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A B S T R A C T   

Megafires are large wildfires that occur under extreme weather conditions and produce mixed burn severities 
across diverse environmental gradients. Assessing megafire effects requires data covering large spatiotemporal 
extents, which are difficult to collect from field inventories. Remote sensing provides an alternative but is limited 
in revealing post-fire recovery trajectories and the underlying processes that drive the recovery. We developed a 
novel framework to spatially reconstruct the post-fire time-series of forest conditions after the 1987 Black Dragon 
fire of China by integrating a forest landscape model (LANDIS) with remote sensing and inventory data. We 
derived pre-fire (1985) forest composition and the megafire perimeter and severity using remote sensing and 
inventory data. We simulated the megafire and the post-megafire forest recovery from 1985 to 2015 using the 
LANDIS model. We demonstrated that the framework was effective in reconstructing the post-fire stand dynamics 
and that it is applicable to other types of disturbances.   

1. Introduction 

Forest fire is a primary disturbance in many forest ecosystems, 
influencing succession dynamics and carbon storage (Lecomte et al., 
2006; Bowman et al., 2009). Fires that burned large areas with high 
intensity (areal extent > 100 km2, often called megafires) can cause 
abrupt changes to ecosystems and have distinctly different ecological 
effects from other fires (Bradstock, 2008; Keane et al., 2008; Stephens 
et al., 2014). Post-fire recovery is an important variable for under
standing fire effects on forest ecosystems, which is mainly determined by 
burn severity and species regeneration strategies (Johnstone et al., 
2010; Halofsky et al., 2011). Megafires often result in a heterogeneous 
mosaic of burn severities across a wide range of environmental condi
tions; consequently, the vegetational response can be complex. Seed
lings regenerated after the fire vary strongly among areas with 
contrasting burn severities due to species-specific differences in 
dispersal, seed size, shade tolerance and parent tree locations. 
Large-seeded species (e.g., Pinus spp.) have higher regeneration rates 
under partial shade, and thus have higher regeneration rates in areas 

with low or moderate severity burns, while fecund, light-seeded 
broadleaf species (e.g., Betula spp.) are wind dispersed and are more 
likely to colonize in areas with high severity burns (Greene et al., 2007; 
Johnstone et al., 2010). Megafires can also create large high-severity 
burn patches that could delay tree regeneration and prolong early 
seral conditions by limiting the reach of seed dispersal (Johnstone et al., 
2016), which may even trigger a shift from forest to shrub- or 
grass-dominated cover types due to seed limitation and climate-induced 
regeneration failure (Collins and Roller, 2013; Savage et al., 2013; 
Harvey et al., 2016). Even with similar burn severity and sufficient seed 
availability, germination and establishment can be affected by toler
ances to temperature and moisture that vary by species (Petrie et al., 
2016; Davis et al., 2018) and microsite conditions, which can influence 
the success of tree establishment and regeneration, with fewer tree 
seedlings found on harsh sites (Broncano and Retana, 2004; Bonnet 
et al., 2005; Kemp et al., 2019). The complex vegetation responses to 
megafires make assessments of post-fire recovery challenging. 

Assessment of post-fire forest recovery is traditionally completed 
with plot-based field inventories. This method can provide relatively 
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accurate and detailed measurements of post-fire plant communities, 
which can be used to quantify burn severity and recovery based on the 
time the plots were surveyed after the fire (e.g., Johnstone et al., 2004; 
Turner et al., 2016). However, field-based inventories generally cover 
small spatial extents and provide plot-based information on burn 
severity and recovery but not about the size and shape of burned patches 
(e.g., Crotteau et al., 2013). Since megafires burn large areas across a 
range of environmental gradients and a mix of burn severities, it is 
challenging to capture the heterogeneous burn severities and post-fire 
recovery patterns using field-based methods alone. In addition, forest 
inventories before and immediately after megafires, and the subsequent 
monitoring of vegetation recovery, are often lacking. These limitations 
hinder field-based approaches for assessing megafire effects and 
post-fire recovery. 

Remote sensing is effective in capturing burn severity patterns and 
monitoring post-fire vegetation recovery for megafires (French et al., 
2008; Gitas et al., 2012; Chu and Guo, 2014). Remote sensing-based 
vegetation indices such as the normalized burn ratio (NBR) (García 
and Caselles, 1991; Epting et al., 2005) and its derivatives, differenced 
NBR (dNBR) and relative differenced NBR (RdNBR) (Key and Benson, 
2005; Miller and Thode, 2007), have been widely used for detecting 
burn severity patterns (Eidenshink et al., 2007). The normalized dif
ference vegetation index (NDVI), enhanced vegetation index (EVI) and 
soil adjusted vegetation index (SAVI) have been used for monitoring 
post-fire recovery (van Leeuwen et al., 2010; Gitas et al., 2012; Vera
verbeke et al., 2012). However, a great deal of uncertainty exists when 
using these vegetation indices to assess post-fire recovery in terms of 
species composition and forest structure. Forest recovery assessments 
using vegetation indices can become complicated when different vege
tation recovery states have similar vegetation index values (Glenn et al., 
2008; Chu and Guo, 2014). For instance, young (e.g., two years 
post-fire) broadleaf forest pixels may exhibit the same NDVI value as the 
unburned coniferous forest pixels that are on a very different succes
sional stage (Idris et al., 2005; Cuevas-Gonzalez et al., 2009; Cai et al., 
2018). The limited availability of cloud-free satellite images during the 
growing season can also impede continuous assessment of post-fire 
forest recovery (Ju and Roy, 2008). In addition, remote sensing-based 
vegetation indices are limited in their ability to monitor demographic 
processes such as seed dispersal, tree establishment and mortality, spe
cies competition, and competition-caused mortality (self-thinning), 
which drive post-fire forest recovery. 

Fire-succession models have been used to understand the in
teractions between vegetation response to forest fire, including post-fire 
forest structure, composition, and diversity (Boychuk et al., 1997; 
Millington et al., 2009; Miller and Ager, 2013). However, most of these 
models lack demographic processes to capture the species regeneration 
traits. Alternatively, Forest landscape models (FLMs) spatially simulate 
forest dynamics (seed establishment, growth, competition, and succes
sion) accounting for the processes not captured by remote sensing and 
fire-succession models, and have been effectively applied to spatially 
reconstructing historical post-disturbance forest conditions (He, 2008; 
Seidl et al., 2014; Thrippleton et al., 2014). FLMs can also incorporate 
information from fire perimeters and the spatial patterns of burn 
severity derived from remote sensing as inputs (Wang et al., 2009). They 
can track the location and abundance of parent trees and seedlings when 
simulating the demographic processes that drive post-fire forest recov
ery (Wang et al. 2013, 2014abib_Wang_et_al_2013bib_Wang_e
t_al_2014a). Finally, FLMs can be calibrated and validated with forest 
inventory data (Seidl et al., 2012; Wang et al., 2014b; Luo et al., 2015). 

The 1987 Black Dragon fire, which occurred in the boreal forest of 
China, stood out due to its size and severity. The fire burned 1.3 × 104 

km2, resulted in a high degree of tree mortality, and reset forest suc
cession for most burned stands. It created opportunities to study post- 
fire forest dynamics at an unprecedented scale. In this study, our ob
jectives were to (1) present a novel framework that integrates an FLM 
with field inventory and remote sensing data to spatially reconstruct the 

burn severity of the Black Dragon fire and the post-fire time series of 
forest conditions (i.e., forest composition, structure and aboveground 
biomass) and (2) evaluate whether the reconstructed forest conditions 
could realistically capture the post-fire recovery (e.g., density and basal 
area) at the level of individual tree species under different burn sever
ities. Spatiotemporal reconstruction of the post-megafire forest condi
tion provides a platform to investigate the recovery rate and trajectories 
through model simulations and thus improve realism and reduce 
uncertainties. 

2. Data and methods 

2.1. Study area 

Our study area is located in the Great Xing ’an Mountains and en
compasses approximately 8.46 × 104 km2 (50◦10′ N, 121◦12′ E to 53◦33′

N, 127◦00’ E) in Northeast China. (Fig. 1). The area is hilly and moun
tainous (altitudes ranging from 134 to 1511 m) and falls within the 
continental cold temperate climate zone with long and severe winters 
but short summers. The average annual temperature is − 3.9 ◦C with an 
average temperature of − 33 ◦C in the coldest month (January), and an 
average temperature of 17.5 ◦C in the hottest month (July). The annual 
cumulative precipitation ranges from 400 to 500 mm. More than 60% of 
the annual precipitation occurs in the summer season from June to 
August (Zhou, 1991; Xu, 1998). Vegetation in this region is represen
tative of cool boreal coniferous forests that cover 83% of the study area. 
The canopy species composition is relatively simple. Dahurian larch 
(Larix gmelini (Rupr.) Kuzen, hereafter “larch”), a deciduous conifer, and 
white birch (Betula platyphylla Suk.), a deciduous broadleaved species, 
are dominant, covering more than 80% of the study area. Other tree 
species include the evergreen conifers, Korean spruce (Picea koriensis 
Nakai, hereafter “spruce”) and Scots pine (Pinus sylvestris var. mongolica 
Litvinov, hereafter “pine”), and the deciduous broadleaved species, 
aspen (Populus davidiana Dole and P. suaveolens Fischer), willow (Cho
senia arbutifolia (Pall.) A. Skv), Asian black birch (Betula davurica Pall., 
hereafter “black birch”), and Mongolian oak (Quercus mongolica Fisch.ex 
Ledeb.). Black birch and Mongolian oak are mainly distributed in the 
southeastern low elevation part of the study area, whereas pine is 
distributed in the northern part. 

Wildfire frequency and area burned in our study area are linked to 

Fig. 1. The location of study area and the Black Dragon fire with Landsat 5 
derived normalized burn ratio (NBR) values. The boundaries of the 10 forest 
bureaus are shown with thin black lines. 
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human disturbances and annual variations in monsoonal strength (Liu 
et al., 2012). Low intensity surface fires (mean return interval ca. 30 yr) 
were historically frequent, occasionally mixed with infrequent 
stand-replacing fires (mean return interval ca. 120 yr) in the high 
elevation regions (Xu et al., 1997). However, long-term fire exclusion 
and timber harvest have altered the fire regime, where fires are infre
quent but more intense (Chang et al., 2007). In our study area, fires 
burned 6.64 × 104 km2 from 1967 to 2005 (Chang et al., 2008; Liu et al., 
2012). One of the most noteworthy fires, known as the Black Dragon 
fire, ignited on May 6, 1987 and burned four forest bureaus (Xilinji, 
Tuqiang, Amuer, and Tahe). The Black Dragon fire resulted in over 200 
deaths and 4 billion Yuan of losses at that time, causing the most forest 
fire damage in the history of China. 

2.2. General approach 

We first reconstructed forest stand conditions in our study area 
before the Black Dragon fire (i.e., in 1985) using remote sensing and 
forest inventory data (Fig. 2). Since the remote sensing data could not 
provide detailed stand information at the pixel level across our entire 
landscape and pre-fire field inventory data were not available, we con
structed the pre-fire forest conditions following the k-Nearest Neighbor 
(kNN) stand imputation approach of Zhang et al. (2018a, 2018b). We 
used Landsat data to delineate fire perimeters and derive burn severity 
classes associated with total tree mortalities (Xu et al., 2020). With the 
pre-fire landscape as a starting point, we ‘burned in’ the Black Dragon 
fire perimeter and severity in LANDIS PRO at the fire year 1987 and 
simulated the post-megafire time series forest conditions using a forest 
landscape model (LANDIS PRO) (Fig. 2). 

LANDIS PRO has been parameterized for numerous forest regions 
under different environmental settings (Huang et al., 2018; Wang et al., 
2019). However, to ensure tree species parameters of the model (e.g., 
growth rate, available seeds, maximum stand density index, and 
maximum diameter) accurately captured the tree species in our study 
area, we used a data assimilation approach (Luo et al., 2011; Wang et al., 
2014b) that iteratively calibrated the parameters by comparing the 
simulated results at years with the respective forest inventory data 
(Fig. 2a). The calibration process was followed by validation against 
field inventory data at a later stage (2015) to ensure that forest dynamics 
under no disturbance were correctly simulated (Fig. 2a). To ensure the 

response of tree species corresponded to various burn severities, we also 
applied the data assimilation approach to calibrate fire parameters (e.g., 
height of bark charring) in LANDIS PRO to precisely constrain post-fire 
tree species recovery processes (Fig. 2b). We used the year 2000 post-fire 
inventory data for the calibration and used the year 2015 post-fire in
ventory data for model validation since these were the only post-fire 
inventory data available in the burned area (Fig. 2b). Through the 
iterative calibration and validation processes, we were able to derive the 
continuous time-series forest conditions from which post-fire forest 
landscape recovery could be analyzed spatially and temporally (Fig. 2c). 

2.3. Forest inventory data 

The forest inventory data used for model initialization, calibration, 
and results validation in this study were collected from the China 
Forestry Science Data Center (CFSDC, http://www.cfsdc.org), including 
forest plot inventory data from 2000, 2010, and 2015, and a forest stand 
map in polygons with relatively complete attributes from the early 
2000s (Fig. S1). The plot inventory data includes 5752 unburned plots 
and 1305 burned plots following the Black Dragon fire. Each plot con
tained the number of trees and diameter at breast height (DBH >5 cm) 
class by species. The forest stand map comprised 276,273 stands with 
homogeneous forest attributes (e.g., dominant tree species, stand age, 
and site index) in each stand. The data contained stand area, mean DBH, 
stand height, stand age, stand volume, tree species composition (species 
percent volume), forest origin (natural regeneration vs. afforestation), 
and management and disturbances (harvest, plantation and forest fires) 
information in each stand polygon. 

2.4. Remote sensing data 

In this study, 20 pre- and post-fire Landsat TM (Thematic Mapper) 
images (Table S1) from the U.S. Geological Survey (USGS, http://earth 
explorer.usgs.gov) were used to estimate pre-fire forest composition and 
burn severity of the 1987 Black Dragon fire. The images were processed 
by the USGS to convert from DN (digital numbers) to surface reflectance 
using the LEDAPS algorithm (Landsat Ecosystem Disturbance Adaptive 
Processing System, Masek et al., 2006). Clouds, cloud shadows, and 
snow pixels were masked using the function of mask algorithm (FMASK; 
Zhu and Woodcock, 2012). The 1980s images were processed by 
radiometric normalization based on the images from the 2000s, using a 
histogram matching method to reduce radiometric differences among 
images caused by inconsistencies of acquisition conditions. 

2.5. Pre-fire forest conditions 

Forest inventory data before the Black Dragon fire were lacking. We 
combined 2000s forest inventory data with 1980s and 2000s Landsat TM 
data to map 1980s aboveground forest biomass and tree lists (i.e., lists of 
species and diameter for every tree), following the approaches of Zhang 
et al. (2018a, 2018b). We used 2000s forest inventory data and 2000s 
Landsat TM data as the training samples to fit a nonparametric random 
forest-based kNN model for biomass and kNN and Weibull parameter 
prediction models (WPPMs) for tree lists. Then we mapped species-level 
biomass and tree lists before the Black Dragon fire at 30-m resolution 
using 1980s Landsat TM data based on the developed biomass estima
tion model and tree-lists estimation model. Thus, the pre-fire forest 
composition (Figs. S2 and S3) represents the distribution and abundance 
of tree species before the 1987 Black Dragon fire. 

Our imputation results (Figs. S2 and S3) conformed to previous 
studies and field observations. The total tree density (ranging from 400 
to 2500 trees/ha, Fig. S2) and aboveground biomass (62.4 ± 22.76 Mg/ 
ha, Fig. S3) were close to the values reported by Zhai et al. (1990), Hu 
et al. (2015), and Fang et al. (2001) for northeastern China. Moreover, 
our estimates of the species distribution (Figs. S2 and S3) were consis
tent with the environmental niches of tree species. Larch, the 

Fig. 2. The framework of reconstructing historical forest conditions and post- 
megafire recovery trajectories of density and basal area at species level. (a) 
Calibrating tree species parameters to constrain tree species growth strategies. 
(b) Calibrating fire parameters to constrain fire-caused mortality. (c) The 
outcome of the calibration and validation processes is the time-series post-fire 
forest conditions at species level. 
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representative Siberian boreal tree species, is distributed most widely 
since it can endure extremely cold winters and a short growing season, 
and it can grow in both well-drained and boggy sites due to its shallow 
roots (Xu, 1998; Kajimoto et al., 2003; Yang et al., 2014). White birch is 
also distributed widely in the area but is less adaptable to shade and 
humid environments and typically has less biomass than larch (Xu, 
1998). Aspen requires warmer temperatures and higher soil fertility and 
is negatively correlated with elevation (Xu, 1998). Scots pine has high 
tolerance of drought and low temperatures and consequently was 
mainly distributed on the sunny slopes and ridges of the northern part of 
our study area (Zhu et al., 2006). Mongolian oak and black birch were 
mainly distributed in the southeast of the area since they thrive in areas 
with higher temperatures (Xu, 1998). Spruce grows under cold envi
ronments and therefore was mainly mapped in areas of relatively high 
elevation of the northern area. Willow requires sufficient humidity to 
survive and is therefore widespread along rivers, which are fed by water 
from the glaciers and snows of the high surrounding mountains. These 
evaluations ensured the subsequent reconstructions of forest recovery 
rate and trajectories bear high realism (Temperli et al., 2013). 

2.6. Landscape model parameterization 

We used the LANDIS PRO forest landscape model to simulate forest 
landscape changes and reconstruct tree species recovery trajectories 
after the Black Dragon fire. The model tracks the number (density) of 
each tree species by age cohort (size class) at the pixel level (i.e., 100 m 
resolution in this study) and simulates species-, stand-, and landscape- 
scale processes over large spatial and temporal extents (Wang et al. 
2013, 2014abib_Wang_et_al_2013bib_Wang_et_al_2014a). We used the 
succession module in LANDIS PRO to simulate individual tree estab
lishment, growth, resprouting, and mortality at the species level, re
sources competition, self-thinning and seedling establishment at stand 
level, and seed dispersal at the landscape level. Establishment success is 
determined by species-specific biological traits, such as shade tolerance, 
and suitability to establish under the other environmental conditions 
besides shade. Mortality is determined by longevity (i.e., maximum 
lifespans), competition, and disturbances. Other landscape-scale pro
cesses (i.e., natural and anthropogenic disturbances) were simulated by 
independent modules (e.g., fire, harvesting, and fuel treatments are 
simulated using the fire, harvest, and fuel modules, respectively). Forest 
change is determined by the interactions of species-, stand-, and 
landscape-scale processes. 

We modeled the eight most common tree species, which accounted 
for approximately 95% of stand volume in this study region. Tree species 

life history attributes included longevity, age of reproductive maturity, 
shade tolerance, fire tolerance, seed dispersal distance, maximum tree 
diameter, maximum stand density index, and number of potential 
germination seeds (Table 1). LANDIS PRO does not require climate and 
soil parameters; however, it requires species establishment probability 
(SEP) and maximum growing space occupied (MGSO) by land type, 
which delineates heterogeneous landscapes into smaller but relatively 
homogeneous land type units. Within each land type unit, resource 
availability represented by the MGSO and SEP is assumed to be homo
geneous. For this study, SEP and MGSO were derived from an ecosystem 
process model LINKAGES 3.0 (Dijak et al., 2017) for each land type (see 
supplement). 

2.7. Black Dragon fire and its implementation in LANDIS PRO 

The spatial pattern and variability of burn severity strongly in
fluences vegetation response, forest structure, and post-fire successional 
trajectories (Halofsky et al., 2011). The burn severity map of the Black 
Dragon fire used in this study was extracted based on the remote sensing 
classification from a relationship between normalized burn ration (NBR) 
and composite burn index (CBI) (Xu et al., 2020). The burn severity 
explicitly accounted for different levels of tree mortality that are 
important for post-fire forest succession: unburned (no sign of fire ef
fects, NBR > 585), low severity (252 < NBR < 585), moderate severity 
(53 < NBR < 252), and high severity (NBR < 53). 

The simulation of fire is treated as a stochastic process in the LANDIS 
PRO Fire module. However, there was no guarantee that the Black 
Dragon fire would occur in 1987 in our simulation. Thus, we mimicked 
this specific fire event, and its effects using the LANDIS PRO Fuel module 
(He et al., 2004), which can deterministically specify how live fuel loads 
are reduced (corresponding to tree mortality detected for each burn 
severity class) in fuel reduction treatments. Post-fire live tree mortality 
was modeled using a logistic regression equation (Equation (1) where P 
is probability of mortality following fire, βi are model coefficients 
determining fire tolerance, X1 is tree diameter (cm), and X2 is height of 
bark charring (m) analogously for burn severity) based on previous 
studies (Woolley et al., 2012; Fraser et al., 2019). We divided our study 
area into four fuel management areas based on the four fire severity 
classes (Xu et al., 2020). Initial model coefficients for each species were 
defined based on the species fire tolerance (Fraser et al., 2019). 

P=(1 + e− (β0+β1X1+β2X2))
− 1 Equation (1)  

Table 1 
Individual tree species biological traits used in LANDIS PRO in the boreal forests of China.  

Major species Longevity 
(years) 

Maturity age 
(years) 

Shade 
tolerance a 

Fire 
tolerance b 

Maximum seeding 
distance/m 

Maximum 
DBH/cm 

Maximum stand 
density (trees/ha) 

Potential 
germination seeds c 

Larch (Larix gmelinii) 300 20 2 4 150 55 600 10 
Scots pine (Pinus 

sylvestris) 
250 25 2 3 200 60 560 20 

White birch (Betula 
platyphylla) 

150 15 1 3 2000 30 690 30 

Aspen (Populus 
davidiana) 

120 10 1 4 2000 50 680 30 

Spruce (Picea 
koraiensis) 

300 30 4 3 150 60 520 10 

Willow (Chosenia 
arbutifolia) 

250 12 2 5 2000 50 780 20 

Black birch (Betula 
davurica) 

150 15 2 3 800 50 750 25 

Mongolian oak 
(Quercus 
mongolica) 

300 20 3 5 200 95 600 20 

Species data were obtained from the Scientific Database of China Plant Species (http://db.kib.ac.cn) and previous studies (Li et al., 2013; Luo et al., 2015). a, b 

Shade/fire tolerance classes 1–5: 1 = least tolerant, 5 = most tolerant. 
c Mean number of potential germinating seeds produced/mature tree/year. 

W. Xu et al.                                                                                                                                                                                                                                      
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2.8. Model calibration and results validation 

Forest inventory data in unburned area were available for years 
2000, 2010, and 2015. The 2000, 2010 data were used to calibrate tree 
species parameters while the 2015 data were used to validate the 
simulated results. Forest inventory data in burned areas were only 
available for years 2000 and 2015. The 2000 data were used to calibrate 
fire parameters and the 2015 data were used to validate the simulated 
fire effects (Fig. 2a and b). Only simulated trees with DBH >5 cm and 
forest inventory data that were in the study areas with no evidence of 
disturbance (e.g., logging, insects, disease, and fire) after 1987 were 
used in the calibration and validation processes. 

Model fit can be assessed using the difference between the simulated 
results and true values, while overfitting can result in deterioration in 
prediction accuracy (Lever et al., 2016). In this study, to calibrate tree 
species parameters, we iteratively adjusted the age-DBH relationship 
and available seeds for each species by land types until the differences 
between simulated density and basal area by species and the forest in
ventory were not significant (no differences based on a one-way analysis 
of variance (ANOVA) test (p > 0.05)) at 2000 and 2010, to ensure that 
the these parameters realistically represented the actual forests in our 
study area. We validated the simulated results at the landscape scale by 
stratifying the simulation results and forest inventory data into sub
ecoregions based on the ecoregion classification of Xu (1998) and soil 
types (Fig. S4), because resource availability and species assemblages 
were relatively homogeneous within a subecoregion and heterogeneous 
among subecoregions in LANDIS PRO for undisturbed forests. Specif
ically, we compared the simulated mean basal area and tree density of 
all cells to the observed mean values of all plots for each subecoregion in 
2015 by using paired t-test to evaluate the overall accuracy, and the 
square of the Pearson correlation (R2) and root mean square deviation 
(RMSD) for each species. RMSD was based on squared simulation errors 
and thus was sensitive to outliers. 

To calibrate fire parameters, we iteratively adjusted fuel model co
efficients for each species fire tolerance class and height of bark charring 
for each burn severity until the comparison between simulated density 
and basal area by species and the forest inventory data passed the sig
nificance test (no differences based on an ANOVA test (p > 0.05)) at 
2000. We validated the simulation results for each burn severity class at 
site scale by extracting simulated results from raster cells corresponding 
to the forest inventory plot locations, because heterogeneous post-fire 
tree species recovery patterns overrode environmental heterogeneity 
delineated by subecoregion. Specifically, we compared basal area and 
tree density within extracted raster cells with observed values in in
ventory plots for each burn severity class at 2015 by using two sample t- 
test to evaluate the accuracy of simulated post-fire recovery. All statis
tical analyses were performed using R statistical software (R Core Team, 
2015). 

2.9. Post-fire tree planting simulation 

Large-scale tree plantings in the years immediately after the fire were 
implemented in each Forest Bureau. Thus, we simulated planting using 
the LANDIS PRO Harvest module (Fraser et al., 2013). The planting 
management units in this study were constructed based on the burn 
severity map of the 1987 Black Dragon fire, Forest Bureau boundaries, 
and harvest management units to capture the variation in planting 
practices across the region. We parameterized the percent area and 
number of trees planted every two years for each management unit 
based on forest management records from the China National Forest 
Inventory third tier data (http://www.cfsdc.org) and previous studies 
(Yang et al., 1998; Chen et al., 2014). Only coniferous species of larch 
and Scots pine were planted in the high burn severity area (70% larch +
30% pine) with a regular plant spacing (1.5 m × 1.5 m or 1.5 m × 2 m) 
according to field conditions (Chen et al., 2014). By the end of the 1990s, 
less than 10% of the burned forests were managed with planting (Yang 

et al., 1998). 

3. Results 

3.1. Results validation 

Model simulations showed high agreement in the magnitude and 
time of observed basal area and density from unburned forests at the 
landscape scale (paired t-tests, p > 0.05). R2 (>0.8) is high and RMSD is 
low for both basal area and density for all species (Fig. 3). The com
parisons of different species demonstrated that dominant tree species 
(larch and white birch) had relatively higher accuracy than other spe
cies. The simulation accuracy for tree density was higher than for basal 
area because the density in the model was largely determined by a single 
parameter (available seeds), while the basal area was affected by the 
species age-DBH relationship that introduced additional uncertainties 
into estimation. Overall, our results indicated that the simulated forest 
development was consistent with the actual forest dynamics, and 
simulated density had higher accuracy than simulated basal area. 

Comparison between simulated data and observed data showed that 
post-fire forest composition and structure closely represented the real 
forest composition and structure at different burn severity classes in 
2015 (for all species and severities, two sample t-test, p > 0.05) (Fig. 4). 
Our results indicated that the simulated post-fire forest development 
captured current forest composition and structure after the Black 
Dragon fire and thus the simulated fire-caused tree species mortality 
could be close to the real tree species mortality of the Black Dragon fire. 

The observed and simulated density of conifer and broadleaf species 
in burned areas showed similar patterns in relation to distance to live- 
tree edges (trees mortality rate < 90% by the Black Dragon fire) 
(Fig. 5). Post-fire conifer density showed a decline with increasing dis
tance to the live tree edge and was almost absent in the interior of high 
burn severity patches in 2015 (Fig. 5a). Post-fire broadleaf density was 
high across the whole high severity area and had an opposite trend of 
density versus distance relationship compared with conifer species 
(Fig. 5b). The self-thinning among competing trees led to a decrease in 
tree density near seed sources. The evaluation results increased our 
confidence in the ability of the calibrated LANDIS PRO model to explore 
the long-term fire effects and post-fire forest recovery. 

3.2. The Black Dragon fire effects and post-fire forest recovery trajectories 

Tree mortality and post-fire recovery varied greatly among burn 
severities and tree species (Fig. 6 and S5). Mortalities of conifer and 
broadleaf species were both positively related to burn severity and were 
very high in areas with moderate and high burn severity (Fig. 6a and b). 
Approximately 50%–90% of conifer and almost 100% of broadleaf stems 
died in areas of moderate and high burn severity. Nevertheless, 
recruitment of broadleaf trees was abundant in moderate and high 
severity burned areas. The post-fire density of broadleaf species gradu
ally increased over the first 12 years, then sharply peaked between 2005 
and 2010 (12,000 and 10,000 trees/ha), and finally decreased to 10,000 
and 7000 trees/ha by 2015 in high and moderate burn severity areas, 
respectively. The changes in density, basal area, and biomass over time 
in unburned and low severity areas were not significant (Fig. 6b). The 
post-fire density of conifer species showed a low rate of increase 
compared to broadleaf species (Fig. 6a). The post-fire basal areas of 
conifer and broadleaf species both showed increasing trends throughout 
the simulation years under all burn severities (Fig. 6c and d). For 
broadleaf species, the basal area has recovered to, and even exceeded 
pre-fire levels, although aboveground biomass always remained lower 
than pre-fire levels (Fig. 6c–f). For conifer species, both basal area and 
biomass remained below pre-fire levels, but the recovery rate in low 
burn severity was fastest (Fig. 6c and e). With time, the percentage of 
coniferous species decreased in high and moderate severity burned 
areas, but no significant changes occurred in low severity and unburned 
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areas (Fig. 7a). The percent of coniferous species in high and moderate 
severity burned areas was far less than the value in unburned forests at 
2015, but the edges of these burned patches showed a composition re
covery sign with larger conifer percentages than the interior (Fig. 7). 

4. Discussion 

We presented a spatially explicit framework to reconstruct post- 
megafire forest recovery through integrating a forest landscape model 
(FLM) and remote sensing and field inventory data. Reconstruction re
sults showed that burn severity affected the relative dominance of 
broadleaf vs. conifer species in burned stands with probable effects on 
subsequent canopy dominance. In high severity burned areas, broadleaf 
species (e.g., white birch) rapidly emerged despite the large burn size, 
while regeneration of coniferous species (e.g., larch) was minimal in the 
interior of the burned patches. This pattern matches expectations 
because white birch can rapidly regenerate either by resprouting from 
stumps or roots that survived fires or by long distance seed dispersal (e. 
g., >1000 m). However, the regeneration of larch depends on the seeds 
from surviving trees and a relatively short seed dispersal distance (<400 

m) (Xu, 1998). Thirty years after the megafire, the broadleaf species 
fully recovered, and white birch stands went into the self-thinning stage 
in the interior of the high severity burned area as the newly established 
trees matured. However, coniferous species were still in the initial stand 
development stage. In contrast, more conifers than broadleaf species 
regrew in the low-severity burned areas, where canopies provided 
suitable conditions for the relatively more shade-tolerant conifers and 
where sufficient seeds from surviving trees had a higher chance to reach 
fire-released areas in the low-severity burned patches. The comparison 
of pre- and post-fire tree composition in the burned patches indicated 
that self-replacement succession was likely to occur in areas that burned 
with low severity, whereas high severity burned areas are more likely to 
shift forest successional trajectories away from conifer self-replacement 
to pathways with greater broadleaf dominance, a finding that is reported 
in other post-fire studies (Johnstone and Chapin, 2006; Johnstone et al., 
2010; Cai et al., 2013). Our reconstructed trajectories of post-megafire 
forest recovery were well supported by known data and empirical 
knowledge of forest stand development after large-scale disturbances 
(Oliver et al., 1996; Turner et al., 1998; Kurkowski et al., 2008), sug
gesting that our model framework is effective in spatially reconstructing 

Fig. 3. Scatterplots of simulated versus forest inventory density (a) and basal area (b) of eight species at the landscape scale in 2015 (n = 21). The black line is the 
regression line and the grey shaded area represents 95% confidence intervals. RMSD: root mean squared deviation. 
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Fig. 4. Comparison of simulated tree species density (a) and basal area (b) with inventory data by burn severities of the Black Dragon fire at 2015. Error bars are 
marked as ± 1 standard deviation (n = 584, 366, and 355 for low, moderate, and high severity area, respectively). 

Fig. 5. Post-fire 28-year coniferous (a) and broadleaf (b) density in high burned area as a function of Euclidean distance to 1987 live-tree edge (trees mortality rate <
90%) after the Black Dragon fire. The black lines are simulated means and grey lines are ±1 standard error (SE). The points are observed values from field in
ventory data. 

Fig. 6. Tree species recovery trajectories over time for each burn severity following the 1987 Black Dragon fire: the trajectories of conifer species recovery in density 
(a), basal area (c), and biomass (e), and broadleaf species recovery in density (b), basal area (d), and biomass (f) from 1985 to 2015. 
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post-megafire historical forest conditions. 
Validating simulation results from FLMs is critical in quantifying the 

reliability and credibility of landscape reconstructions. Our framework 
of reconstructing the spatiotemporal history of post-megafire forest 
conditions provided not only the spatial pattern and dynamics at the 
landscape scale, but also detailed stand attributes such as basal area, tree 
density, and age classes by species. We validated the simulated stand 
attributes with the contemporary inventory data. Our simulated tree 
mortality rates were close to the estimates of tree mortality rates from 
field inventories within different burn severity classes of the Black 
Dragon fire (Luo, 2002). The simulated post-fire density and biomass 
were comparable to the field observations reported by Wang et al. 
(2001), Wang et al. (2003), and Hu et al. (2016) for the same fire and 
other post-fire studies in boreal forests after similar recovery periods 
(Johnstone et al., 2004; Alexander et al., 2012; Cai et al., 2013). Our 
validation results from current forest inventory data demonstrated the 
calibrated model performed well and ensured that the model was a 
reasonable and reliable platform for subsequent applications to quantify 
the effects of megafires on forest composition and landscape succession. 

A notable benefit of our framework is that, once calibrated, the 
model is highly scalable and can be applied to filling the gaps where 
inventory data are not available to assess recovery trajectories across the 
whole landscape. This method offers an approach to augment traditional 
uses of forest inventory data in post-fire studies. Our approach realisti
cally captures the heterogeneity of post-fire recovery process in both 
time and space (Figs. 5 and 6, S5). In contrast, forest inventories, when 
applied alone, have generally focused on fixed plots or time periods and 
on describing entire landscapes, which limit their ability to constrain the 
impacts of heterogeneity on timber volumes and carbon stocks (e.g., 
Kashian et al., 2005). Furthermore, inventory approaches can suffer 
from biased sampling design. For example, Wang et al. (2001) and Hu 
et al. (2016) conducted studies near the live-tree edges due to the 
logistical limitations, observed a higher biomass recovery than we did in 
this study, and thus overestimated the post-fire recovery status. They 
assumed that the mature forests were representative of the forests in this 
region prior to the 1987 fire. However, through historical forest condi
tions reconstruction, we found that pre-fire forests in this area were 
younger than Wang et al. (2001) and Hu et al. (2016) assumed, because 
forests in this region were affected by historical harvesting and fires, 
which resulted in relatively young stands with most trees between 40 
and 60 years old. These studies may have overestimated pre-fire forest 
biomass and consequently biomass loss due to the Black Dragon fire, 
while our simulated biomass loss was closer to the estimated values from 
the traditional bottom-up method (Xu et al., 2020). This highlights the 
importance of our approach that reconstruction of the entire historical 
landscape reduced the biases from field sampling. 

This framework can be applied to assess the legacy effects of a 
megafire over long time periods (i.e., decades to centuries). While pre
vious empirical and field-based studies documented legacy effects (e.g., 
Downing et al., 2019), such effects can persist for decades to centuries 
(Seidl et al., 2012) and thus require long-term assessment. Our 

framework can be further applied to projecting how forest landscapes 
respond to future megafires, which are expected to increase under 
warming climate and increased fuel accumulation from fire exclusion 
policies (Chang et al., 2007; Flannigan et al., 2009; Liu et al., 2012). 

Our framework can also be used to examine alternative management 
and disturbance scenarios. Managers could use the framework to eval
uate forest resistance, rate of recovery, and the time to return to pre- 
disturbance states after megafires under various management and 
climate scenarios as well as to study the effect of alternative manage
ments on mitigating future megafire risk. For example, reforestation is 
increasingly used to assist forest restoration and improve resilience, 
especially under warming climate as conifer forests will be increasingly 
regeneration limited with intensifying fire regimes (Hof et al., 2017; 
North et al., 2019). Different reforestation strategies (e.g., planting in
tensity and spatial assignment) can be evaluated with FLMs (Wang et al. 
2006a, 2006bbib_Wang_et_al_2006abib_Wang_et_al_2006b). Re
searchers can also use this framework to evaluate the response of forest 
landscapes to other forest disturbances such as drought, insect, and 
harvest under different environmental settings. 
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