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Abstract

Many stocks of Pacific salmon (Oncorhynchus spp.) have become extinct over the last century,
and other stocks currently are declining and risk extinction. Habitat degradation has been associ-
ated with >90% of the documented extinction or declines of salmon stocks. Surveys of public
and private lands in Washington, Oregon, Idaho, and northern California indicate that freshwater
habitats for salmonids are in poor to fair condition. Fundamental aspects of habitat in the Pacific
Northwest include known trends in habitat change, institutional histories and land uses, and
principles for restoration of streams and rivers.

Dectlines of Pacific salmon stocks closely followed Euro-American settlement of the Pa-
cific Northwest in the 19th century. Causes for declining stocks are complex, but habitat degra-
dation has been explicitly identified as a factor in the declines of most stocks. The historical land
use on both public and private lands in the Pacific Northwest has left us with a legacy of altered
habitats that will require considerable time for recovery, and retum to historical conditions will
never occur on a large proportion of the landscape. Loss of floodplain habitats in both montane and
lowland riparian forests has been one of the most pervasive and unregulated forms of habitat use.

Inconsistent development of environmental management issues or guidelines for land-use
practices presents a major obstacle to managing freshwater habirats in the Pacific Northwest.
Currently, Pacific Northwest states have a fragmented and uncoordinated collection of statutes

- relating to different land-use types, zoning, and different resource users. Effective habitat man-
agement at a landscape scale requires incorporation of the entire landscape relevant to salmon
life histories and integration of management policies for both public and private lands.

The goal of restoration is to reestablish an ecosystem’s ability to maintain its function and
organization without continued human intervention. It does not mandate returning to some arbi-
trary prior state. Any restoration program should be nested within a larger program of landscape
management that protects, maintains, and restores ecosystem structure and function. The most
critical questions related to aquatic habitat restoration include the following: the degree to which
the habitat can be repaired or restored, priorities for locations where restoration efforts will be
beneficial, and ecologically sound approaches for habitat restoration. The major agent of aquatic
ecosystem restoration in the Pacific Northwest is periodic flooding, and the challenge for human
efforts is to supplement natural processes of restoration. In the future, our success in ecosystem
management will be measured by the degree to which we are able to decrease the need for restora-
tion programs.
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Introduction

Though the causes have been strenuously debated, there is no question that anadromous salmo-
nids in the Pacific Northwest have declined or that considerable aquatic and riparian habitat has
been altered or lost since the mid-1850s (National Research Council [NRC] 1996). Recent evalu-
ations of the status of Pacific saimon (Oncorhynchus spp.) have concluded that many stocks
have become extinct over the last century and that many other stocks currently are declining and
risk extinction (Walters and Cahoon 1985, Chapman 1986, Konkel and McIntyre 1987, Nehlsen
etal. 1991, Frissell 1993, Washington Department of Fisheries et al. 1993). Habitat degradation
has been associated with >90% of the documented extinctions or declines of these stocks (Nehlsen
et al. 1991). No survey of public or private lands in Washington, Oregon, Idaho, or northern
California has concluded that freshwater habitats for salmonids are in good to excellent condi-
tion (General Accounting Office 1988, USDI Bureau of Land Management [BLM] 1991,
Nickelson et al. 1992, Thomas et al. 1993, Forest Ecosystem Management Assessment Team
[FEMAT] 1993). Forest practices, agriculture, livestock grazing, road building, urbanization,
and dams have diminished the ability of freshwater habitats to support anadromous stocks of
salmon and trout. Factors not related to habitat (e.g., excessive commercial and sport salmon
harvest, hatchery practices, disease or predation, and ocean conditions) also have contributed to
the decline of Pacific salmon and are addressed in other papers (Fresh 1996, Mundy 1996,
Pearcy 1996, Reisenbichler 1996).

Causes and rates of habitat change have varied across the Pacific Northwest over the last
150 years, involving many types of human activity on forested land. croplands, rangelands,
residential areas, and industrial developments. Generalizations are difficult and may be mis-
leading because the degree of habitat change ranges from short-term, localized modification to
large-scale, long-term loss of habitat. In some cases, habitats have been destroyed through dik-
ing and filling, land draining, channelization, or stream rerouting. Other forms of habitat alter-
ation significantly reduce major aspects of salmonid habitat, such as pools, wood accumula-
tions, side channels and other lateral habitats, or floodplains. Studies often focus on immediate
changes in habitat structure and composition, but alteration of ecosystems processes (e.g., hy-
drologic regimes, delivery of sediment, thermal loading) and ecosystem structure (e.g., riparian
forests, beaver populations, wetlands) may influence habitat conditions over much larger areas
and time periods (Naiman 1992).

Attempts to improve survival in other aspects of salmon life history such as upstream adult
migrations or harvest reductions may have little effect if freshwater habitat for salmon is inad-
equate. Recovery of salmon in response to natural improvements in climate or environmental
conditions in the north Pacific Ocean will be limited if freshwater habitats pose limits to the
early phase of their life histories (Francis and Sibley 1991, Pearcy 1992). Freshwater streams
and riparian areas are critical to the life history of the fish (e.g., clean gravels for spawning; an
open gravel environment from which newly hatched fish can emerge: low velocity, shallow
habitat along stream margins for rearing of young fish; overwintering habitat; refuges to survive
natural flooding; deep pools; and cold water).

Environmental factors and human activities contributing to the decline of salmon differ
from basin to basin. Attempts to single out practices responsible for the decline of anadromous
salmonids or to rank their impacts are likely to be misleading and ultmately to weaken collec-
tive or integrated approaches for managing the common resources and landscapes of the Pacific
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Northwest (Botkin et al. 1995). It is impossible to ensure the survival of the stocks of anadro-
mous salmonids of the Pacific Coast without providing high-quality freshwater habitat for spawn-
ing, rearing, and passage of juvenile fish, and migration of returning adults. In this paper, we
identify known trends in habitat change in the Pacific Northwest, describe institutional histories
and land uses that influence habitat conditions and future alternatives, and explore principles
and applications for restoring streams and rivers.

Historical Patterns of Habitat
Alteration and Loss

Humans have occupied the Pacific Northwest for ~18,000 years, strongly influencing the distri-
bution and abundance of native plants and animals. For example, burning of prairies and forests
by Native Americans modified vegetation in local areas, such as the prairies of the Willamette
Valley, Oregon, and the Puget Trough, Washington, maintaining more of an oak savannah or
grassland than a forested environment (Boyd 1990). Many Native Americans subsisted on anadro-
mous salmon as part of their food base for much of that time. Fish traps, spearing, and net
fisheries at falls and other constrictions to migratory pathways had the potential to strongly alter
salmon and trout populations (Stewart 1977), but Native Americans changed relatively little of
the overall habitat of salmon. '

Declines of Pacific salmon stocks closely followed Euro-American settlement of the Pa-
cific Northwest in the 19th century. In 1832, Captain Nathaniel Wyeth established a commercial
fishing and salt packing operation on Sauvies Island at the confluence of the Willamette River
and Columbia River, but competition with the Hudson Bay Company proved too great, and he
sailed back to the east coast of the United States (US) in 1835 with only half a cargo load of
salmon (Cobb 1922). The first successful commercial harvest in the Pacific Northwest did not
occur until 1861, when H.N. Nice and Jotham Reed began a commercial salting operation in the
Columbia River 96 km below Portland, Oregon. William Hume built the first cannery at Eagle
Cliff, Washington, in 1866, 2 years after he helped establish the first salmon cannery on the
Sacramento River, California (Adams 1885). In that year, all returning adult salmon to the Sac-
ramento River were eliminated by massive sedimentation caused by gold mining (Stone 1897).
Forty canneries were operating in the Columbia River by 1885. Abundances of all species of
salmon in the Columbia River declined by the mid-1880s, prompting Marshall McDonald (1895),
the US Commissioner of Fish and Fisheries, to note:

It is not a matter of wonder that, under the existing conditions, there has been serious
deterioration in the value of the fisheres. It is, indeed, a matter of surprise that any
salmon have been able to elude the labyrinth of nets which bar their course to the

Upper Columbia.

Declines of salmon were attributed first to overharvest of fish in the terminal fisheries and later
to habitat degradation. In 1876, hatchery development in Oregon began as an.attempt to over-
come the perceived loss of the natural system’s ability to support natural production. McDonald
(1875) further noted:
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In 1888 the U.S. Fish Commission, by direction of Congress, established a salmon
hatching station on the Clackamas River, Oregon. .. . This work was undertaken on the
urgent solicitation of those concerned in the salmon fisheries of the Columbia River,
who realized that their fisheries were being exhausted, and it was hoped that some
compensation for the deficiency in natural reproduction could be made by artificial
stocking and breeding.

It quickly became evident that artificial propagation was not a simple panacea for overly aggres-
sive commercial fishing and that land-use practices were degrading aquatic habitat conditions.
Livingstone Stone (1897), founder of the first hatcheries on the Pacific coast, observed:

When it [the Clackamas hatchery] first passed into the hands of the US Fish Commis-
sion it yielded 5,000,000 salmon eggs a year, but it was too near civilization to prosper
long as a salmon-breeding station, and gradually mills and dams, timber cutting on the
upper waters of the Clackamas, and logging in the river, together with other adverse
influences, so crippled its efficiency that it was given up this year as a collecting point
for salmon eggs. . . .

Even the value and success of the McCloud River hatchery in California, the first hatchery on
the US west coast, was related to the extensive destruction of habitat in the basin by mining.
Stone (1897) also noted:

McCloud River. .. is the only cold tributary of the Sacramento that has not been roiled
by gold mining, in consequence of which the salmon come into the McCloud to breed
in the summer, not only from choice, but also from necessity.

Mining after the Gold Rush of 1862 destroyed critical habitat for salmonids throughout the
Northwest, and water quality was impaired through degradation of ambient chemistry (e.g., oxy-
gen, suspended sediment) and introduction or re-exposure of toxic substances (e.g., mercury,
cyanide). Many laws governing mining operations have changed little over the last 100 years, as
evidenced by the federal Mining Act of 1872 (Nelson et al. 1991).

Routes of early settlers into the Pacific Northwest followed the major river drainages (Fig.
1), moving westward along the Snake River system, down the Columbia River or across the Cas-
cades into the western valleys of Oregon and Washington, and south into northern California
(Nolan 1993). These same routes became the major arteries for today’s transportation infrastruc-
ture and for the major centers of present human populations (Fig. 2, 3; Northam 1993). These corri-
dors undoubtedly will dictate the pattern of future human activity and concomitant ecological
changes in the region. Aquatic ecosystems along these transportation routes and urban centers
will be altered more intensively than more remote habitats in rural lands or mountainous areas.

Development of towns and cities along the major rivers brought almost unbridled degrada-
tion of water quality, and by the early 1920s, John Cobb (1922) noted:

Next to the fishing operations of man, the gravest danger to the salmon fisheries of the
Pacific coast lies in the pollution of the rivers which the salmon ascend for spawning
purposes. . . . The large increase in the population of the coast States within recent
years, with the resulting increase of mills and factories, has greatly increased the amount
of sewage from cities and towns and the waste of the manufacturing plants.
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Figure 1. Routes of Euro-American settlers moving into the Pacific Northwest. Source: Nolan (1993);
reprinted by permission of Oregon State University Press.

The first large dams of the Northwest were built in the 1930s, but settlers had been damming
streams for power generation and mill operations since the mid-1800s. Dams were constructed
with little or no regulation on their construction or locations. Their impacts on the fisheries were
recognized before the turn of the century (Smith 1895). Fish passage was rarely accommodated
by early dams, and even Bonneville Dam, constructed in 1933, originally was designed with no
provision for passage of salmon into the Columbia River basin above Portland. Growth of facto-
ries, agriculture, and mining required enormous consumption of water, and laws on water with-
drawal reflected the pioneering nature of the expansion of western society, first come, first served.
Modermn water allocations in the western US are still based on this principle, and water rights
from the late 1800s remain in effect. Most water withdrawals were not considered in their con-
sequences either on habitat in the streams or on fish that were diverted with the water, as noted

by Cobb (1922):

The irrigation ditch, a comparatively new product on this coast, while of great benefit
in developing the arid lands in certain sections, as at present operated is a considerable
menace to the salmon fisheries. But few ditches have screens at their head, and as a
result many thousands of young salmon slowly making their way to the ocean home
pass into and down these to an early doom.
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Figure 2. Modemn highways and transportation routes in the Pacific Northwest. Source: Nolan (1993);
reprinted by permission of Oregon State University Press.

Pollution of major rivers during the early 20th century made extensive reaches devoid of
fish and most invertebrate life because of elevated temperatures, lack of oxygen, and toxic sub-
stances (Gleeson 1972). A survey of fish and water quality in the Willamette River in 1944
indicated few live fish in the 69-km reach of river from Newberg to Portland (Dimick and
Merryfield 1945). The survey also noted that cutthroat trout fry died within 2 minutes after
being placed in the South Fork of the Santiam River. Stream temperatures in major tributaries
reached 31.7°C (89°F), and oxygen concentrations were observed as low as 0.0 mg L' and
ranged from 0.6 to 1.4 mg L™ in the lower river below Newberg, Oregon. Water quality in mainstem
lowland rivers diminished or eliminated the access to headwater streams for adult salmon and
created an almost impassable gauntlet for smolts migrating downstream.

After little more than a century of Euro-American settlement, the states and regulatory
agencies of the Pacific Northwest were forced to acknowledge the destruction of freshwater
habitat and water quality throughout the region. The last half of the 20th century marked a period
of land-use laws, pollution regulation, mandated sewage treatment, and establishment of water
rights for fish and aquatic ecosystems. Each step toward restorin g the aquatic ecosystems of the
Pacific Northwest has been seen as a potential infringement on the rights of individuals and
continues to be fiercely debated. The momentum that drives the development of environmental
regulation, land zoning, and alliances of private citizens is the recognition that our waters and
anadromous salmonids are a common resource and regional heritage.
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Figure 3. Major urban areas and population distribution in the Pacific Northwest. Source: Matzke (1993);
reprinted by permission of Oregon State University Press.

STATUS OF SALMON AND PATTERNS OF THEIR DECUINE

In the late 1980s and early 1990s, concerns over dwindling numbers of returning adult
salmon stimulated regional evaluations of local extinctions and the status of existing stocks
(Konkel and McIntyre 1987, Nehlsen et al. 1991, The Wilderness Society 1993; P. Higgins, S.
Dobush, and D. Fuller, Humboldt Chapter, American Fisheries Society unpubl. data). These
studies echoed 100 years of reports on habitat loss and salmon declines by regional aquatic
biologists, and also attempted to quantify historical extinctions and populations at risk of extinc-
tion over broad areas, something many of the earlier reports had not done. According to Nehisen
et al. (1991), >106 stocks of anadromous salmonids have become extinct in Washington, Or-
egon, Idaho, and California, and 214 stocks considered to be at risk of extinction were further
identified. Generally, anadromous salmonids were found to be at greater risk near the southern
portions of their ranges than more northerly populations, and interior populations (e.g., upper
Sacramento River, middle and upper Columbia River) were at greater risk than populations in
systems draining the Coast Range (NRC 1996).

Causes for extinctions or declining stocks are complex and differ from basin to basin, but
habitat degradation (including loss caused by dams) was explicitly identified as a factor in the
declines of 194 of the 214 stocks and was believed to be the principal factor in the declines of 51
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at-risk stocks (Nehlsen et al. 1991). No evidence was found for fishing salmon stocks to extinction
even when weirs were used as a terminal fishery. Analyses of the status of individual species,
such as steelhead (0. mykiss) (Cooper and Johnson 1992), coho (O. kisutch) and chinook (O.
tshawytscha) salmon (Lichatowich 1989), and cutthroat trout (O. clarki) (Trotter et al. 1993)
have all identified habitat loss as a widespread, significant contributor to stock declines. Pro-
tection and restoration of existing salmon stocks will require integrated efforts to address the
many sources of mortality, but the quantity and quality of habitats clearly will be central issues
in the future of Pacific salmon (Pacific Rivers Council 1993, The Wilderness Society 1993, NRC
1996).

The history of extinctions and threats to the survival of existing salmon stocks is not uni-
form across the Pacific Northwest. Regional patterns reveal the nature of past habitat change
and indicate areas where greater numbers of stocks depend on future protection and restoration.
The Columbia River basin, with its numerous dams and water withdrawals, accounts for 63% of
the stocks that are known to have become extinct in Washington, Oregon, Idaho, and California,
but 20% of the extinct stocks originally occurred in California (Nehlsen et al. 1991). This re-
flects both the intensity of habitat alteration in these areas and the harsher environmental condi-
tions at the edge of these species’ distributions. Stocks on the edges of the geographic range of
the Pacific salmon must tolerate habitat conditions that can be marginal for the species, and even
moderate levels of habitat alteration may be adequate to eliminate entire stocks.

According to Nehlsen et al. (1991), relatively few recent extinctions have been documented
for stocks inhabiting the Oregon coast (10 stocks) and the Washington coast and Puget Sound (8
stocks), but each of these geographic areas contains as many stocks at risk of extinction as cur-
rently occur in the Columbia River basin (58 in Oregon coast, 60 in Washington coast and Puget
Sound, 57 in Columbia River basin). The lower extinction rate of salmon in coastal areas illus-
trates the potential to save a greater proportion of the original species populations in coastal
Oregon and Washington, but the large number of at-risk stocks reflects our recent history of land
management and fisheries regulation in those parts of the Pacific Northwest with the greatest
potential to support anadromous salmonids. The extent of stock declines in coastal Oregon and
Washington emphasizes the need to reverse the current trend in habitat alteration in the Pacific
Northwest (Moyle and Williams 1990, Frissell 1993).

Alteration of Salmonid Habitats
by Land-Use Practices

Modification of aquatic habitats generally affects one or more of six fundamental components
of stream ecosystems: channel structure, hydrology, sediment input, environmental factors, ri-
parian forests, and exogenous material (Table 1). Actions that change channel structure, hydrol-
0gy, or sediment delivery essentially alter the physical habitat that potentially can be occupied
by anadromous salmonids. Environmental factors change either the physical environment or
water chemistry, which either directly affect the physiology of salmonids or indirectly influence
their food resources. Riparian forests influence numerous processes such as flood routing, sedi-
ment trapping, nutrient uptake, allochthonous inputs, wood, shade, stream temperature, and root
strength (Naiman et al. 1988, Gregory et al. 1991), but a critical aspect of altering riparian forests

shes in the Pacific Northwest. Based in part on Hicks et al. (1991b), Swanston (1991), and

Table 1. Types of habitat alteration and effects on salmonid fi

National Research Council (1996).

Effects on salmonid fishes and their ecosystems

Ecosystem feature

Selected references

Altered component
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is the time required for recovery of mature forest conditions (Agee 1988). This successional
- process creates a context for other types of habitat modification and limits rates of recovery.
Exogenous materials, including dissolved chemicals, particulate material, and exotic organisms,
represent factors that commonly are not part of the evolutionary history of the aquatic ecosys-
tems. Responses can be severe and may persist as long as the material remains in the ecosystem.

Conversion of lowland forests, coastal tide lands, floodplains, and headwater forests, as
well as alteration of water quality, have affected anadromous salmonids and aquatic ecosystems
throughout the Pacific Northwest (Frenkel and Morlan 1991, Lucchetti and Fuerstenberg 1993).
Attention to forestry-related issues in recent years has focused the public’s attention on land-use
policies in the upland forests, which are predominantly public lands. Historical loss of estuaries
and lowland freshwater habitats (Boulé and Bierly 1987) has been considerable. For example,
Simenstad et al. (1982) identified five major estuaries in Puget Sound in which >70% of the
available habitat has been lost. Much of the habitat of lower main rivers is no longer in forest
lands but instead in areas zoned for agriculture, urban, and industrial development. Many of
these lands have been converted from coniferous forests to grasslands, meadows, deciduous
forests, or paved surfaces. ~

As a consequence of settlement, many historical lowland or floodplain forests have been
eliminated, and recent society has little memory of the conditions of those riparian forests and
the roles that they played (Sedell et al. 1990). Riparian forests in lower valley floodplains, par-
ticularly secondary channels and off-channel ponds, were particularly critical for survival of
rearing salmon during winter floods and provided cold-water refuges during warmer periods of
the year (Ward et al. 1982, Peterson and Reid 1984, Brown and Hartman 1988).

Floodplains also provide coarse beds of alluvial sediments through which subsurface river
flow passes much like a trickle filter in wastewater treatment plants (Stanford and Ward 1992).
This hyporheic zone, the subsurface flow between surface water and the water table, serves as a
filter for nutrients and maintains high water quality (Triska et al. 1989). Human activities have
altered lowland rivers incrementally in small patches by numerous practices such that existing
channels and floodplains are minor relicts of original conditions. As a result of these “diffuse”
alterations over space and time, the degree and consequences of habitat alteration are rarely
recognized.

Few quantitative studies of salmonid habitats were conducted prior to World War II, and
historical reconstructions of riverine conditions are scarce; thus, accurate assessment of habitat
loss is difficult. Comparison of current conditions of the upper Willamette River with maps
constructed by the cadastral land survey of the 1850s reveals extensive simplification (Sedell
and Froggatt 1984). Sections of the river that originally were braided and contained side chan-
nels and floodplain lakes are now single channels with little or no lateral connections. Lowland
streams and rivers have been simplified and channelized so extensively that it is rare to find
reaches that resemble natural channels and floodplain forests. A survey of 43,000 km of streams
in Oregon indicated that 55% were either moderately or severely impacted by nonpoint source
pollution (Edwards et al. 1992).

Despite the scarcity of quantitative historical studies, it is clear that habitat availability and
quality have significantly declined and that current environmental protection and resource man-
agement policies have not been able to reverse that trend (Hicks et al. 1991b, Bisson et al. 1992).
Land-use practices differ in their impacts and the portions of the landscape and river drainages
that are altered. Forested lands make up 46% of the land cover of Washington, Oregon, and
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Idaho, and the federal government manages Or Supervises ~60% of the forest lands (Table 2;
Jackson and Kimerling 1993). Rangelands account for 32% of the land base, and croplands and
pasture make up another 20%. Only 2% of the Pacific Northwest is represented by urban or
developed lands. These general trends in land use are consistent throughout the states of the
region, but proportions of federal and non-federal lands within a land-use type differ substan-
tially between states (Table 2).

HABITAT LOSS ASSOCIATED WITH FOREST MANAGEMENT

Forest practices (e.g., timber harvest, yarding, road building) alter many components and
processes of aquatic ecosystems and the land-water interface. These interactions have been evalu-
ated and synthesized in several major symposia, reports, and books (Krygier and Hall 1971,
Karr and Schiosser 1977, Iwamoto et al. 1978, Salo and Cundy 1987, Raedeke 1988, Hartman
and Scrivener 1990, Meehan 1991, Naiman 1992, Peterson et al. 1992). These works provide
Jetailed reviews of the effects of forest practices on aquatic ecosystems, and the following sec-
tion simply highlights some of the major changes related to habitat alteration on forest lands
(Table 1).

Habitat Change

When commercial logging began in the mid-19th century, there were no roads for moving
logs to the sawmills, and rivers served as the early routes for transportation (Sedell and Luchessa
1982). Splash dams were constructed to generate sufficient flows for moving the logs down

Table 2. Areas of different land-use types in three Pacific Northwest states. Modified from Jackson and
Kimerling (1993).

Oregon Washington Idaho
Land use Ownership km? % km? % km? %
Forests Federal 75,669 30 38340 2 67,745 30
Nonfederal 47,984 19 51.128 29 16,475 7
Rangeland Federal 53,160 21 6,750 4 63.463 28
Nonfederal 37,037 15 22,557 13 26,693 12
Cropland Nonfederal 24,682 10 37,968 22 40,590 18
Pasture Nonfederal 7,754 3 5,747 3 5,480 2
Urban land Nonfederal 3,808 2 6,329 4 1,930 1
National parks Federal 683 <l 7,329 4 393 <l
Total landbase Federal 129,512 51 52,419 30 131,600 59
Nonfederal 121,265 49 123,729 70 91.168 41

Combined 250,777 100 176,148 100 222,768 100
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-eam channels. During relatively low flow conditions, a slurry of water and logs was suddenly
leased, destroying riparian zones and aquatic communities as it moved downstream. Structur-
ly complex habitats within these streams were channelized and cleared to facilitate transporta-
»n. The techniques of splash damming and log driving down rivers had been used in timber
.rvest across the North American continent as settlers moved west and had also been used in
urope for centuries. At the same time that log drives were first appearing in the Pacific North-
est, detrimental effects of log drives were being documented in Sweden (Malmgren 1885).
plash damming and log drives from the 1870s through the 1920s altered streams and rivers to
1ch an extent that they have not yet fully healed (Sedell et al. 1991).

The history of logging on both public and private lands in the Pacific Northwest left a
-gacy of altered habitats that will require considerable time for recovery (Cordone and Kelly
961), and the return to historical conditions will probably never occur on a large proportion of
1e forested landscape. Stream surveys by federal agencies have shown that habitat is in fair to
oor condition (BLM 1991, FEMAT 1993, Hessburg 1993, Thomas et al. 1993). The BLM
stimated that 64% of the riparian areas on their lands in Oregon and Washington and 45% of
heir riparian areas in Idaho did not meet the objectives of their management policies (BLM

991). FEMAT (1993) concluded that “aquatic ecosystems in the range of the northern spotted

ywl exhibit signs of degradation and ecological stress. . . . Although several factors are respon-
ible for declines of anadromous fish populations, habitat loss and modification are major deter-
ninants of their current status.” In addition, evaluations sponsored by the forest industry ac-
cnowledged the overall decrease in stream habitat quality on forest lands (Kaczynski and
balmisano 1992, Palmisano et al. 1993).

One of the few quantitative studies of habitat change was based on a survey of pools in
Pacific Northwest streams, conducted by the US Fish and Wildlife Service from 1934 to 1946
‘Rich 1948). The Pacific Northwest Research Station of the USDA Forest Service (Forest Ser-
vice) and its cooperators resurveyed the same streams ~50 years later to determine changes in
channel conditions (Sedell and Everest 1991). All streams are dynamic and channel change is a
natural process, but overall trends may reflect large-scale responses 10 human activities. Fre-
quencies of very large pools (based on criteria of >1.8 m deep and >42 m? surface area) in 658
km of stream in 13 basins in Washington and Oregon decreased by an average of 58%, ranging
from a loss of 94% in the Coweeman River basin to a gain of 10% in the Wind River basin
(McIntosh et al. 1993). The gain in pool habitat in the Wind River was a result of channel restora-
tion efforts that followed the Yacolt burn and subsequent log drives in the 1910s, which had
reduced the amount of large wood in the Wind River prior to the original survey. Decreases in
large pool habitat on private forest lands in coastal Oregon averaged >80%. Pool habitat in

largely unmanaged sub-basins of the Wenatchee River, Washington, and the Willamette River,

Oregon, over the same period increased 212% and 400%, respectively (J. Sedell and B. McIn-
tosh, USDA Forest Service, Corvallis, Oregon, pers. comm.). On the basis of habitat surveys from
1934 to 1946, McIntosh et al. (1993) concluded that the frequency of large pools in watersheds
with forest management in eastern Oregon and Washington declined by an average of 31%,
while pools in unmanaged basins increased by 200%. These changes have occurred since 1934,
which followed more than 80 years of extensive habitat alteration in all of the surveyed basins.

Loss of large-pool habitat has been caused by various forest management-related factors,
including the removal of large wood and large boulders, an increase in the amount of fine sedi-
ment (sand and gravel) deposited in pool bottoms, and in some instances, by channelization
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(FEMAT 1993). Large pools do not provide the full range of habitat conditions needed by all
adult and juvenile salmonids, but they are important holding areas for adults migrating upstream
and serve as rearing sites for the juveniles of certain species (Hicks et al. 1991b). Loss of large
pools reduces the availability of holding areas for adult salmon. This may be particularly impor-
tant in streams where large pools with inflowing groundwater provide cold-water refuges during
adult migrations in summer months (Berman and Quinn 1991). Additionally, large pools often
provide cover for both juvenile and adult salmonids from terrestrial predators. The observation
that >50% of the large pools have been lost from many streams OVer the last half century reveals
the extent of physical habitat alteration, especially given that many of these streams had already
been changed by human activities when the original pool surveys were initiated.

A study of streams in old growth forests, forests with moderate harvest (<50% harvested
within the last 40 years), and forests with intensive harvest (>30% harvested within the last 40
years) in western Washington documented significant changes in pool habitat and amounts of
large wood (Ralphetal. 1994). Pool areas and depths were significantly lower in streams in old-
growth forests than in harvested basins, and pools >1 m in depth were almost eliminated in har-
vested basins. A reduction in the abundance of large pieces of wood was also related to logging.

Studies of the effects of past rimber harvest over the last several decades frequently are
criticized because forest practices have changed during the interim. Unfortunately, the land-
scape is filled with lands changed by historical practices that no longer occur, and anadromous
salmon return to habitats that reflect very little of the improvement in recent forest practices. In
Oregon, the majority of private forest lands were harvested at least once prior to the develop-
ment of the Forest Practices Act (Oregon Department of Forestry 1988). Current habitat condi-
tions on forest land in the Pacific Northwest have been shaped by roughly 150 years of timber
harvest, and recent land-use regulations are designed to allow some degree of recovery in the

future.

Channel Structure

One of the most profound changes in habitat related to forest practices is alteration of chan-
nel structure. Channel structure may be affected directly by sedimentation, mass failure, changes
in rooting and vegetative COVeT, and direct channel modification by heavy equipment (Cederholm
et al. 1981, Chamberlin et al. 1991). Changes in hydrologic regimes and loss of in-channel wood
may cause indirect, long-term modification of channel structure. Channel changes frequently
are evaluated at the scale of a stream reach, but the most important scale for analysis of land-use
practices on channel structure is the drainage basin (Sullivan et al. 1987, Ryan and Grant 1991).
Channels may respond differently to physical change depending on geology, climate, sediment
loading, vegetation, slope, and basin position (Montgomery and Buffington 1993). Decreased
heterogeneity of channel units and loss of pool habitat are common responses to forest practices
in the Pacific Northwest (McIntosh et al. 1993), but fisheries managers must be cautious about
basing management efforts on simplistic assumptions of channel dynamics (Sullivan et al. 1987,
Montgomery and Buffington 1993). :

The 1970s marked the first well-documented recognition of the role of wood in stream
ecosystems (Swanson and Lienkaemper 197 8, Bilby and Likens 1980, Harmon et al. 1986,
Bisson et al. 1987). Numerous studies have demonstrated that clearcutting, often in combination
with stream clean-up, have dramatically reduced the volumes and types of wood in streams
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throughout the region (Harmon et al. 1986, Andrus et al. 1988, Bilby and Ward 1991). Removal
of mature trees along streams reduces natural loading rates for centuries (McDade et al. 1990,
Van Sickle and Gregory 1990). Loss of wood from channels directly influences the distribution
and abundance of fish populations and is one of the longest lasting effects of forest harvest on
anadromous salmonids (Murphy and Koski 1989, Hicks et al. 1991b).

The wide array of changes in channel structure (e.g., loss of pools, reduction in wood,
sedimentation, decreased heterogeneity) influences all freshwater stages of anadromous saimonid
life histories (Hicks et al. 1991b). Responses of fish populations and other members of the
aquatic community are complex; many different responses have been noted in streams through-
out the region (Murphy et al. 1981, Hawkins et al. 1983, Murphy et al. 1986, Hartman and
Scrivener 1990, Nickelson et al. 1991, Bisson et al. 1992). Forestry operations may also lead to
reduced macroinvertebrate populations, which serve as the food base for anadromous salmonids
(Newbold et al. 1980, Hawkins et al. 1982, Culp 1988), although under certain circumstances
the organisms that feed on algae may benefit from increased autotrophic production associated
with removal of forest canopy (Erman et al. 1977, Bilby and Bisson 1992).

Floodplains are fundamental and often overlooked components of stream channels and al-
luvial valleys (Gregory et al. 1991). Secondary channels provide important refugia in moderate-
to high-gradient streams during floods (Seegrist and Gard 1972, Tschaplinski and Hartman 1983).
Seasonally flooded channels and riverine ponds support a major component of the populations
of coho salmon and other fish species during winter months (Peterson 1982, Peterson and Reid
1984, Brown and Hartman 1988). Loss of floodplain habitats in both montane and lowland
riparian forests has been one of the most pervasive and unregulated forms of habitat loss in the
Pacific Northwest (NRC 1996).

Stream Cleaning

Recent policies for maintaining and enhancing large wood have caused considerable frus-
tration for those who recall the period in the 1950-70s when fishery agencies required removal
of logging-related woody debris from streams. Contradictions between earlier recommenda-
tions and more recent policies actually are not as contradictory as they first appear. Practices that
led to degraded habitat conditions in the late 1950s often caused the introduction of large vol-
umes of sediment directly into stream channels. Roads were located immediately adjacent to
strearns, road fill was side-cast directly into channels, logs were yarded along stream corridors,
and trees were felled directly into the channel. Tremendous volumes of sediment and slash were
left in streams at the end of logging operations. These practices resulted in unstable conditions
during subsequent winter floods, high demand for oxygen by the decomposing debris, stagnant
pools, and increased direct solar radiation on the channel, which led to high temperatures, low
oxygen, unstable channels, poor quality spawning gravel, and apparent blocks to migration (Bisson
et al. 1987).

Fishery biologists noted the mortality of fish and called for preventing erosion of sediment
and slash into streams, as well as for removing slash deposits; however, the recommendations
acknowledged the need to retain wood in the streambed that existed at the site prior to logging
(Hall and Lantz 1969). Even earlier efforts to remove debris accumulations also recognized
potential adverse effects of wood removal. In 1949, the Oregon Fish Commission removed 170
log jams and 32 beaver dams in 27 miles of the Clatskanie River, but Merrell (1951) noted:
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Some criticism has been made of the clearing in this particuiar area, it having been
suggested that overclearing ruined the stream by eliminating pools and exposing the
gravel to shifting and scouring.

In many efforts to remove excess slash and debris, almost all wood was removed in an attempt
to clear the stream for fish passage and reduce the demands on oxygen supply in the water.
Stream cleaning practices often became overly zealous in that it was assumed that if some re-
moval was good, total removal was better.

Research in the 1970s in the Fraser Experimental Forest of Colorado (Heede 1972), H.J.
Andrews Experimental Forest in Oregon (Swanson and Lienkaemper 1978), and Hubbard Brook
Experimental Forest in New Hampshire (Bilby and Likens 1980) identified the physical and
ecological functions of large wood in streams. Aquatic scientists were soon calling for maintain-
ing large wood and even restoring large wood to historical levels. This was not so much a
contradiction of earlier policies as a recognition that proper management required maintaining
natural channel functions and avoiding the types of practices that caused excessive loading of
logging debris and sediment. By the 1980s, understanding of the role of large wood in ecosys-

tems rapidly expanded to both terrestrial and aquatic ecosystems and their interfaces (Swanson

et al. 1982; Harmon et al. 1986).

HABITAT LOSS ASSOCIATED WITH AGRICULTURE
AND LIVESTOCK GRAZING

Agricultural lands (including croplands and pastures) make up ~20% of the land base of the
region, and rangelands account for >30% of the land. In combination, these lands used for pro-
duction of crops or livestock account for ~50% of the northwestern states (Pease 1993). These
lands are located in the lower portions of the river basins where stream gradients are low and
valleys are formed primarily by alluvial deposition. Agricultural and range lands usually contain
more species of fish than steeper headwater streams in forests (Hughes and Gammon 1987) and
often some of the more productive aquatic habitat within the basin (Li et al. 1987). These lands
also contain the mainstem reaches that are essential for migration of anadromous salmonids.

Land-use practices on agricultural and range lands have greatly reduced the availability and
quality of salmonid habitat (Platts 1991), and analysis of habitat conditions and development of
legislation or Best Management Practices (BMPs) on private agricultural lands have been nota-
bly lacking. Agricultural lands generally occur in lowland valleys that historically contained the
majority of floodplains and wetlands within the region (Sedell and Froggatt 1984). Most of
these aquatic habitats were eliminated by channelization, draining, road building, and filling
operations prior to World War II, and many of these changes occurred before 1900 (Bowen 1978,
Boag 1992). Fishery biologists have no quantitative measures of the degree to which the elimi-
nation of lowland aquatic systems affected salmon, but recent evidence indicates that these were
some of the most productive habitats within the landscape. Studies of effects of livestock graz-
ing on aquatic ecosystems and salmonids generally have observed responses consistent with
studies of habitat relationships on forest lands (Chapman and Knudsen 1980, Kauffman and
Krueger 1984, Platts 1991). Where riparian vegetation is heavily grazed and channel structure is
changed, populations of some fish species decline, the balance of species is altered, and stream
flows are negatively affected (Elmore and Beschta 1987, Beschta 1991, Elmore 1992).
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In contrast to policies for forests, land-use regulations pertaining to streams for agricultural
and range lands are less protective. The few that do exist apply to a small fraction of the lands
and do not explicitly identify BMPs (Kauffman 1988). Many state and federal programs have
relied on voluntary compliance (Oregon Agricultural Practices - ORS 568.900-933), and there is
little evaluation of attempts to protect or restore aquatic habitat. The lack of consistency in
development of environmental management issues or guidelines for land-use practices is a ma-
jor obstacle to managing freshwater habitats in the Pacific Northwest.

HABITAT LOSS ASSOCIATED WITH URBANIZATION

Urban lands make up only 2% of the land base of the Pacific Northwest (Pease 1993), but
they exert disproportionate influences on salmonid production because urban areas are frequently
located in important salmonid migration corridors and wintering sites. In spite of their relatively
small area, >70% of the population of the region lives in cities and towns (76%, 70%, 57%, 93%
for Washington, Oregon, Idaho, and California, respectively [American Almanac: Statistical
Abstracts of the United States 1994]). Regional resource management is dictated primarily by
the urban sector, but constraints on land use are borne almost entirely by the rural sector, In-
creases in the proportion of the urban population will only create greater conflicts between
interests of the general public, private landowners, and natural resource agencies that manage
the majority of the land base.

Though total urban area may be small, cities and towns are located at critical positions on
major rivers, tributary junctions, and estuaries. The confluences of major rivers in the Pacific
Northwest (the Willamette and Columbia rivers, Puget Sound and its tributaries) are centers of
major regional metropolitan areas (Lucchetti and Fuerstenberg 1993, Nolan 1993). Aquatic habi-
tats in urban areas are more highly altered than in any other land-use type in the Pacific North-
west, and the proportion of the streams within the urban areas that are degraded is greater than
the proportion of highly altered streams on agricultural, range, or forested lands (Booth 1991).

Most urban areas are located on historical wetlands, but drainage requirements for resi-
dences and urban centers have eliminated 290% of these productive aquatic habitats in some
drainage systems (Boulé and Bierly 1987). Water quality and habitat conditions in these critical
migration pathways within river networks potentially restrict movement of salmonid smolts
from their natal streams, survival in winter rearing areas, or return of adult salmon to the head-
waters. In addition, habitat degradation and direct effects on invertebrate communities reduce
food supplies for fish assemblages (Hachmoller et al. 1991, Borchardt 1993). Lossess of wet-
lands, tidal sloughs, and estuaries in heavily urbanized or industrialized river basins have been
eXxtensive; in some areas of Puget Sound, >95% of estuarine and coastal wetland habitats have
been eliminated since the 19th century (Sherwood et al. 1990, Simenstad et al. 1992). Though
forest practices and, to a much lesser degree, agricultural practices have drawn intense scrutiny
resulting in more protective land-use regulations, urbanization and industrial development tend
0 cause the most extensive alteration of aquatic ecosystems. Future population increases in the
Pacific Northwest will expand the spatial extent of this source of habitat loss.
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Legal History and Role of Habitat Regulation

Public attention and legislative regulation have been focused primarily on management of aquatic
habitat in forests on both public and private lands. Timber harvest practices were not regulated
in riparian zones until the 1970s; thus, there were >120 years of human activity and ~50-70
years of intensive harvest on public lands prior to mandated consideration of streamside protec-
tion. Some logging of federal forests occurred during the first half of the 20th century, but timber
harvest accelerated dramatically after World War [I—an era with little or no riparian protection.
From 1940 to 1960, federal lands accounted for 19% of the total forest harvest in Oregon, but
from 1960 to 1990, federal forest provided 52% of the total harvest (Dave Steere, Oregon Dep.
Forestry, Salem, Oregon, pers. comm.). Even during the recent development of the Northwest
Forest Plan, the federal forests accounted for 35% of the harvest in Oregon in 1992. The current
debate over regional forest management has raised concerns about the abrupt shift in the propor-
tions of federal and non-federal harvest, but previous shifts in harvest levels within the forest
industry in the two decades after World War II rival those of today. Much of the logging in the
Pacific Northwest currently occurs on private forest lands, which have less stringent regulations
for streamside protection.

Environmental guidelines for forest practices first called for riparian protection on federal
lands in the late 1960s and early 1970s. Riparian management was addressed directly in the
forest planning process of the National Forest Management Act of 1976, but National Forests
were encouraged to develop individual standards and guidelines, which were not coordinated
and differed substantially from forest to forest (Gregory and Ashkenas 1990). In 1971, Oregon
was the first state to enact a Forest Practices Act (FPA) for private forest lands. Initial legislation
was aimed primarily at maintaining shade over the streams, decreasing erosion and sediment
inputs, and providing for replanting after logging. The original FPA provided relatively little
riparian protection around small streams and al]owed for essentially complete removal of mer-
chantable timber. Recent revisions develop more protective measures for maintaining ecologi-
cal functions of aquatic ecosystems. Similar changes have occurred in Washington, Idaho, and
California, but substantial differences exist in the protection requirements of neighboring states.
The state of Washington has developed a watershed analysis approach that offers the potential to
develop watershed-specific guidelines based on local resources and watershed conditions (Wash-
ington Forest Practices Board 1993).

Floodplains are not directly addressed in any of the statutes of the Pacific Northwest states
except for protection of streamside wetlands. One-hundred-year floodplains are not recognized
in the protection requirements for private commercial or state forestlands. Floodplain conditions
are examined under Washington’s watershed assessment approach, but no specific regulations
or guidelines require management actions. Lack of consideration of floodplains in regional for-
est management of state and private lands reveals a fundamental weakness in the regulations,
given the certainty of floods and the land-water interactions that occur during such events.

Recently, some National Forests in the Pacific Northwest have begun to implement a new
aquatic conservation strategy based on a set of recommendations called PACFISH (Sedell et al:
1994). This strategy involves interim guidelines requiring functional riparian protection with no
timber harvest within the streamside management zone, full floodplain protection, and even
protection of small ephemeral channels that do not contain fish. The strategy also formally
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establishes key watersheds (drainages with at-risk species and other important aquatic resources)
where protection of fish habitat is given top priority, and it encourages the development of
regional conservation strategies based on thorough watershed assessment. Modification of for-
est management policies by the federal government in 1993 under the development of FEMAT
(1993) incorporated substantially greater riparian protection than had been previously required
and addressed floodplains on federal forestlands.

In general, society has called for high standards of environmental protection on public and
private forest lands, but management activities in public forests are restricted to a greater extent
than in private forests (Robinson 1987). Approximately 80% of the anadromous salmonid stocks
identified by Nehlsen et al. (1991) and state agency reports as at risk of extinction spend a
substantial portion of their life history on federal lands (FEMAT 1993, Thomas et al. 1993), but
some stocks, particularly those inhabiting coastal lowlands, spend most of their time in fresh-
water on state and privately owned lands (NRC 1996). Currently, Pacific Northwest states have
a fragmented and uncoordinated collection of statutes relating to different land-use types, zon-
ing, and different resource users. Regulations for riparian protection on private non-forest lands
are often minimal. Mature trees are required to be maintained along streams on lands zoned for
forestry, but riparian forests along streams that pass through land zoned for agricultural, residen-
tial, or industrial use are allowed to be almost completely removed. These lowland streams histori-
cally were some of the most productive habitats in river drainages for anadromous salmonids,
and only fragments of these habitats and their stocks are still in existence (Sedell and Froggatt
1984, Naiman et al. 1991). There is a need for greater consistency in the levels of environmental
protection applied to different land-uses. We suggest that an integrated land-use practices act for
each state would promote management practices that would not have to be identical for each
type of land use or zoning but would ensure the ecological considerations that form the basis for
management would be consistent.

Future Directions in Riparian Management
and Habitat Protection

The future of anadromous and resident salmonids of the Pacific Northwest requires protecting
existing intact, healthy aquatic ecosystems, restoring degraded systems, and developing sustain-
able resource management policies (Frissell 1993, Moyle and Yoshiyama 1994, Sedell et al.
1994, NRC 1996). Any discussion of habitat loss in the Pacific Northwest that did not call for
these actions would be deficient, but these goals are not simple and each contains ecological and
social traps that have the potential to impede rather than accelerate habitat recovery.

PROTECTING EXISTING AQUATIC ECOSYSTEMS

One of the major tools in landscape management at a regional scale is development of
systems of watershed reserves for aquatic ecosystems (FEMAT 1993, Frissell 1993, Pacific
Rivers Council 1993, Moyle and Yoshiyama 1994). This reserve system in the Pacific North-
west is based primarily on public lands managed by the Forest Service and BLM. Recognition
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of watersheds as major functional elements of regional landscapes and of their role in protecting
entire stocks or local populations is one of the major advances in ecosystem management in the
Pacific Northwest. The approach is essential for sound ecosystem management, but it is con-
strained by land ownership patterns in the region. Lowland rivers and estuaries predominantly
occur on private lands, and steeper mountainous terrain occupies the majority of federally owned
lands. Approximately 20% of the stocks of anadromous salmon identified as at risk by the Ameri-
can Fisheries Society and state agencies in the Pacific Northwest do not occur on federal lands
(FEMAT 1993). In addition, many of the stocks that occur on public lands must pass through
lowland rivers during their migrations. Effective habitat management at a landscape scale re-
quires incorporation of the entire landscape relevant to saimon life histories and integration of
management policies for both public and private lands (NRC 1996). Exclusive reliance on pub-
lic lands for aquatic habitat protection will jeopardize the future of many anadromous stocks and
accelerate the loss of major large-river and floodplain habitats in the lower portions of river

basins.

RESTORING DEGRADED SYSTEMS

The most critical questions related to aquatic habitat restoration include the following: the
degree to which it can be repaired or restored, priorities for locations where restoration efforts
will be beneficial, and ecologically sound approaches for habitat restoration. As with sustainability,
restoration is a term that finds almost unanimous acceptance, but misguided or inetfective resto-
ration programs can undermine public confidence and even cause additional ecological damage
(NRC 1992, Hilborn and Winton 1993). The goal of restoration is to reestablish an ecosystem’s
ability to maintain its function and organization without continued human intervention. It does
not mandate returning to some arbitrary prior state. Any restoration program should be nested
within a larger program of landscape management that protects, maintains, and restores ecosys-
tem structure and function (Wissmar and Swanson 1990, Sedell etal. 1991, Moyle and Yoshiyama
1994). Resource analysis should precede any restoration effort, starting at the scale of entire
river basins, focusing down to specific watersheds, and finally addressing local reach character-
istics.

Ecosystems are dynamic and changing; thus, restoration to a previous condition often is
impossible or even ecologically undesirable. Ecosystem restoration is based on restoring sys-
tems to the point that they can provide the natural materials and ecological functions that create
habitat. Artificially constructing habitats does not constitute ecological restoration. Many prac-
tices commonly are mentioned within the context of restoration and often are used interchangeably
with the term restoration, but their differences are important. Rehabilitation involves the rees-
tablishment of specific components or processes to some degree of their previous state, but not
complete recovery of ecological function. The term “habitat improvement” is widely used, but it
has the misleading connotation that habitats are increasing in quality or function. In most cases,
the habitat has been severely degraded and only a small fraction of its potential function has
been restored. Ecological repair is more limited and may focus on a few limited characteristics
of the ecosystem and reestablish relatively few of historical conditions. Mitigation is a substitu-
tion of systems, habitats, artificial processes, or simple economic value for the loss of natural
habitat or ecological functions.
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Stream restoration practices often attempt to reestablish specific geomorphic features or
channel structure (Reeves et al. 1991a, Gregory and Wildman 1994) or increase densities of
selected species (House and Boehne 1986, Nickelson et al. 1992). Delivery of geomorphic ele-
ments that are locally missing or deficient, facilitating natural hydrologic processes, or reestab-
lishment of riparian plant communities can accelerate the rate of recovery of ecological pro-
cesses or communities (Reeves et al. 1991b). Inaccurate assessment of physical processes, riparian
plant ecology, causes of habitat degradation, or factors that limit populations or communities
can result in either ineffective restoration efforts or habitat degradation or ecological damage
(Frissell and Nawa 1992). Design of restoration requires thorough ecological and landscape
analysis. Appropriate criteria for evaluation of the performance of restoration efforts are based
on achieving the overall goals in a dynamic environment rather than simple persistence in the
original location.

Several principles guide future restoration efforts from a habitat viewpoint. Choices exist
between restoring areas that have been severely altered versus areas that have been only slightly
changed and would recover quickly with less input of material and effort (Pacific Rivers Coun-
cil 1993). Potential for recovery is greatly diminished where proportionately more natural pro-
cesses, structures, and aquatic communities have been lost. However, even these severely al-
tered habitats become appropriate candidates for restoration where there are important resources,
critical habitats, or unique opportunities. Sound ecological restoration considers landscape pat-
tern and connectivity. Setting priorities involves not just a matter of locating good or poor habi-
tat, but considering how these areas are spatially arrayed. Restoration of river basins should be
built upon nodes of high quality habitat that serve as refuges and provide sources of biotic
colonists to rebuild connectivity throughout the basin. Efforts must extend into estuaries to in-
clude habitats that are critical for several life-history stages of salmonids (Shreffler et al. 1990).

One of the most important challenges of restoration is to change practices that altered habi-
tat in the first place (Beschta et al. 1991). If environmental degradation continues, restoration
efforts will be impeded or ineffective. Aquatic ecosystems should be allowed to recover natu-
rally before habitat improvements are undertaken unless heroic efforts are required to save re-
sources from extinction or prevent catastrophic habitat change. It is difficult to wait when the
need for ecological recovery is great, but the potential for restoration efforts to be ineffective or
inappropriately located is far greater in rapidly changing systems (Sedell and Beschta 1991).

Habitat restoration or rehabilitation commonly utilizes engineering approaches to erect per-
manent structures in streams (NRC 1992). In addition, administration of projects by agencies
frequently identifies habitat targets so that funds can be allocated efficiently and project perfor-
mance can be evaluated (Frissell and Nawa 1992). Unfortunately, natural processes and long-
term dynamics of stream channels and communities are largely ignored, and rehabilitation projects
may provide little or no benefit and may cause ecological damage (Sedell and Beschta 1991).
Sound restoration of aquatic ecosystems is based on a solid foundation of ecological principles
and a clear recognition of the dynamic nature of streams, rivers, wetlands, lakes, and riparian
forests (Naiman et al. 1993).

Ecological restoration facilitates the reestablishment of natural physical and ecological pro-
cesses that occur in the local area. Use of native species and locally adapted stocks maintains the
integrity of the genetic characteristics of local populations. Some of the most important compo-
nents of habitat restoration include protection or restoration of floodplains and riparian plant
communities. The agents of habitat change (identified previously in Table 1) are also the basis
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for ecological recovery (Table 3). Environmental and biological uncertainty should be recog-
nized and management options should emphasize alternatives that offer flexibility and opportu-
nities to learn. Knowledge of the behavior of the environment will always be limited. and the
range of possible outcomes of management actions in aquatic ecosystems introduces a large
degree of uncertainty (Ludwig et al. 1993). Given the uncertainty inherent in ecosystem man-
agement and restoration, actions should be reversible either by natural processes or by human
correction, if possible. '

Restoration of riparian forests may be accelerated by silvicultural practices (Bilby and Bisson
1991). The goal of silvicultural management in riparian management Zones should be to provide
the natural ecological functions of riparian vegetation where previous practices have diminis hed
the diversity of riparian plant communities. Riparian silviculture should encourage natural pat-
terns of succession and create diverse and structurally complex riparian plant communities (Agee
1988). Reestablishment of shade over stream channels can be accelerated by protecting remain-
ing streamside vegetation, especially young trees. However, in areas dominated by shrub cover,
underburning may encourage regeneration of desired tree species (Agee 1993). In riparian areas
where short-term canopy recovery is required for temperature protection, hardwood species
may be used to rapidly reestablish vegetative cover. In many riparian zones of the Pacific North-
west, conifers are needed for long-term shading and inputs of large wood. More research is
needed to determine the most effective techniques of restoring conifers to hardwood or shrub-
dominated riparian zones. Pre-commercial thinning of small trees from upslope forests can pro-
vide material for placing directly into streams for short-term improvements. particularly in small
streams lacking large wood.

The time frame for ecosystem restoration is constrained by the processes that shape stream
channels, riparian plant communities, and aquatic communities (Table 3). In almost all cases,
ecological recovery will require decades before natural systems can maintain themselves with-
out human intervention, and centuries will be required for complete restoration of certain eco-
system components or processes. Resource management agencies should explicitly describe the
time frame for restoration and clearly identify anticipated patterns of recovery.

The major agent of aquatic ecosystem restoration in the Pacific Northwest is periodic natu-
ral disturbance. Natural disturbances create and maintain the structural and ecological charac-
teristics of riparian areas (Resh et al. 1988, Aumen et al. 1990, Bayley 1995). Disturbances in
riparian areas include floods, windthrow, fire, insect outbreaks, and disease, which in combina-
tion create complex habitats and diverse plant and animal communities (Reice et al. 1990. Gre-
gory et al. 1991, Reice 1994). Floods are essential for the sustained productivity of rivers. Streams
are shaped by floods, and many rivers throughout the world are more productive after flooding
(Junk et al. 1989). Flooding is a renewal process that creates pools, cleans gravel, and delivers
dissolved and particulate nutrients (Elwood and Waters 1969, Bayley 1995). Fish and inverte-
brate communities in streams are resilient and often respond rapidly to disturbance, but the
availability of refuges accelerates recovery of invertebrate community structure (Lamberti et al.
1991, Anderson 1992) and fish populations (Bisson et al. 1988, Sedell et al. 1990, Lamberti et |
al. 1991). Small-scale refuges during floods include deep pools, debris dams, boulders and logs,
off-channel habitats on floodplains, and stems and roots of streamside forests. Floodplain habi-
tats, large wood, and pool habitats have declined substantially in recent years and are among the
major habitat losses related to the decline of Pacific salmon (Sedell et al. 1991).
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Table 3. Sources of habitat modification, active restoration approaches, and estimated time scales for
recovery. All of these responses vary according to the degree of landscape and stream alteration, natural
disturbance events, and the magnitude of restoration efforts.

oo

Alteration Ecosystem processes that restore Recovery
Ecosystemn feature characteristics structure or function period (yr)
Channel structure Floodplains Reconnect floodplain to main channel. 10-100
Silvicultural planting revegetates floodplain
surface.
Pools and riffles Pools can be dug and riffles can be deposited, but 1-10

Hydrology

Sediment

Water quality

Large wood

Substrate

Hyporheic zones

Discharge

Low flows

Rapid fluctuations

Surface erosion

Mass failures and
landslides

Temperature

Dissolved oxygen

new bedforms will not be stable if inconsistent

with natural channel structure and hydrologic

regimes.

Large wood can be placed in streams. Attention 5-25
to natural dynamics and distributions is necessary

to prevent further habitat degradation through the

restoration effort. Natural succession may require

centuries to restore inputs of wood.

Sediments can be placed in stream reaches if 5-20

deficient. Artificial flushing of excessive
sediment loads is largely ineffective.

Processes that reestablish bedforms and bed 5-20
composition create new distribution of subsurface

flow. Reestablishment of hydrologic sources may

restore subsurface flow.

If silvicultural acceleration of upslope and 10-50
riparian vegetation is possible, recovery of

evapotranspiration rates will accompany forest

recovery. Dams prevent recovery of natural

discharge patterns.

If silvicultural acceleration of conifer regeneration 25-50
vegetation is possible, replacement of second-

growth deciduous vegetation reduces

evapotranspiration rates.

After cessation, colonization by aquatic organisms 1-10
and revegetation would require decades.

Revegetation of the watershed and riparian areas 10-50
will diminish inputs of soil from surface erosion.

Mass failures will diminish if road systems are 20-200
reduced or upgraded, but failure rates will remain

elevated as long as roads and culverts alter local

water movements on steep slopes.

Reestablishment of canopy cover over streams 1040
reduces solar inputs and stream temperature,

Temperature effects on oxygen will be related to 1-10
shade recovery, and organic demands will be
reduced as material decomposes and redistributes.
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Alteration Ecosystem processes that restore Recovery
Ecosystem feature characteristics structure or function period (yr)
Water quality—cont.  Nutrients Revegetation of the watershed and riparian areas 1040
will retain nutrients and diminish inputs to surface
waters.
Riparian forest Production of large ~ Development of mature to old-growth riparian 100-300

Exogenous material

wood

Production of food
organisms and
organic matter

Shading

Rooting systems

Nutrient
modification

Chemicals

Exotic organisms

forest contributes new wood. Transport of wood
and boulders from upstream or landsiides delivers
large structurai elements to local reaches.

Development of mature to old-growth riparian 40-30
forests restores natural inputs from terrestrial

ecosystems.

Reestablishment of canopy cover over streams 5-20

reduces solar inputs and primary production

declines to predisturbance levels. Riparian

vegetation influences stream temperature.

Development of woody vegetation along streams 20-80
and streambank integrity strengthens banks as

root systems develop. Grasses and forbs provide

similar functions along natural meadows.

Successional development of riparian plant 20-80
communities restores nutrient filtering capacity.

Anthropogenic chemicals vary greatly in Unknown
persistence in the environment.

Once established. exotic species likely will not be Unknown
eliminated from the regional assemblage of

species. Exotic plant communities may become

less abundant as forests return to mature forest

conditions.

Land-use practices should be designed to maintain natural disturbance processes and to
retain the beneficial effects of disturbance events to the degree possible. Analysis of the conse-
quences of disturbances includes explicit assessment of short-term effects, local site-specific
effects, long-term effects, and basin and landscape effects. At present, no resource management
agency has a formal “after the disturbance” policy designed to protect beneficial changes caused
by natural disturbances; t00 often the management response has been to fix the changes caused
by the disturbance. Recognition of the role of floods and related natural disturbances in streams
and riparian areas will reduce the tendency for disaster relief efforts that simply repeat previous
resource management mistakes. ,

Habitat restoration is no substitute for appropriate environmental protection, and approaches
built solely upon rehabilitation cannot maintain ecosystem health. The growth of habitat resto-
ration programs in state and federal agencies is the most undeniable and well-documented evi-
dence for our failure to effectively manage aquatic ecosystems of the Pacific Northwest. Our
success in the future will be measured by the degree to which we are able to decrease the need
for restoration programs.
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Human Population

Discussion of habitat alteration and future alternatives is fundamentally a question of human
population and rates of resource consumption. Salmon stocks and the ecosystems that support
them have been altered so extensively that there is no question about the outcome if current
land-use practices and population growth rates continue without change. Unfortunately, the time
frame for response is shorter than the historical trajectory that brought us to this point. The com-
bined population of Oregon, Washington, and Idaho was just >1 million people in 1900 and is
currently >9 million (Fig. 4) (American Almanac: Statistical Abstract of the United States 1994).
The population of the Pacific Northwest is projected to double to ~17 million by the year 2025
(assuming an average annual population increase of 1.9%), requiring only 30 years to attain the
same absolute increase in numbers that required 90 years previously.

Projected increases in human population in the Pacific Northwest will be accompanied by
increased demand not only for forest products but also for land, water, and energy. Only 2% of
the Pacific Northwest is urban or residential lands, but the additional millions of people antici-
pated for this region in the next few decades will either live in those urban areas or will consume
current forest and agricultural land to build homes and communities. Even considering a low
domestic water consumption of 750 L d™! per person (excluding agricultural and industrial water
requirements), population growth in the Pacific Northwest will impact an additional 6 billion L
d! of water in only 30 years. This consumption of water also will be reflected in the delivery of
sewage and waste water to the region’s streams and rivers.
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Figure 4. Trends in population of Oregon, Washington, Idaho, and the Pacific Northwest from 1850 to
1990. Source: American Almanac: Statistical Abstracts of the United States (1994).
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The major source of water for future communities of the Pacific Northwest comes from
forest lands, primarily designated federal forest lands. The Forest Service has allocated ~440,000
ha of federal land in Washington and 1,112,000 ha in Oregon as designated water supplies for
local municipalities (B. McCammon, Region 6, USDA Forest Service, Portland, Oregon, pers.
comm.). Federal lands provide the domestic water supply for 43% of the population in Oregon
and for 34% of the population of Washington. In many ways, water will be the most valuable
product coming from federal lands in the near future, and public forest lands will be 2 critical
component in the supply of water for the region in the coming century.

The people of the Pacific Northwest must evaluate the success of our efforts to manage
ecosystems based on our ability to deal with ecological and institutional change rather than our
static performance at any point in time. In 1902, Overton Price, the Assistant Forester for the
newly. formed Forest Service, noted, “It is the history of all great industries directed by private
interests that the necessity for modification is not seen until the harm has been done and its
results are felt.” The Pacific Northwest finds itself repeating the lessons of other regions. Future
management of the ecosystems of the Pacific salmon will require ecologically sound approaches
for protection and restoration of aquatic habitats, effective regulations and human incentive
systems, and long-term resource monitoring programs.
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