr>
<tr>
<td>Ponderosa pine</td>
<td>Pinus ponderosa Dougl. ex Laws.</td>
</tr>
<tr>
<td>Port-Orford-cedar</td>
<td>Chamaecyparis lawsoniana (A. Murr.) Parl.</td>
</tr>
<tr>
<td>Redwood</td>
<td>Sequoia sempervirens (D. Don) Endl.</td>
</tr>
<tr>
<td>Western redcedar</td>
<td>Thuja plicata Donn ex D. Don</td>
</tr>
<tr>
<td>Immune:</td>
<td></td>
</tr>
<tr>
<td>Hardwoods*</td>
<td></td>
</tr>
<tr>
<td>Bigleaf maple</td>
<td>Acer macrophyllum Pursh.</td>
</tr>
<tr>
<td>Mallow ninebark</td>
<td>Physocarpus malvaceus (Greene) Kuntze</td>
</tr>
<tr>
<td>Ocean-spray</td>
<td>Holodiscus discolor (Pursh) Maxim.</td>
</tr>
<tr>
<td>Red alder</td>
<td>Alnus rubra Bong.</td>
</tr>
<tr>
<td>Rocky Mountain maple</td>
<td>Acer glabrum Torr.</td>
</tr>
<tr>
<td>Vine maple</td>
<td>Acer circinatum Pursh</td>
</tr>
</tbody>
</table>

*Levels of susceptibility: high-readily infected and readily killed; intermediate-readily infected, usually not killed, often develops butt decay; tolerant-infrequently infected unless growing in association with the most susceptible species, rarely killed; and resistant-rarely infected, almost never killed.

bAll hardwoods are immune.

Contents

1. **Introduction**
2. **Symptoms and Diagnosis**
 - Appearance of Disease Centers
 - Crown Symptoms
 - External Root Appearance
 - Colonized Wood
 - Fruiting Bodies
3. **Disease Cycle**
 - Initiation
 - Inoculum
 - Influence of Site
 - Distribution Within a Stand
 - Disease Intensification
 - Unmanaged Stands
 - Managed Stands
 - Interaction With Bark Beetles
 - Influence of Fire
4. **Disease Management**
 - Strategies During Stand Development
 - Survey
 - Before Harvest
 - After Harvest
 - Precommercial Stands
 - Commercial Stands
 - Strategies at Stand Regeneration
 - Inoculum Removal
 - Stump Removal
 - Push-Falling
 - Fertilization
 - Chemical Inactivation
 - Biological Agents
 - Reforestation Choices
 - Species Manipulation
 - Resistant Douglas-fir
 - Spacing Strategy
5. **Modeling**
6. **Synopsis**
7. **Acknowledgments**
8. **Literature Cited**

Features

- **What’s In a Name**
- **Buffer Removal**
- **Equipment—The History**
- **Excavator Specifications (Minimum)**