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Abstract

1. Multi-day survey campaigns are critical for timely detection of biological invasions.

We propose a new modelling approach that helps allocate survey inspections in a

multi-day campaign aimed at detecting the presence of an invasive organism.

2. We adopt a team orienteering problem to plan daily inspections and use an accep-

tance sampling approach to find an optimal surveillance strategy for emerald ash

borer in Winnipeg, Manitoba, Canada. The manager’s problem is to select daily

routes and determine the optimal number of host trees to inspect with a particular

inspection method in each survey location, subject to upper bounds on the survey

budget, daily inspection time, and total survey time span.

3. We compare optimal survey strategies computed with two different management

objectives. The first problem minimizes the expected number of survey sites (or

area) with undetected infestations. The second problem minimizes slippage – the

expected number of undetected infested trees in sites that were not surveyed or

where the surveys did not find infestation.

4. Wealso explore the impact of uncertainty about site infestation rates anddetection

probabilities on the surveillance strategy. Accounting for uncertainty helps address

temporal and spatial variation in infestation rates and yields a more robust surveil-

lance strategy. The approach is generalizable and can support delimiting surveypro-

grams for biological invasions at various spatial scales.
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1 INTRODUCTION

Delimiting surveys are among the most common tools used to monitor

biological invasions, but they require costly and coordinated efforts

over extended periods of time (Hauser et al., 2016; Leung et al., 2002).
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In budget-constrained situations, survey planning has been facilitated

by optimization models (Büyüktahtakın & Haight, 2018; Epanchin-

Niell, Brockerhoff, Kean, &Turner, 2014; Epanchin-Niell, Haight, Berec,

Kean, & Liebhold, 2012; Homans & Horie, 2011; Moore & McCarthy,

2016; Yemshanov et al., 2017, 2019a). Several models have been
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TABLE 1 Summary of themodel parameters and decision variables

Symbol Parameter/variable name Description

Sets:

N Sites n,m in a landscape (nodes in a landscape network). First and last sites 1 andN define themain

facility location. The first site n= 1 defines the start of a daily inspection route and the last site n=N
defines the end of a daily inspection route

n,m∈N, N= 469 sites

T Daily inspection routes t scheduled to visit sites n in a landscapeN during the survey campaign T and
inspect trees for signs of infestation

t∈ T

S Infestation scenarios s. Each scenario s defines a plausible pattern of infestation probabilities γns for
each site n in a landscapeN

s∈ S. S= 1 and

S= 1500

P Survey sampling intensity levels p in site n. Each level specifies inspecting qnp trees in site n. Minimum

sampling intensity level is inspecting one tree

p∈ P, p= 10 levels

(1–10 trees)

Decision variables:

xnmt Binary selection of an arc nm connecting sites n andm in daily inspection route t xnmt ∈ {0,1}

zntp Binary selection of a survey intensity level p in site n visited during a daily inspection route t (i.e.,
inspecting qnp trees)

zntp ∈ {0,1}

umt , unt Auxiliary variables which define the position of nodes n, m in an inspection route t umt , unt ∈ [2;N]

Parameters

B Maximum daily inspection and access time limit (working day length) B= 450min

Hn Number of host trees in site n Hn ≥ 0

γns Probability of that a tree is infested in a site n in a scenario s (γnsHn is the expected number of infested

trees in site n in a scenario s);
γns ∈ [0;1]

e1n, e2n Probability that inspection of an infested treewith detectionmethod 1 (branch sampling) or 2 (trapping)

in site n finds signs of infestation
e1n = 0.7 e2n = 0.5

qnp Number of trees inspected in a site n at a survey intensity level p qnp ∈ [1;10]

dnm Travel time from site n to a neighbouring sitem through an arc nm dnm > 0

g1np , g2np Times required to inspect a sample of qnp trees at the intensity level pwith detectionmethods 1 or 2 in

site n
g1np > 0 g2np > 0

θ1nsp , θ2nsp Probabilities of detecting one ormore infested trees in survey site n in scenario s after inspecting qnp
trees with a sampling intensity p using surveymethods 1 or 2

θ1nsp ∈ [0;1]

θ2nsp ∈ [0;1]

δ1nsp , δ2nsp Expected number of infested trees in site n on the condition that inspection of a sample of qnp trees with
surveymethods 1 or 2 fails to detect the infested tree(s) in site n in scenario s (expected slippage for
inspections of a site n in scenario swithmethods 1 and 2)

δ1nsp ∈ [0; γnsHn]

δ2nsp ∈ [0; γnsHn]

Mt Number of daily routes that use surveymethod 1 in amulti-day survey campaign T (The number of daily

routes that use the surveymethod 2 is T−Mt)

0≤Mt ≤ T

w1t, w2t Binary parameters which specify the selected surveymethod 1 or 2 for a daily route t w1t, w2t ∈ [0;1],

w2t= 1−w1t

proposed to assist early detection (Guillera-Arroita, Hauser, &

McCarthy, 2014; Surkov, Alfons, Lansink, & Van der Werf, 2009;

Yemshanov et al., 2019b), select optional invasion control mea-

sures (Hauser & McCarthy, 2009; Rout, Moore, & McCarthy, 2014;

Yemshanov et al., 2017b, 2019c) and determine survey logistical

details (Gust & Inglis, 2006; Moore, McCarthy, Parris, & Moore,

2014; Pullar, Kingston, & Panetta, 2006). However, few studies have

considered multi-day surveillance planning because of the complex

accounting formulti-day logistics in the face of personnel working time

limits (but see Chades et al., 2011;Mayo, Straka, & Leonard, 2003).

Indeed, planning surveillance inmulti-day surveys has to account for

many factors, such as the road network, travel costs and sampling den-

sities at inspected sites. Typically, survey managers must make their

own judgments on how best to manage the survey logistics, personnel

and time, and default to their experience when designing the survey.

This is a sensible approach, but because the multi-day survey problem

is so complex, their decisionsmay fail to include all relevant factors and

may not be cost-effective.

The time and cost to access the survey sites often depends on the

configuration of the transportation network in the survey area. In

geographical transportation networks, such as urban street networks,

optimal planning of site inspections can be achieved with route opti-

mization approaches. Several formulations have been proposed to

solve optimal routing problems, including themaximum tour collection

problem (Butt & Cavalier, 1994), the optimal dispatch (Solomon, 1987;

Weigel & Cao, 1999) and the price-collecting Steiner tree problem

(Chopra & Rao, 1994). In this study, we propose a new survey plan-

ning approach that accounts for optimal routing with common daily
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logistical constraints, such as route planning and working time, in

multi-day pest surveys. For each day in the surveillance campaign, our

model finds a route visiting a sequence of sites and a corresponding

set of host tree sampling plans.We adapt a team orienteering problem

(Vansteenwegen, Souffriau, & Van Oudheusden, 2011) for the optimal

routing model, which we then link with the two common geograph-

ical pest surveillance problems previously described in Yemshanov

et al. (2019a).

Our first surveillance problem (problem 1) depicts a strategy to

minimize the expected number of sites with undetected infestations.

Our second problem addresses the issue of failed detections: it min-

imizes slippage – the expected number of infested trees that remain

undetected following the survey – if the survey fails to detect the pest

in previously uninvaded locations. We adapt the acceptance sampling

concept from statistical quality control methods to account for the

potential damage of failed detections. With acceptance sampling, the

inspector accepts or rejects a group of items based on information

obtained from a subsample of items inspected in the group (Schilling

& Neubauer, 2009). We use the acceptance sampling problem formu-

lation from Chen, Epanchin-Niell, and Haight (2018) and Yemshanov

et al. (2019a). Thus, our second surveyproblemminimizes the expected

number of infested host trees remaining in the area, which includes

the infested trees in sites that were not surveyed and in sites where

inspections did not detect an infestation.

We demonstrate the approach using a multi-day survey program

for emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera:

Buprestidae), inWinnipeg, Canada,where the pestwas first discovered

inDecember2017 (GoC, 2017). EAB is native to easternAsia andposes

a major threat to North American ash (Fraxinus spp.) trees, all of which

are susceptible to attack. Our problem describes a common case of

multi-day surveys that municipalities continue to do in areas with high

risk of pest damage.

2 MATERIALS AND METHODS

2.1 A multi-day surveillance problem

Consider an area of N sites that may be infested with a tree pest. Each

site n has Hn host trees that may be infested. A manager allocates tree

inspections in area N to detect signs of infestation. A site n can be sur-

veyed with intensity level p by inspecting a sample of qnp trees. We

assume that the sample size,qnp canbe selected froma finite setof sam-

pling intensity levels p = 1,. . . ,P with the tree sample sizes qn1, . . . ,qnP.

The lowest site sample size is inspecting one tree, that is, qn1 = 1. All of

the variables are summarized in Table 1.

Let γn be the probability that a tree in site n is infested, and en be the
probability that inspection of an infested tree in site n detects the pres-

ence of the pest. Then, γnHn is the expected number of infested trees in

site n. Based on prior uncertain knowledge about the invader, we depict

the probabilities of invasion in the area as a set of S scenarios, where

each scenario represents a vector of plausible tree infestation rates γns ,
s∈ S, acrossN sites from previously infested areas.

The manager chooses the number of trees to inspect (qnp) in each

survey site n. If at least one tree in a sample of inspected trees is

infested, the site is declared infested. The probability, θnsp, of detect-
ing one or more infested trees in survey site n in scenario s using the

sampling intensity p is:

𝜃nsp = 1 − (1 − 𝛾nsen)
qnp . (1)

Wealso implementanalternativemetric –expected slippage -which

estimates the expected number of infested trees that remain unde-

tected after the survey. We define this metric using the acceptance

sampling formula from Chen et al. (2018) to estimate the expected

number of infested trees, δnsp, in site n in scenario s, after sampling qnp
trees and finding no signs of infestation, that is,:

𝛿nsp = (1 − 𝛾nsen)
qnp

[
𝛾ns(Hn − qnp) +

1 − en
1 − 𝛾nsen

𝛾nsqnp

]
. (2)

The δnsp value is termed the ‘expected slippage’ in optimal sampling

literature.When no trees are inspected in site n, the expected slippage

is equal to the expected number of infested trees,δnsp = γnsHn.

In our study, we focus on surveys in urban environment. During

the working day, an inspection crew visits several sites in the area to

conduct tree surveys. After finishing inspections at one site, the crew

moves to another site and so on. Daily inspections fall along a route

that starts at the main facility where fleet vehicles are stored and the

collected samples are processed. After the inspections, the inspection

crew returns to the main facility by the end of the day. We assume

that the number of days with the surveys is limited by the duration of

the survey campaign, T, and the total time that can be spent on tree

inspections in any day t is limited by the working day length, B (7.5 h),

which includes time to access the sites, inspect trees and return to the

main facility.

To model the daily inspection routes we depict the survey area as a

network of N nodes (potential survey sites). Daily surveys are concep-

tualized as routes through a network of interconnected sites (nodes),

where every pair of sites n and m sharing a common boundary is con-

nected by a pair of arcs nm and mn. Survey crews can move between

neighbouring nodes n and m in the network N through arcs nm. The

daily inspection routes can be depicted as sequences of connected

nodes, starting and ending at the main facility. We introduce two sur-

rogate nodes n= 1 and n=N to define the starting and ending points of

the daily inspection routes. Both nodes 1 andN point to the samemain

facility from which survey crews depart and to which they return. The

other nodes in the network, n = 2,. . . ,N − 1 define the potential survey

sites in areaN .

In order to sample trees in the first site during daily inspections,

inspectors have to travel to that site from the main facility. There is no

need to find the actual route from themain facility to the first inspected

site. Instead, one only needs to estimate the total travel time from the

main facility to the first inspected site in a daily schedule t and the time

of return from the last inspected site to themain facility. To simplify the

problem, we introduce two sets of auxiliary arcs 1n andmN. The set of

arcs 1n connects node 1 (the main facility) to each of the other nodes
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Main facility 

(nodes 1 and N)

Nodes (potential 

survey sites 

2,…,N-1)
Arcs connecting 

neighboring sites

Daily route of 

a survey crew 

to visit sites

Auxiliary arcs 1n and mN
connecting the main facility 

and the first surveyed site, 

and the last surveyed site on

a given day and the main 

facility

Sites surveyed 

on a given day

Sites surveyed 

on other days

F IGURE 1 Conceptual example of a daily surveillance problem
with routing. The area of interest is represented by a network of nodes
(potential survey sites) interconnected by arcs. Each day, the survey
crew leaves themain facility and follows a route that takes them to a
set of survey sites before returning to the facility at the end of the day.
Daily route schedulingmust account for several practical factors,
including site visit times and travel times between them, as well as any
site access limitations

2,. . . ,N − 1 and depicts the access from the main facility to each site n

as the potential first surveyed site of the day (Figure 1). Likewise, the

setmN connects each of the nodes (except node 1) to the main facility

(node N) and depicts the return route from each site m as the poten-

tial last surveyed site of the day. Each arc in sets 1n andmN is assigned

the cost and time of getting from the main facility to site n (arc 1n) and

returning from sitem back to the main facility (arcmN) (Figure 1). The

cost and time to traverse each of these arcs is determined prior to opti-

mization.

A daily survey route t represents a sequence of connected nodes

starting in node 1 (the main facility), visiting some survey sites n and

returning to node N (the main facility) (Figure 1). For each arc nm con-

necting an adjacent pair of nodes (potential neighbouring sites) n and

m, n,m ∈ N, a binary variable xnmt indicates whether the arc nm was

included in the daily inspection route t (xnmt= 1 and xnmt= 0 other-

wise). Traveling from site n to sitem along an arc nm takes time dnm.We

assume that daily inspection routes may pass through some sites with-

out conducting a survey in order to reach other sites where the risk of

invasion is higher.

Inspectors, when accessing site n in route t, may decide to conduct

surveys. A binary decision variable zntp selects the survey of a site n

with a sampling intensity p (i.e., inspecting qnp trees) in daily route t

(zntp= 1, and zntp= 0 for all sampling intensities p at the sites passed

through without inspections or not visited). The selection of sampling

intensity p in site n is donewith respect to the outcomes of all S infesta-

tion scenarios; we do not define the scenario-specific sampling intensi-

ties becausewe assume that the inspector knows only the approximate

rate value based on S scenarios. We assume that the inspection of qnp
trees in site n takes time gnp.

We further assume that the manager can select between two

inspection methods: inspecting branches of the host tree for signs

of pest attack (Ryall, Fidgen, & Turgeon, 2011) or setting up traps

in host trees to catch flying adults emerging from the infested trees

(Ryall, 2015). It is not possible to mix two survey methods in a daily

route because each method is effective in different seasons. Traps

are deployed in the summer, when adult insects emerge to mate and

lay eggs, and branch sampling is done during the cold season when

branches can be collected without leaves. Hence, a daily route t can

only be spent on inspections with one particular method. We define

the binary parameters w1t and w2t to select the survey method for a

daily route t and the parameterMt ,Mt ∈ [0;T], to set the number of daily

routes that use surveymethod 1 in a survey campaign T. The number of

daily routes that used survey method 2 is T−Mt. We then set parame-

tersw1t andw2t so that:

⎧⎪⎪⎨⎪⎪⎩

w1t = 1∀t ≤ Mt

w1t = 0∀Mt < t ≤ T

w2t = 1 − w1t

w1t, w2t ∈ {0,1}

. (3)

By altering the parameters Mt, w1t and w2t one can explore dif-

ferent proportions of the survey methods to find the most effective

solution.

Survey methods 1 and 2 differ in their cost, detection rates, e1n and

e2n, and time needed to survey a tree, g1np and g2np. The probability of

detecting one or more infested trees in survey site n in scenario s after

inspecting qnp trees withmethods 1 and 2 is:

𝜃1nsp = 1 − (1 − 𝛾nsen1)
qnp and 𝜃2nsp = 1 − (1 − 𝛾nsen2)

qnp . (4)

We then formulate our pest survey problem1as finding a configura-

tion of T daily inspection routes and tree sampling rates at survey sites

that maximizes the expected number of sites with detected infesta-

tions across a set of infestation scenarios S, subject to theupperbounds

on daily inspection time and the total length of the survey campaign,

that is:

max
1
S

S∑
s=1

N−1∑
n=2

T∑
t=1

P∑
p=1

(
zntp(𝜃1nspw1t + 𝜃2nspw2t)

)
. (5)

The objective function (5) is analogous to the problem1 formulation

in Yemshanov et al. (2019b). For consistency with the problem 2 for-

mulation, we reformulate objective (5) as an equivalent minimization

problem, that is, minimizing the expected number of survey sites with

undetected infestations:

min
1
S

S∑
s=1

N−1∑
n=1

T∑
t=1

P∑
p=1

(
zntp

((
1 − 𝜃1nsp

)
w1t +

(
1 − 𝜃2nsp

)
w2t

))

+
1
S

S∑
s=1

N−1∑
n=2

(
1 −

T∑
t=1

P∑
p=1

zntp

)
. (6)
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The first term in Equation (6) denotes the expected number of sites

which are surveyed and no infestation is found and the second term

denotes the expected number of uninspected sites.

We also investigate our problem 2 thatminimizes the expected slip-

page δnsp , that is:

min
1
S

S∑
s=1

N−1∑
n=1

T∑
t=1

P∑
p=1

(
zntp(𝛿1nspw1t + 𝛿2nspw2t)

)

+
1
S

S∑
s=1

N−1∑
n=2

(
𝛾nsHn

[
1 −

T∑
t=1

P∑
p=1

zntp

])
. (7)

The first term in Equation (7) defines the expected slippage for the

surveyed sites. Because the survey selection variable zntp, when set to

1, only specifies the positive sampling sizes, we need the second term

in Equation (7) to define the expected slippage for the unsurveyed sites

(i.e.,γnsHn). Terms δ1nsp and δ2nsp are based on Equation (2) and denote
the expected slippage values for the inspections with survey methods

1 and 2, that is:

𝛿1nsp = (1 − 𝛾nse1n)
qnp

[
𝛾ns(Hn − qnp) +

1−e1n
1−𝛾nse1n

𝛾nsqnp
]
and

𝛿2nsp = (1 − 𝛾nse2n)
qnp

[
𝛾ns(Hn − qnp) +

1−e2n
1−𝛾nse2n

𝛾nsqnp
] . (8)

In order to account for the stochastic nature of the infestation

spread, the objective functions (6) and (7) are formulated as a scenario-

based robust optimization problem (see the summation over S spread

scenarios in (6) and (7)).

Below we define the model constraints for the problem 1 and 2

objectives in (6) and (7), respectively. Constraint (9) ensures that only

one sampling intensity level p can be chosen for inspections at a sur-

veyed site n over T daily inspection routes, that is:

T∑
t=1

P∑
p=1

zntp ≤ 1∀n ∈ 2,… , N − 1, t ∈ T. (9)

Constraint (9) ensures that a site n can only be surveyed once dur-

ing the survey campaign T. The set n= 2,. . . ,N− 1 includes all potential

survey sites except themain facility location (sites 1,N).

We adapt the teamorienteering problem formulation (Vansteenwe-

gen et al., 2011) to ensure that the inspected sites are visited via a con-

nected route that starts and ends at the main facility. The team orien-

teering problem (Butt & Cavalier, 1994; Chao, Golden, & Wasil, 1996)

determines T routes, each limited by a time B, that maximize the total

value collected at the sites visited along the routes. We find a collec-

tion of T daily inspection routes that minimizes objectives (6) and (7).

Constraints (10–17) ensure the contiguity of the inspection routes and

enforce the inspection time limits. Constraints (10) and (11) guarantee

that each route starts in node 1 and ends in nodeN (themain facility):

N∑
m=2

x1mt = 1∀t ∈ T (10)

N−1∑
n=1

xnNt = 1∀t ∈ T. (11)

Constraint (12) guarantees the connectivity of each route and

ensures that each route is a single path, that is, a connected node has

nomore than one incoming and one outgoing arc:

N−1∑
n=1

xnkt =
N∑

m=2

xkmt ≤ 1∀k ∈ 2,… , N − 1, t ∈ T. (12)

Constraint (13) specifies that tree inspections can only be done at

sites that are visited during a daily route t, that is:

P∑
p=1

zmtp ≤

N−1∑
n=1

xnmt∀m ∈ 2,… , N, t ∈ T. (13)

Constraints (14) and (15), the so-called Miller–Tucker–Zemlin for-

mulation in the traveling salesman problem (Miller, Tucker, & Zemlin,

1960), are used to prevent sub-tours in individual routes t, that is:

unt − umt + 1 ≤ (N − 1) (1 − xnmt) ∀n,m ∈ 2,… , N, t ∈ T, (14)

2 ≤ unt,umt ≤ N∀n,m ∈ 2,… , N, t ∈ T, (15)

where unt, umt are auxiliary decision variables which define the posi-

tions of nodes n and m in a daily inspection route t. Constraint (16)

sets the maximum time limit B for a daily inspection route t, that

is:

N−1∑
n=1

N∑
m=2

(xnmtdnm) +
N−1∑
n=2

P∑
p=1

(
zntp

[
w1tg1np + w2tg2np

])
≤ B∀t ∈ T,

(16)

where dnm is the time to travel along an arc nm between sites n and

m and g1np and g2np are times to inspect a sample of qnp trees in site n at

the intensity level pwith surveymethods 1 and 2. There is no need for a

budget constraint because the cost of the survey is limited by the fixed

length of theworking dayB and the total length of the survey campaign

T. A desired budget level is a linear function of the length of the survey

campaign T (because hiring the survey crews and renting equipment is

done on a daily basis) and can be set by varying the T value.

Constraints (17) and (18) tighten the formulation and force the

scheduling of surveys every day t and the survey of at least one site per

day over the campaign time span T, that is:

N−1∑
n=1

N∑
m=2

(xnmtdnm) +
N−1∑
n=2

P∑
p=1

(
zntp

(
w1tg1np + w2tg2np

))
≥ Bmin∀t ∈ T,

(17)

N−1∑
n=2

P∑
p=1

(
zntp (w1t + w2t)

)
≥ 1∀t ∈ T. (18)

Theminimum time limit Bmin includes themaximum time to access a

single site from the main facility, inspect trees with the maximum sam-

pling size and return to the main facility. Because the total survey cost

is a linear function of the survey campaign length T, same-duration sur-

veys are comparable. Since problems 1 and 2 use different objectives

they can only be compared in the dimensions of either objective 1 or
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2. To explore the trade-off between minimizing the expected slippage

versusminimizing the expected number of sites with undetected infes-

tations, the problems can be combined into a bi-objective formulation.

However, we only consider here the endpoints of this trade-off, which

is the solution of problems 1 and 2 in Equations (6) and (7).

2.2 Multi-day surveys planning for EAB
infestation in Winnipeg, Canada

We adapted the problem 1 and 2 formulations to develop optimal sur-

vey strategies for the EAB inWinnipeg, Canada. EABhas destroyed ash

populations in much of the eastern United States and eastern Canada

(Herms & McCullough, 2014; Kovacs et al., 2010; McKenney et al.,

2012). EAB spread is assisted by vehicular transport (Buck &Marshall,

2008) and movement of infested materials (Haack, Petrice, &Wieden-

hoft, 2010; Short et al., 2019). Early detection of EAB is problematic

because tree damage does not become visible for at least 2 years,

so new finds usually indicate pre-established populations (Poland &

McCullough, 2006; Ryall et al., 2011). The two most common meth-

ods to detect EAB are sampling branches and then peeling their bark to

inspect forEABgalleries or placing sticky trapsbaitedwith ashvolatiles

and EAB pheromones. Branch sampling is the more reliable detection

method, especially for detecting infestations in asymptomatic trees

(Ryall et al., 2011; Turgeon, Fidgen, Ryall, & Scarr, 2015). The use of

sticky traps is less expensive on a per-tree basis but yields a lower

detection rate (Ryall, 2015; Ryall, Fidgen, Silk, & Scarr, 2013).

AfterEABwas first discovered inWinnipeg inDecember2017 (GoC,

2017), the City of Winnipeg and the Province of Manitoba established

a program to delimit the full extent of the EAB infestation. The city was

divided into a grid of 1 × 1 km sites where some trees were sampled

using the branch sampling method and trapping. These surveys found

two sites in the city with infested trees (Figure 2a).

2.3 Estimates of EAB spread

Themodel parameterization required data describing the spatial distri-

bution of host densities, the estimates of the likelihoods of EAB spread,

site-to-site travel times and the survey times,whichwedescribe below.

We used a conventional approach to estimate the probabilities of EAB

spread to other sites as a function of distance from the infested loca-

tions (Kovacs et al., 2010; Leung, Cacho, & Spring, 2010; Prasad et al.,

2010).Weused historical observations from the urban EAB infestation

closest toWinnipeg inMinneapolis–St. Paul, Minnesota, USA (Fahrner,

Abrahamson, Venette, & Aukema, 2017; Osthus, 2017) – to predict

the distance-dependent probabilities of EAB spread (see details in

Yemshanov et al. (2019a)). The pest is believed to have entered the

Winnipeg area approximately 7 years ago, sowe used the observations

of EAB spread in Minneapolis–St. Paul over the same timeframe.

We divided the area into a grid of 1 × 1 km sites, and estimated the

proportion of infested ash trees in each site based on municipal tree

inventories (City of Minnepolis, 2017; Koch, Ambrose, Yemshanov,

a)

b)

0        5     10 km

Pinvasion:

x Very low

Low

Medium

High

Infested sites

Ash density, 

tr.-km-2:

0 - 500

500 - 1300

1300 - 2700

2700 - 4700

4700 - 7500 

Infested sites

F IGURE 2 (a) Probabilities of EAB infestation in the study area
(mean value based on 1500 infestation scenarios); (b) ash host density

Wiseman, & Cowett, 2018; TreeKeeper, 2018) and documented

EAB detection rates (Fahrner et al., 2017; Venette, 2019) from the

Minneapolis–St. Paul region. From these estimates, we calculated the

probabilities of EAB infestation in each site. We compiled these into

distributions of invasion probabilities for 1-km distance classes from

the closest infested site. Then, for each 1 × 1 km site in Winnipeg we

calculated the distance to the nearest infestation and sampled the

distribution of infestation probabilities for the corresponding distance

class.We generated 1500 scenarios depicting the universe of plausible

invasion outcomes, whichwe used to find the optimal survey solutions.

We also estimated the mean probabilities based on 1500 scenarios

(Figure 2a) to explore the survey solutions when the uncertainty

about EAB spread is ignored, and compared these mean solutions with

the set of individual scenario solutions to identify the impact of the

uncertainty assumption.

Additionally, we compared the optimal solutions for the problem

1 and 2 formulations with similar theoretical problem solutions from
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Yemshanov et al. (2019a) that did not include optimal routing. Since

the theoretical problem formulations factored the access constraints

indirectly into the survey cost value, a direct comparison between the

theoretical and new model solutions was impossible. Instead, we first

solved the new model formulation for a desired survey duration (e.g.,

40 days) and found the solution with the optimal allocation of days

spent surveying with branch sampling and trapping. We then calcu-

lated the total survey cost in the optimal solution using the sampling

cost estimates provided below. In turn, we used this total cost as a bud-

get constraint to solve the theoretical problem 1 and 2 formulations

(i.e., eqs. 1–6 in Yemshanov et al. (2019a)), so both the theoretical and

newmodel solutionsused the samebudget levels. Finally,we calculated

the expected slippage in problem 2 solutions and the expected num-

ber of siteswith undetected infestations in problem1 solutions to com-

pare the survey performance between the theoretical and new model

formulations.

2.4 Inspection times, detection probabilities
and host densities

PreviousEABsurveys inCanada (Ryall et al., 2011;Turgeonet al., 2015)

provided estimates of the detection probabilities when using branch

samples versus sticky traps. Sampling two branches inmid-crown from

a medium-sized tree yields a detection rate of 0.7 (Ryall et al., 2013).

Experience fromurban surveys inOntario suggests that theEABdetec-

tion rate with a sticky trap is ≈0.5. However, the effectiveness of traps

varies depending on trap placement and density of EAB infestation, so

we evaluated solutions with trap detection rates varying from 0.5 to

0.58 to estimate when the use of traps becomes more effective than

branch sampling.

We assumed that municipal EAB surveys would target public trees

≥20 cm dbh (which is the current practice in Winnipeg). We stratified

public trees into three classes: street trees 20–60 cm dbh, large but

accessible trees > 60 cm dbh and public trees in woodlots and ripar-

ian zones. Sampling trees 20–60 cmdbhwould require installing either

one sticky trap or sampling two branches and sampling trees larger

than 60 cm dbh would require doubling the time and cost to achieve

the same detection probability. The site access and trap setup times for

woodlot trees were assumed to double that of street trees and acces-

sible trees. We estimated the densities and sizes of host trees from

a municipal forest inventory for Winnipeg (City of Winnipeg, 2018;

Daudet, 2019) (Figure 2b).

Site access times were assumed to depend on their location and

the route followed by the crew. The total access time for a crew of

two was estimated to cost $3.12 per minute for both survey tech-

niques. The total trap setup time for a two-person crewwas estimated

to take 17 and 24 min for trapping a medium- and large-sized street

tree, respectively, and 34 min for a tree in a woodlot or riparian zone.

Branch sampling requires only one visit to a survey site but the time

to obtain a sample also factors in the bark peeling and branch disposal

time, activities that may take place at the main facility. Based on data

from the initial EABdelimiting survey inWinnipeg, the access time for a

three-person crew to obtain branches from a medium- and large-sized

tree was 25 and 35 min, respectively. We also estimated the trap sam-

pling costs based on experience from this previous survey (i.e., $71.50

for a 20–60 dbh tree and $111.50 for trees larger than 60 cmdbh). The

total cost of branch samplingwas estimated as $120.60 for a 20–60 cm

dbh tree and $241.80 for trees larger than 60 cm dbh.

We estimated the site-to-site access times for each pair of neigh-

bouring sites from typical driving times using the urban street net-

work data. We computed the driving distances between the sites via

the urban survey network, and then converted the distances to driving

time by querying Google Maps to determine the approximate driving

times between representative locations in the same neighbourhoods

inWinnipeg. The model (Yemshanov et al., 2020) was composed in the

GAMS environment (GAMS, 2019) and solved with the GUROBI linear

programming solver (GUROBI, 2019).

3 RESULTS

We first examined the optimal solutions from a single-scenario formu-

lation, which used mean spread rate values based on S scenarios. This

formulation depicts the hypothetical case when amanager ’knows’ the

infestation value (and so a single scenario is used). We then compared

the single-scenario solutions with solutions from a formulation based

on 1500 scenarios (Figure 3), which assumed the manager knows only

the approximate range of infestation rates for each site. The maps in

Figures 3 and 4 show the survey locations and tree inspection den-

sities with a particular method (green cells = branch sampling, red

cells= trapping) in optimal solutions. For both short- and long-duration

survey campaigns (i.e., T = 20 and T = 40 days), all solutions pre-

scribed more branch sampling than trapping (Figures 3 and 4). How-

ever, the deterministic solutions hadmore (andmostly peripheral) sites

inspected via trapping than the uncertainty solutions.

3.1 Optimal versus theoretical survey solutions

We compared the survey patterns from the theoretical and newmodel

solutions for budgets equivalent to 20- and 40-day survey campaigns.

Among the no-uncertainty (i.e., single-scenario) solutions, the theoret-

ical solutions for problem 1 showed a uniform survey pattern allocated

within 5–6 km of the already-infested locations (Figures 3a and 4a).

The new model solutions for problem 1, which incorporated routing,

surveyed a larger perimeter around the existing infestations but in a

clustered fashion by avoiding hard-to-access sites in river valleys (i.e.,

grey lines in Figures 3b and4b); instead,most of the selected siteswere

located in residential or commercial areas with abundant and accessi-

ble street trees.

In the theoretical, no-uncertainty solutions to problem 1, trap-

ping (red squares in Figures 3a and 4a) was used regularly to inspect

sites farther from the existing infestations and branch sampling (green

squares in Figures3a and4a)wasused to survey sites close to the infes-

tations. In contrast, the problem1 theoretical solutions that accounted
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F IGURE 3 Optimal survey patterns for problem 1 (minimizing the
expected number of sites with undetected infestations) and problem 2
(minimizing expected slippage) solutions for 40-day survey campaigns
(or equivalent budget levels in the theoretical model formulations).
Themaps show the sampling densities with a particular method in
optimal solutions (i.e., cells in green show branch sampling and in red
trapping). No-uncertainty (single-scenario) solutions: problem 1, (a)
theoretical formulation and (b) new formulation with routing and time
constraints; problem 2, (c) theoretical formulation and (d) new
formulation. Uncertainty (1500-scenario) solutions: problem 1, (e)
theoretical formulation and (f) new formulation; problem 2, (g)
theoretical formulation and (h) new formulation

for uncertainty restricted the use of trapping to sporadic inspections of

peripheral sites (Figures 3e and 4e). The impact of the uncertainty was

similar in the new model solutions, with the use of trapping minimized

in favour of branch sampling (Figure 3b vs. 3f, Figure 4b vs. 4f).

Differences between the theoretical and new model formulations

for the problem 2 solutions were less dramatic than they were for

the problem 1 solutions. With respect to the theoretical solutions to

problem 2, more sites were surveyed in the solutions that accounted

for uncertainty, but at lower sampling sizes to compensate for the

uncertainty (Figure 3c vs. 3 g, Figure 4c vs. 4 g). In fact, the problem

2 theoretical solutions that accounted for uncertainty surveyed more

sites than in the corresponding uncertainty solutions from the new

model (Table 2, Figure 3g vs. 3h). Regardless, the spatial footprint of

the survey was similar in all model solutions and tended to prioritize

areas with high risk of infestation and high host densities. For example,

unlike the problem 1 solutions, which avoided allocating surveys in

hard-to-access sites, the problem 2 solutions targeted sites in river

valleys, but only if the infestation risk and host density were both

high. The solutions for the new model formulation, on average, rec-

ommended a sampling size 1.84 times higher and inspected an area

1.7 times smaller than in the theoretical model solutions (Table 2). This

was because the new model solutions included routing, and typically

the most efficient routes chose sites close to each other and devoted

more time to inspecting trees in the selected sites.

3.2 Survey performance versus the duration
of the survey campaign

We examined the optimal solutions for a range of survey durations

between10and70days. For bothproblems1and2, theobjective value

(i.e., the expected number of sites with undetected infestations or the

expected slippage) began to stabilize after about 50 days (Figure 5).

In theory, the relationship between objective value and survey dura-

tion should be an exponential decay that follows the law of diminish-

ing returns. However, in our case the curves decayed almost linearly

before stabilizing (Figure5). This behaviour canbeexplainedas follows.

At least for the near future, only a small portion of theWinnipeg area is

expected to face amoderate or high risk of EAB infestation (Figure 2a).

This means that while it may be possible to find new infestations far

away from the existing infestations, the chance of this occurring is low.

Instead, new infestations are more likely to emerge near the exist-

ing infestations, as exemplified by the discovery of the second infes-

tation in Winnipeg in 2018 less than 5 km from the initial infestation

(Figure 2).

Including site access and inspection time constraints forces the

model to prioritize the sites with the shortest access times, so more

trees can be inspected during workday hours. One consequence of this

behaviour is the piecewise shape of the curve in Figure 5. Generally,

sites with short access and inspection times are located in residential

and commercial areas with accessible street trees. The objective value

levels off once all sites with short access and inspection times that are

within 5–6 km of the already-infested locations are surveyed at the

maximum allowed sampling size.

3.3 Trapping versus branch sampling

Branch sampling was strongly preferred in the uncertainty solutions

under both the theoretical and new model formulations (Table 2).
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F IGURE 5 Objective value versus survey campaign duration,T: (a)
problem 1 (minimizing the expected number of sites with undetected
infestations) solutions; (b) problem 2 (minimizing expected slippage)
solutions

While trapping is cheaper than branch sampling, it is less reliable.

Accounting for site access time and routing makes the use of traps less

attractive than branch sampling. This iswhy trappingwas used rarely in

the new model solutions and only on the periphery of the survey area,

where the probability of infestation is low and where both inspection

methods would yield low detection rates.

Indeed, trapping must attain a fairly high detection rate to become

the preferred method. In our EAB case, trapping becomes dominant

– representing 75% of all sampling – when the trap detection rate

exceeds 0.53 in problem 1 solutions and 0.55 in problem 2 solutions

(Figure 6). Nevertheless, increasing the detection rate does not allow

trapping to completely replace branch sampling in the solutions to

problem 2 (Figure 6). This finding emphasizes the value of a reliable

estimate of the detection rate for tree inspectionmethods. In our case,

branch sampling is preferred over trapping when its detection rate

averages 1.35 times greater than the detection rate of traps.

4 DISCUSSION

Planningmulti-day surveys of biological invasions in geographical envi-

ronments is challenging because multiple logistical aspects must be

factored into the planning process. Our work helps address these

challenges and demonstrates how operational time constraints, when
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accounted for in survey planning, typically result in lower – but more

realistic survey efficiency than in the theoretical planning case that

does not include these details. Our study also confronts the issue of

failed detections in operational pest surveys. The prospect of inspec-

tions failing to detect an infestation after surveying a site is espe-

cially high in multi-day surveys when planners are constrained by daily

schedules.

Additionally, our results provide insights regarding the problem

of choosing the most appropriate detection method for urban EAB

surveys. In our solutions for EAB in Winnipeg, trapping was only

cost-effective for surveying peripheral areas far from the existing

infestations, while branch sampling was suggested for inspecting all

sites with high or moderate infestation risk. Branch sampling also

performed better in fixed-time daily surveys. For trapping to be

equally effective in multi-day surveys, traps would need to be at least

0.76–0.78 the detection accuracy of branch sampling.

More generally, our findings highlight the importance of accounting

for operational and site access constraints in survey planning process.

The omission of these details leads to overly optimistic expectations

of planned survey actions. Adding these constraints imposes spatial

restrictions on the scope and extent of the survey efforts and produces

less effective prescriptions than the theoretical prescriptions, which

do not account for routing and daily time constraints. Nevertheless,

these prescriptions offer more realistic expectations of the survey’s

outcomes.

With respect to the issue of detection methods for insect pests,

traps are often favoured by surveyors for their perceived ease of use.

This is because traps are relatively easy todeployand require less train-

ing to operate. By contrast, branch sampling requires training and some

specialized equipment to implement and identify the insect of interest.

This effort may dissuade a survey agency from selecting branch sam-

pling, even though it provides a more reliable detection of the insect

population. This is confirmed by our results, which show that branch

sampling is more effective for detecting EAB near an existing infesta-

tion, with traps deployed at a greater distance. However, only amodest

potential increase in the efficacy of traps can bring them on par with

branch sampling at detecting incipient populations. One advantage of

the branch sampling method, not considered here, is that it also pro-

vides a direct estimate of population density that can be used to inform

management decisions. For EAB, we presently do not know the effec-

tive range (i.e., the area sampled) of the traps (but see Parker, Ryall,

Aukema, & Silk, 2019) and so cannot infer the density of the population

from trap results.

Another finding that surprised us was the relatively minor differ-

ences in spatial survey patterns between the problem 2 solutions with

the new model configuration and those from the theoretical model,

which did not include routing andworking time constraints.Webelieve

this is due to the nature of the expected slippage metric in the objec-

tive function. Minimizing the expected slippage directs the model to

inspect the ’dirtiest’ sites, which are those with both the highest host

densities and thehighest risk of infestation (e.g., inWinnipeg’s river val-

leys and woodlots where failed detections would lead to greater host

loss). As a practical matter, prioritizing these ’dirty’ sites downplays the

importance of the routing and access constraints. By comparison, the

problem 1 solutions minimize the expected number of surveyed sites

with undetected infestations and so tend to survey a larger area at

lower sampling densities. Because as many sites as possible must be

inspected within a fixed time limit, site access times must be reduced

and so the optimal routing of site visits becomes critical.

More broadly, our model is applicable for planning large-scale sur-

veys and ecological sampling campaigns because it links the optimal

routing concept – which helps minimize the travel costs required to

inspect a large geographical region – with the determination of the

optimal sampling size at each site. Our results show that even in an

urban setting where the street network provides a high degree of

accessibility, accounting for optimal routing of daily surveys signifi-

cantly changes the survey pattern and its efficacy. Furthermore, the

impact of optimal routing and operational constraints is likely to be

much greater for surveys conducted across large regions of interest.
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