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Abstract

Reductions in atmospheric concentrations of greenhouse gases are urgently needed to avoid the
most catastrophic consequences of warming. Reducing deforestation and forest degradation
presents a climate change mitigation opportunity critical to meeting Paris Agreement goals. One
strategy for decreasing carbon emissions from forests is to provide developing countries with
results-based financial incentives for reducing deforestation: nearly two billion dollars are currently
committed to finance such programs, referred to as REDD+ (Reducing Emissions from
Deforestation and forest Degradation, conservation, sustainable management of forests, and
enhancement of forest carbon stocks). Countries participating in these programs must document
the uncertainty in their estimates of emissions and emission reductions, and payments are reduced
if uncertainties are high. Our examination of documentation submitted to date to the United
Nations Framework Convention on Climate Change (UNFCCC) and the Forest Carbon
Partnership Facility (FCPF) reveals that uncertainties are commonly underestimated, both by
omitting important sources of uncertainty and by incorrectly combining uncertainties. Here, we
offer recommendations for addressing common problems in estimating uncertainty in emissions
and emission reductions. Better uncertainty estimates will enable countries to improve forest
carbon accounting, contribute to better informed forest management, and support efforts to track
global greenhouse gas emissions. It will also strengthen confidence in markets for climate
mitigation efforts. Demand by companies for nature-based carbon credits is growing and if such
credits are used for offsets, in exchange for fossil fuel emissions, it is essential that they represent
accurately quantified emissions reductions.

1. Forest carbon credits and the
importance of uncertainty

Forests are a critical part of the solution to address
the global climate crisis (IPCC 2018, 2019) because
of their natural ability to remove carbon diox-
ide from the atmosphere (Turner efal 2009, Lewis
etal 2019) and the magnitude of carbon dioxide
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emissions from deforestation and forest degradation
(van der Werf et al 2009, Baccini etal 2012, Pear-
son etal 2017). One strategy for decreasing car-
bon emissions and enhancing forest carbon sinks
is to provide developing countries with results-
based financial incentives to reduce deforestation.
Nearly two billion dollars are currently commit-
ted to such programs. Unfortunately, forest carbon
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Figure 1. Payments reflect deductions for uncertainties (for details, see appendix A). (a) Hypothetical REDD+ results, with a blue
arrow showing reduction in emissions from the reference to the crediting period. (b) For ART/TREES, deductions are based on
uncertainties in the reference and crediting levels. For FCPF (c) and GCF (d), deductions are based on the uncertainty in the
reduction, calculated assuming a covariance of 0.5 between the reference and crediting uncertainties. The red portion of the bar

illustrates the deduction and the green portion is eligible for payment.

accounting is fraught with uncertainties, making it
challenging to evaluate carbon mitigation efforts in
the forest sector (Pan etal 2011). Countries par-
ticipating in these incentive programs must docu-
ment the uncertainty in their estimates along with
their claimed emission reductions or forest sequest-
ration relative to a baseline (Pelletier etal 2013,
FCPF 2016; Green Climate Fund 2017, BioCarbon
Fund 2020). This paper highlights common prob-
lems and presents solutions to strengthen uncer-
tainty estimates in forest carbon accounting. Uncer-
tainty should not be seen as a handicap; it should
be embraced as an important element of tracking
progress on addressing climate change.

The strategy to provide results-based payments
for reducing forest carbon emissions and enhan-
cing forest carbon sinks was agreed upon in a series
of decisions under the United Nations Framework
Convention on Climate Change (UNFCCC), and is
referred to as REDD+ (Reducing Emissions from
Deforestation and forest Degradation, conservation,
sustainable management of forests, and enhancement
of forest carbon stocks) (Houghton et al 2010). Cur-
rently, there are three multilateral programs—Ilargely
donor government funded—that offer such finan-
cial incentives to developing countries, including the
Forest Carbon Partnership Facility’s (FCPF) Carbon
Fund (around $900 million committed), the BioCar-
bon Fund Initiative for Sustainable Forest Landscapes
(ISFL, $360 million) and the Green Climate Fund’s
REDD+ Results-based Payments Pilot Programme
($500 million). In addition, several donor govern-
ments have provided or committed results-based pay-
ments to countries on a bilateral basis (over $2 billion
for Brazil and $1 billion for Indonesia) or through the
REDD Early Movers program (which has disbursed
EUR 234 million).

Countries seeking payments for forest-related
mitigation efforts must establish reference levels

to use as benchmarks for assessing REDD-+
performance. Currently, most countries focus on
deforestation, commonly estimating emissions based
on carbon stocks per unit area and the area of land
changing from forest to non-forest (FAO 2019). Some
countries also estimate emissions from forest degrad-
ation, and some are estimating carbon sequestration
from reforestation or forest management. Forest ref-
erence levels are usually set by calculating an historical
average level of emissions (Maniatis et al 2019) and
using this as a proxy for expected future emissions.
To date, 50 countries have submitted forest reference
levels to the United Nations Framework Convention
on Climate Change (2020).

To receive results-based payments, countries must
report how they reduced emissions below their forest
reference level. To avoid overcrediting, a conservat-
ive estimate would use values or assumptions that
are more likely to underestimate, rather than overes-
timate, emission reductions (WRI & WBCSD 2005).
Uncertainties in estimates of net emissions in the
forest sector can be quite large, making it difficult
for countries to demonstrate performance statistic-
ally distinguishable from the reference level (Grassi
et al 2008, Kohl et al 2009, FAO 2017). Most results-
based payment programs include procedures that
reduce payments to account for uncertainty in emis-
sions estimates (i.e. payments are made for a portion
of estimated emission reductions) (Angelsen 2017;
appendix A). However, to maintain incentives for
countries to continue mitigation efforts while pro-
moting honest reporting, such programs will make
payments even when uncertainties are large (figure 1).
In some cases, the goal of the penalties is simply to
encourage efforts to reduce uncertainties.

The forest reference levels submitted to date
report many uncertainties that are too low to be cred-
ible (FAO 2019). These low uncertainty estimates
could be a response to the incentive system or they
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could be due to confusion on how to calculate uncer-
tainty correctly. Regardless, improving the accuracy
and transparency of uncertainty estimates of forest
reference levels and the reporting of results (Birigazzi
etal 2019) is critical not only for the Paris Agree-
ment’s global stocktake, but also for the efficient use
of scarce financial resources and, importantly, if these
credits enter into carbon markets, to ensure that any
such offset is real.

2. Common mistakes in uncertainty
accounting

2.1. Omitting major sources of uncertainty

There are many sources of uncertainty in estim-
ates of forest carbon fluxes, some more difficult to
quantify than others (Houghton 2003). These uncer-
tainty sources include sampling error (e.g. due to
variability in point estimates within a land-use type),
measurement error (e.g. in tree diameter, height,
or wood density), model error (e.g. in regressions
describing tree allometry, such as the relationship
of biomass to diameter and height), and inaccurate
land-use classification based on remote sensing (Hill
etal 2013, FAO 2018). Omitting sources of uncer-
tainty from consideration has the effect of underes-
timating the true combined uncertainty (Picard et al
2015a).

Similarly, omitting specific carbon pools, as often
occurs because they are difficult to quantify, makes
it difficult to evaluate the importance of these pools.
There are five carbon pools in REDD+; most coun-
tries report on above- and belowground tree carbon,
but few provide information on dead wood, soils,
or litter (FAO 2019). Ironically, the usual justifica-
tion given for omitting these sources of carbon emis-
sions is that they are poorly known and difficult to
quantify, meaning that the uncertainties may be quite
large. Quantifying them would be better than ignor-
ing them, given that all the sources contribute to
the climate crisis and the shared goal is to reduce
emissions for the lowest cost. Attention to uncer-
tainty sources might reveal that efforts could be better
placed by attending to these pools and sources.

2.2. Mistakes in combining uncertainties
Combining multiple sources of uncertainty to
provide a single estimate, as is needed for country-
level carbon accounting, can be challenging (JCG-
M/WG1 2008, Couto et al 2013), in part because there
are so many ways to make mistakes (Pappenberger
and Beven P2006, Birdsey et al 2013).

One way to combine the effects of uncertain
inputs is to randomly sample from their assumed
distributions. In this approach, called Monte Carlo
simulation (for its similarity to gambling), a carbon
accounting calculation is iterated hundreds or thou-
sands of times, with the inputs varying randomly to
mimic the uncertainties in their values (Metropolis
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1987). The distribution of the resulting hundreds or
thousands of outputs reflects the net effects of the
input uncertainties.

A common mistake in interpreting this output is
to report the uncertainty in the mean or median of
that distribution as an indicator of the uncertainty in
the output (e.g. Mcmurray et al 2017). It is not, for
the simple reason that in the real world, we will not
get all the Monte Carlo trials; we will only get one
of them, and we do not know which one. Each trial
has the same chance as all the other trials of corres-
ponding to reality, as far as we know. This mistake is
a big one, typically underreporting uncertainty by a
factor of 100, because calculating uncertainty in the
central tendency (e.g. the standard error of the mean)
involves dividing the standard deviation by the square
root of the number of ‘observations, which is com-
monly 10 000 trials.

An example of this mistake is shown in figure 2,
which is based on a report submitted to the FCPF in
2019. The uncertainty reported to the FCPF should
have been 8.9 Mt yr—!, the range of the middle
90% of the distribution of Monte Carlo estimates.
Instead, the uncertainty in the median of the Monte
Carlo estimates was reported, which was very small
(0.11 Mt yr—1), because the number of estimates was
very large (10 000). To accurately characterize the dis-
tribution, it is important to make a large number
of estimates, but making more estimates does not
diminish the uncertainty. The confidence in the best
estimate (sometimes reported as the standard error of
the mean, or in this case the 90% confidence interval
around the median, obtained by sampling from the
estimates) could be made arbitrarily small by increas-
ing the number of Monte Carlo iterations, but the
90% confidence interval of the increased number of
estimates would remain just as wide.

Using the Monte Carlo approach requires defin-
ing the distributions of the inputs; commonly, in the
absence of information to the contrary, normal dis-
tributions are used, based on the standard deviation
of the observations, which may not be realistic. An
alternative to describing the distribution of the inputs
is to resample the data. This approach requires no
assumption of a distribution and is thus most true
to the measured population. The drawback to this
approach is that the representation of the population
is only as good as the data, and if the data set is small,
it may not accurately capture the range of potential
values.

An analytical approach to combining uncertainty
sources is easier to implement and avoids the mis-
take of reporting the wrong property of a distribu-
tion of Monte Carlo trials. For example, when adding
uncertain estimates, the uncertainty in the sum can
be calculated as the so-called ‘sum in quadrature’ of
the uncertainty in the inputs, a formula that can be
traced back to Gauss (1823). The uncertainty in a
sum can be estimated by squaring the uncertainties



10P Publishing

Environ. Res. Lett. 15 (2020) 124002

(a) Deforestation

R D Yanai et al

S -1
31 0.09MtCOzyr
T
8
<
oy
c S
2 ® Incorrect
g § - This country reported the
—
[ ° uncertainty in the median
I=X8 }‘—_1% of the estimates (shown in
& 7.3 Mt CO2 yr red), which depends on
0 2 4 & 8 10 Fhe ngmber of Monte Carlo
Carbon Flux (Mt CO, yr'") iterations.
(b) Forest Degradation (d) Total
o [=]
S A ] S 1
o 0.04 Mt CO2 yr 2 0.11 Mt CO2 yr
T i
= &)
2 8] & 2
T @ ——
3o g
o - o
2 & -
L
3 ‘4—1b‘ 8 -
3.8 MtCO2 yr’ 8.9 Mt COg yr™!
o T T T T T T o T T T T T
-3 -2 -1 0 1 2 -4 -2 0 2 4 6 8
-1
Carbon Flux (Mt CO; yr'') Carbon Flux (Mt CO, yr')
(c) Growth
o i
B ] 0.04 Mt CO2 yr! Correct
o The correct uncertainty
o - > f A
5 ¥ reflects the dispersion of
‘é 8 | the Monte Carlo estimates,
g i e.g., the 90% confidence
g § - interval, shown in blue.
w
S F—»‘
e
33MtCopyr! |
S -

-5 -4 -3 -2 -1
Carbon Flux (Mt CO, yr™")

Figure 2. Confidence intervals in a Monte Carlo simulation. (a) The estimated carbon emissions from deforestation over the
reference period are significantly positive, with more than 90% of the Monte Carlo estimates greater than zero. (b) For forest
degradation, the 90% confidence interval (CI), shown in blue, includes zero—we are not confident whether the net effect is
positive or negative. (c) Forest growth is clearly a carbon sink. (d) The net effect of deforestation, degradation, and growth is
highly uncertain, with 90% of the values falling between —3.3 and +5.6 megatonnes of CO2 per year. This uncertainty

(8.9 Mt yr—!) dwarfs the mean estimate of +0.8 Mt yr—!.

of the component quantities, adding them together,
and taking the square root of the sum—as long as
the uncertainty sources are independent (sometimes
they are not; see below). This approach, referred
to as Approach 1 in the IPCC guidelines (IPCC
2006), was commonly used in early submissions to
the UNFCCC. Since 2013, the Monte Carlo approach
(Approach 2 in IPCC parlance) has been required for
participation in the FCPE. Using multiple approaches
to combine uncertainties could be a good strategy for
identifying some of these common mistakes.

2.2.1. Independent vs. shared sources of uncertainty in
space

For both the analytical approach and the Monte Carlo
approach to combining sources of uncertainty, it is

4

easier to treat the various sources as independent than
to account for the relationships among them. Misrep-
resenting these relationships, either by assuming that
uncertainties are independent when they are shared,
or assuming that they are shared when they are inde-
pendent, is another common source of mistakes in
uncertainty accounting.

When combining uncertainties from multiple
land areas, treating all uncertainty sources as inde-
pendent can result in very low combined uncertainty.
For example, in 2015, one country reported a refer-
ence level for carbon emissions with an uncertainty
of only 1.5%. This calculation involved 18 forest
types, with uncertainties based only on sampling
error, which averaged 19% (and ranged from 2% to
92%). Combining values that range from 2 to 92
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to obtain a summary of 1.5 seems counterintuitive,
because we are more familiar with averaging obser-
vations than uncertainties. A weighted average of the
carbon emissions would lie between the highest and
lowest values. But the uncertainties in carbon emis-
sions, if independent, do not add directly—they sum
in quadrature—because any estimate could be either
too high or too low, and combining opposing errors
can give an answer closer to the truth. However, if the
uncertainties were shared, over- and under-estimates
would coincide, and they would sum normally.

Another report submitted in 2019 used a
national-scale sampling error of 10%, assigned
this to all the forest types, and then combined
them as if they were independent. If there were
two evenly distributed forest types, this would
give a combined uncertainty of 7% (using ana-
lytical uncertainty propagation, the square root of
the sum of squared uncertainties in this case is
V((10% x 0.5)* + (10% x 0.5)%); if there were 20
forest types, each 5% of the land area, the combined
uncertainty would be 2.2% V(20 x (10% x 0.05)°),
and so on, down to vanishingly small uncertain-
ties with very large numbers of forest types. Thus it
appears to be advantageous for uncertainty reporting
to consider as many forest types as possible.

However, these reports of small uncertainties,
although correct for sampling error alone, fail to
account for many other sources of uncertainty. Those
sources that are shared are not diminished by divid-
ing up the landscape. For example, the belowground
biomass of forests is often estimated from above-
ground biomass, using a ratio (root:shoot) measured
at another location. Measurements of root biomass
are rare, because they are costly and destructive; thus,
the same root:shoot ratio is commonly used across
many forest types, because the true root:shoot ratios
are unknown. Similarly, although forest inventory
data are collected independently across forest types,
they are usually converted to carbon stores using
common allometric relationships, tissue density, and
carbon fraction. These sources of uncertainty, which
may amount to 5%-10%, are not diminished by
applying them to multiple forest types (Martin and
Thomas 2011, van Breugel et al 2011). To the degree
that they are in error, they are in error in the same
direction in every instance, and for this reason it is a
mistake to combine them as if they were independent
(Hill et al 2013).

The two examples described above did not incor-
rectly combine uncertainties, they merely omitted
sources that should have been treated as shared. Sum-
ming in quadrature is incorrect when used to com-
bine shared uncertainties, as illustrated in a 2017
report, in which carbon emissions of 19% from the
area in rainforest and 24% from the area in meso-
phytic forest were combined to give a country-level
uncertainty of 15%. Summing in quadrature was
not appropriate for the sources that were shared,
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which included allometry, tissue density, and carbon
fraction. Rather than using addition in quadrature,
they should be combined with proper attention
to correlation among the sources, which can be
done analytically (JCGM/WG1 2008, Kirchner 2020).
Monte Carlo sampling of shared errors, such as tree
allometry, can be done correctly by assigning the
same error to all trees at each Monte Carlo trial (Yanai
etal 2010). It is easy to make the mistake of assign-
ing error independently for each observation, which
results in unrealistically small errors at large spatial
scales.

2.2.2. Independent and shared sources of uncertainty
in change over time

While shared sources of uncertainty in assessing car-
bon stocks over multiple forest types in a country give
higher uncertainty than if the sources were independ-
ent, they reduce uncertainties in change over time,
compared to independent sources of uncertainty. If,
for example, the same root:shoot ratio is used in two
successive carbon inventories, an error in that ratio
will lead to similar errors in both inventories and
thus to relatively small uncertainty in the net change
between them. Changes over time in carbon stocks
and carbon emissions are what matter to mitigating
climate change (Birdsey et al 2013).

Similarly, revisiting the same plots over time to
assess forest biomass gives a more precise estimate of
change over time, by reducing the effects of plot-to-
plot variability (Magnussen et al 2014, Mcroberts et al
2018a). Every plot on the landscape is different; thus,
if we conducted a new sample each time, this source of
variation (sampling error) would be independent at
each time. The value of resampling permanent forest
inventory plots is illustrated with data from the US
Forest Service Forest Inventory and Analysis (FIA)
Program (Bechtold and Patterson 2005) for the state
of Minnesota, USA (figure 3). A pairwise comparison
of estimates has about half the uncertainty (0.8 Mg
C/ha) of an unpaired comparison (1.5 Mg C/ha).

Other examples of correlated error over time,
besides sampling error, include allometric models.
Allometric relationships are uncertain (Chave et al
2004, Breidenbach etal 2014), as are conversion
factors such as wood density and root-to-shoot ratio.
However, although these parameters are not perfectly
known, if they are incorrect at both time periods
in the same way, they do not detract as much from
our confidence in change over time as if they were
incorrect in different ways at the two time periods
(Yanai et al 2012). For this reason, it is important
to use the same models and methods of calculation
over time (Picard et al 2015b). There is also uncer-
tainty in determining the land area undergoing trans-
itions such as deforestation or degradation, and these
uncertainties are less likely to be correlated over time
than the factors that contribute to estimates of carbon
per unit area. When maps are used to compare rates of
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Figure 3. Uncertainties in independent vs. remeasured plots. Comparing aboveground carbon from 2003 to 2018 for 1093
forested FIA plots in Minnesota, USA, results in an uncertainty (90% CI) of 1.5 Mg C/ha if plots are treated as independent
(a) but only 0.8 Mg C/ha if they are paired (b) because of the high correlation in forest biomass by plot.

change between two periods, there can be correlations
in inaccuracies in classifying land cover change, which
are commonly ignored (Muchoney and Strahler 2002,
Pontius Jr and Lippitt 2006, Sexton et al 2015). Again,
accounting for these correlations would reduce the
combined uncertainties.

2.3. Other common mistakes

We found many other types of mistakes in uncertainty
reporting. It can be challenging to handle outliers in
the data, and it is tempting to ignore them if they
indicate large uncertainties. One country omitted a
third of their forest plots because they had trees of
very large diameter, which can be common in species
with buttress roots.

In some cases, country-wide averages were based
on sparse local studies on the presumption that
country-specific observations are better, when in fact
using generalized estimates from the UNFCCC data-
base would probably be more accurate (IPCC 2006).
Local studies generally have lower variability among
plots, both because they cover a smaller area, and also
because research sites tend to be in pristine forests and
thus are not representative of forests at the national
scale. Similarly, allometric equations based on a local
sample of trees will not correctly reflect the uncer-
tainty inherent in applying them at other locations
(Chave et al 2014).

When forest biomass is estimated by remote
sensing, the uncertainty in the relationship between
measurements on the ground and remotely sensed
data is rarely included in the combined uncertainty
estimates (Hill etral 2013). Using remote sensing
can provide better coverage than forest inventory
plots, but quantifying uncertainty in remotely sensed

6

biomass is challenging (Mcroberts 2010, Stahl et al
2016) and may be complex and computationally
difficult (Mcroberts et al 2019). Another important
source of error seen with this approach is signal sat-
uration. For example, leaf area calculated from optical
satellite imagery underestimates rates of degradation
at densities above 150 tons ha=! (Steininger 2000,
Myneni et al 2001, Lu 2006), because highly veget-
ated areas look similar from space, especially in rough
terrain (Sader et al 1989, Lu et al 2012). The same is
true for radar imagery, which saturates between 30
and 300 tons ha~! of forest biomass, depending on
the band used (Luckman et al 1997, Lu 2006, Wood-
house et al 2012). This saturation results in an under-
estimate of carbon change in largely intact forest that
should not be ignored. The use of multiple types of
sensors may enable more accurate estimates of forest
density.

3. A summary of REDD+- uncertainty
reporting to date

When the first reference levels were submitted to the
UNFCCC in 2014, it was acceptable to submit estim-
ates with no quantification of uncertainty (figure 4).
Since then, standards of uncertainty reporting have
come a long way. The FCPF’s Carbon Fund requires
countries to identify sources of uncertainty, quantify
their contribution to overall uncertainty, and estim-
ate the uncertainty of their reported emissions reduc-
tions. Starting in 2019, the Green Climate Fund,
which uses UNFCCC submissions as a basis to
determine the amount of payments to countries for
REDD+ results, has required countries to provide
uncertainty estimates in forest reference levels and
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emission reductions to be eligible to receive pay-
ments (Green Climate Fund 2017). More broadly,
there is a move towards greater overall transpar-
ency, with calculations of reference levels and their
uncertainties made available to review panels and,
sometimes, also made publicly available. This
transparency makes it possible to identify mis-
takes in uncertainty accounting and recommend
improvements.

In fact, we found considerable room for improve-
ment. As of April 2020, our examination of 60
forest reference level submissions, including resub-
missions, to the UNFCCC (figure 5) and 18 Emis-
sion Reductions Program Documents to the FCPF
(which contain proposed reference levels) found that
very few correctly combined the uncertainty of indi-
vidual components to estimate overall uncertainty.
There were 19 submissions that combined uncertain-
ties by summing in quadrature, commonly reporting
a total error smaller than the individual component
errors. This result would be correct if the errors of
each component were independent, but often they are
not, as described above. At least five countries incor-
rectly reported the uncertainty in the mean or median
of Monte Carlo estimates, rather than the disper-
sion of the estimates (figure 2), resulting in reported
uncertainties as low as 0.1%.

Although countries have made efforts to dis-
cuss sources of uncertainty and account for some of
them, many sources are still omitted, which effectively
assigns them, incorrectly, zero uncertainty. Of the

7

18 countries that have submitted reference levels
to the FCPF Carbon Fund, none of them reported
measurement uncertainty in land-use change (defor-
estation, degradation, afforestation), which, admit-
tedly, is not straightforward to quantify (Mcroberts
etal 2018b). Some countries (7) quantify at least
some sources of measurement uncertainty in forest
carbon density (carbon per unit area). The most
widely quantified source of uncertainty is spatial
sampling error, with all but 1 country reporting
this for both land-use change and forest carbon
density. Ten countries accounted for uncertainty in
allometric models and carbon concentrations and
14 countries accounted for uncertainty in below-
ground biomass estimated using root-to-shoot ratios.
Finally, describing the procedures used to assure
the quality of the data (QA/QC) is accepted in lieu
of reporting measurement uncertainty: 14 countries
took this approach for forest carbon density and
7 for land-use change. Unfortunately, meeting this
requirement does not ensure that the QA/QC data
are used to improve measurements; many coun-
tries collect the information necessary to quantify
measurement uncertainty but have not analyzed the
results.

4. Suggestions for improvement

We applaud the increasing effort devoted to
uncertainty reporting, thanks in part to programs
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Figure 5. Reported uncertainties. Uncertainties in reference levels of emissions reported by 28 countries that have submitted to
the UNFCCQ, 2 of them twice. 20 additional countries submitted reports without a combined uncertainty estimate. Colors
indicate the number of types of uncertainty sources included, ranging from 1 to 5, namely, tree measurement, allometric models,
variability in forest carbon (sampling error), land-use change, and other parameters (carbon faction and root-to-shoot ratio).
Not all countries calculated and propagated uncertainty sources correctly.

that encourage or require uncertainties to be repor-
ted. As uncertainties are more correctly and consist-
ently calculated, payments will be better justified in
terms of performance and more fair in terms of pen-
alties taken (figure 1).

There is still room for improvement in the report-
ing of uncertainty. Uncertainties are often reported
without adequate discussion of the sources or recog-
nition of bias in the estimates, and the calculations
themselves are not always completely documented.
Additionally, decisions are made to ignore data that
would contribute high uncertainty without describ-
ing and justifying these decisions—or the justification
given is that the uncertainties are high.

The benefits of repeated forest inventories, dis-
cussed above (figure 3), require accurate location
of plots on the ground. Many countries have yet
to establish repeatable forest inventories, and oth-
ers are encountering difficulties with implementa-
tion, often arising from a lack of funding. Some coun-
tries have relied on GPS coordinates to identify plots,
rather than permanently marking them, resulting in
poor repeatability. Other countries have found their
plot markers to be less than permanent, especially
in heavily populated areas. Tradeoffs among multiple
inventory objectives and increasing costs may result
in decisions that increase uncertainties. For example,
FAO has suggested that permanent transect plots
250 m in length would produce better estimates of
biodiversity and land use (Saket et al 2010), but such
long transects marked at only one end have resulted

in poor overlap in remeasured areas. Finally, even well
marked plots can be impossible to revisit due to eco-
logical or political conditions. Currently, few of the
countries eligible for REDD+ payments have com-
pleted more than one inventory of permanent plots,
but more such continuous forest monitoring systems
are being developed.

Clearly, there is a need for better understand-
ing and implementation of error quantification, espe-
cially error propagation (Chave et al 2004, Yanai et al
2010, Magnussen et al 2014). Guidelines should be
more specific as to how to obtain uncertainties from
Monte Carlo simulations; the IPCC chapter on uncer-
tainties (IPCC 2006, section 3.2.3.2) specifies how
to conduct a Monte Carlo analysis but not how to
interpret the results, which has allowed the mistake
documented in figure 2. The US Forest Service Inter-
national Programs is currently supporting efforts to
provide guidance and tools for correctly calculat-
ing and reporting uncertainties through QUERCA
(Quantifying Uncertainty Estimates and Risk for Car-
bon Accounting). Conducting a survey of authors
of REDD+ reports will identify obstacles to prop-
erly estimating uncertainty; trainings and work-
shops will help to build capacity, avoid mistakes in
quantifying uncertainty, and enable better decision-
making to improve monitoring and ultimately reduce
uncertainty.

REDD+ uncertainty reporting to date has not
always received adequate scrutiny. The technical
review of submitted forest reference levels should be
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more rigorous. The reviewers may lack knowledge
of the typical levels of uncertainties that are real-
istic, as they have often accepted unrealistically small
uncertainties without comment. The review process is
more prescriptive for the FCPF Carbon Fund than for
the UNFCCC; for example, the UNFCCC technical
assessment provides only a list of ‘areas of improve-
ment’ whereas the FCPF Carbon Fund can require
that certain standards be met before a country can
proceed in the pipeline to receive payments.

Quantifying uncertainty should be embraced,
not avoided. There are many benefits of uncertainty
analysis besides meeting the requirements for
reporting on carbon mitigation efforts. Understand-
ing the effect of multiple uncertainty sources on any
estimate helps identify where best to direct monit-
oring effort towards improving confidence in those
estimates. For example, an examination of uncer-
tainty in quantifying carbon in coarse woody debris
in the US FIA program revealed that estimates of
wood density were the greatest source of uncer-
tainty, and thus investments in better measurements
of wood density would have the greatest payoff in
terms of improved estimates of this carbon stock
(Campbell et al 2019). In this vein, many submissions
to the FCPF have identified areas for improvement,
based on sensitivity analyses and an assessment of
the main sources of uncertainty, and defined work
plans to address them prior to the first monitor-
ing period (FCPF 2019). Costs as well as benefits
may be considered; the cost of reducing uncertainty
through more intensive monitoring may exceed the
benefits in carbon credit values (Kohl et al 2020).
Smarter monitoring, such as accurate location of
plots, might be achieved at lower cost than adding
more plots. Fears that uncertainties would prevent
payments for emission reductions (K6hl et al 2009)
except in the case of very high deforestation (Plugge
etal 2012) have been assuaged by programs allow-
ing high uncertainties with small payment discounts
(appendix A).

5. Conclusions

International REDD+ payment programs have
spurred investment in building the capacity of coun-
tries to inventory, monitor, and report on the extent
and state of their forests and changes in carbon
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storage and sequestration. This investment in capa-
city building is paying off (Romijn et al 2015, Neeff
and Piazza 2019). More and more countries are
including uncertainty in their reference level sub-
missions (figure 4) and using more sophisticated
methods for error propagation. These improvements
provide for better informed forest management as
well as improved confidence in the efficacy of results-
based payments.

To date, REDD+- results-based finance has largely
been through donor government payments to devel-
oping countries. However, in the past two years there
has been increasing interest by the private sector
in purchasing ‘nature-based’ carbon offsets. If these
credits are to be traded for fossil fuel emissions, they
must represent real and robustly quantified carbon
offsets. While there are other characteristics of forest
carbon credits that must be assured—such as their
permanence, avoidance of leakage, and credibility
of baseline selection (Chagas et al 2020) —correctly
quantifying the uncertainty of emission reductions is
essential to safeguarding the environmental integrity
of these assets. Investments now in better uncertainty
quantification will allow for more targeted financing
in the future to improve emission reductions and to
protect the global environment.
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Table Al. Uncertainties affect the calculation of emission reductions eligible for payment for REDD+ performance.

Program

Purpose

Uncertainty requirements and deductions

Green Climate Fund’s
REDD+ Pilot Pro-
gramme (Green
Climate Fund 2017)

FCPF Carbon Fund
(FCPF 2016) and
BioCarbon Fund ISFL
(BioCarbon 2020)

Verra’s Verified Car-
bon Standard Juris-

dictional and Nested
REDD+ (VCS JNR)

Non-market, funded
by donor govern-
ments

Market-based pilot,
funded largely by
donor governments

Market-based stand-
ard. VCS is mostly
used by the private
sector for voluntary

Information on aggregate uncertainties must be reported starting
in 2019. It is not clear whether ‘aggregate uncertainties’ refers
to the crediting period or the claimed emission reductions. The
following deductions are taken on the emission reductions that
the Fund will purchase:

e No deduction if <30% uncertainty

® 2% deduction if 30%—-50% uncertainty

® 4% deduction if >50% uncertainty

Uncertainty of the emission reduction must be calculated using a
90% CI. Based on such calculations, the following deductions are
taken on the emission reductions that the Fund will purchase:
e No deduction if <15% uncertainty
4% deduction if 15%—-30% uncertainty
8% deduction if 30%-60% uncertainty
12% deduction if 60%-100% uncertainty
15% deduction if >100% uncertainty

Verra is currently in the process of revising the JNR standard and
intends to provide more clarity on the required calculation of
uncertainty. JNR currently states that:

o Accuracy of forest versus non-forest classification shall be at

(Verra 2019) offsetting; JNR has least 75%
not yet been tested e Accuracy of indirect emission calculations shall be at least 75%
e Deductions to emission factors are applied if the 90% half-
width CI is >10% of the estimate or if the 95% half-width CI
is >15% of the estimate
The Architecture Market-based stand- Uncertainty of the emission reduction is not calculated. For both
for REDD+ Trans- ard, recently pub- the reference and the crediting period, uncertainty is calculated
actions’ The lished; TREES has not using a 90% CI and:
REDD+ Envir- yet been tested o If uncertainty is >15% for the reference level, it is reduced by
onmental Excel- the calculated percentage uncertainty —15%
lency Standard o If uncertainty is >15% for the estimated emissions during the
(ART/TREES) crediting period, such emissions are increased by the calculated
(ART 2020) percentage uncertainty —15%
e No deductions are taken if uncertainties are <15%
Uncertainty in Reference and Crediting Levels (%)
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Figure Al. Programs differ in deductions for uncertainties (for details, see appendix table A1). For ART/TREES, deductions are
based on uncertainties in the reference and crediting levels (purple x axis, above). For FCPF and GCF, deductions are based on the
uncertainty in the emission reduction (blue x axis, below). The uncertainty of emission reductions was calculated assuming a
covariance of 0.5 between the reference and crediting uncertainties. When emission reductions are low, ART/TREES deductions
are lower than FCPF or GCEF, but when emission reductions are high, ART/TREES deducts more, except at low uncertainty.
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