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Abstract
Crown widths of woody plant species growing in urban areas are of considerable importance as an overall indicator of health and
also serve as an important factor for assessing leaf area and associated ecosystem services, such as carbon sequestration, air
pollution removal, air temperature cooling, and rainfall interception. Unfortunately, assessing crown widths in urban environ-
ments is often challenging and time consuming. To help reduce data collection costs and provide consistency over time, models to
predict crown widths for urban-grown species were developed using data from 49 cities across the U.S. and Southern Canada.
The effort consisted of fitting mixed models for 29 species groups that encompassed 964 species. Cities were considered a
random effect and were statistically significant for 22 of the 29 groups. The need for urban-specific crown width models was
demonstrated via examination of prediction biases found when applying crown width models based on forest grown trees, where
under-prediction up to about 20% was found for the same species growing in urban areas. Application of the models was
evaluated by using crown width predictions instead of observed values for calculations of crown leaf area. Mean percent
differences in leaf area were about ±10% across most species groups. Further improvements to national-scale urban crown width
models should be pursued as additional data become available via i-Tree, Urban FIA, and possibly other sources where data
collection protocols are compatible.
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Introduction

As forest inventories of urban areas become more common-
place, much research is needed to understand phenomena that
have only previously been studied in forested settings. Crown

characteristics of forest trees, for example, have been actively
studied due to their high correlation with tree growth (Chen
et al. 2017; Leites et al. 2009), likelihood of mortality
(Bussotti and Pollastrini 2017; Morin et al. 2015), probability
and behavior of crown fire (Hevia et al. 2018; Mitsopoulos
and Dimitrakopoulos 2007), and functional benefits such as
air pollution removal (Nowak et al. 2014; Smith 1990). In
urban settings, tree crown measurements of woody plant spe-
cies (hereafter referred to as ‘trees’ for simplicity) are primar-
ily used to assess crown size and leaf area, and consequent
ecosystem services such as carbon sequestration, air pollution
removal, air temperature cooling, and rainfall interception
(Willis and Petrokofsky 2017; Kardan et al. 2015). Urban
corollaries to typical uses of crown information from forested
trees include prediction of individual-tree growth and mortal-
ity (Nowak et al. 2008; Vogt et al. 2015). Thus, assessments of
crown dimensions and condition play a pivotal role in under-
standing tree functional processes and their interaction with
urban environmental conditions.

As with forest-grown trees, urban tree crown attributes are
heavily influenced by their local environment. Crown width is
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one important and common tree measurement found in urban
forest inventory protocols. Key factors affecting crown width
include amount of growing space (Pretzsch et al. 2015) and
water/nutrient availability (Gaudio et al. 2017). In forested
micro-environments, these factors are primarily constrained
by competition from neighboring trees (Sharma et al. 2016;
Bragg 2001). Growing space for urban trees may also be af-
fected by nearby trees, as well as buildings and other above-
ground formations that place limitations on light availability
(Tan and Ismail 2015). These factors, along with surface and
below-ground conditions, likely also play a role in water and
nutrient availability that affect tree growth (Clark and
Kjelgren 1990; Berrang et al. 1985). Tree crowns in urban
areas may also be subjected to manipulations such as pruning
or other types of damage that produce crown sizes not strictly
controlled by natural ecophysiological processes (Fini et al.
2015; Christie and Hochuli 2005).

Despite the numerous factors that affect crown width, sta-
tistical models can be developed that predict crown width
using tree attribute information. As may be expected, efforts
have traditionally focused on forest-grown trees where vari-
ables such as tree diameter, total height, height-diameter ratio,
height to crown, and crown ratio have been shown to be im-
portant predictors (Sharma et al. 2016; Fu et al. 2013;
Bechtold 2003). Some models specific to crown width predic-
tion for urban trees have also been presented, with tree diam-
eter being the primary predictor variable (Pretzsch et al. 2015;
Troxel et al. 2013; Peper et al. 2001). The use of additional
predictor variables has produced mixed success, with some
evidence that outcomes may be species-dependent (Blood
et al. 2016). In the U.S., McPherson et al. (2016) developed
crown width models for street trees using tree diameter as the
sole predictor from data encompassing 171 species across 17
cities. However, much additional urban tree data exists from
across the urban landscape to allow for considerable expan-
sion of both species inclusion and spatial resolution in model-
ing efforts. Specifically, the objectives of this study are: 1)
develop crown width prediction models applicable to most
woody species in urban environments of the U.S., 2) establish
appropriate uncertainty statistics in light of inconstant vari-
ance and correlated observations, 3) account for species group
and city location effects in model calibration, and 4) evaluate
the use of model predictions in calculations of urban tree leaf
area.

Methods

Data

The data used in this study arise from two sources. The data
are primarily (80%) composed of measurements taken in ur-
ban inventories following i-Tree protocols (Nowak et al.

2008; i-Tree 2019). Typically, data are collected within ran-
domly located circular plots having a11.34 m radius. Site
measurements include vegetation and other ground cover
types, as well as land use characteristics. On each plot, woody
plants with a minimum stem diameter of 2.54 cm at a height of
1.37 m are recorded as trees. For each tree, species, diameter,
height, crown width, height to crown, crown light exposure,
and amount of missing crown are recorded (i-Tree 2019).

Additional data (20%) arise from urban inventories initiat-
ed by the Forest Inventory and Analysis (FIA) program of the
U.S. Forest Service during 2014–2017. The plot design con-
sists of a primary circular plot of 14.63 m radius, within which
are four microplots having 2.07 m radius located in each car-
dinal direction at 3.66 m from plot center (Fig. 1). A myriad of
site-level data are collected, such as land use, canopy cover,
vegetation cover, and surface cover (U.S. Forest Service
2017). Sample trees having diameter (breast-height or root-
collar depending on species) ≥ 12.70 cm were tallied on the
primary plot; whereas sample trees with diameter ≥ 2.54 cm
and < 12.70 cm are recorded on microplots. Tree-level data
collection includes measurements of species, diameter, height,
crown width, crown ratio, crown light exposure, and crown
dieback (U.S. Forest Service 2017).

The i-Tree and Urban FIA data were combined to provide
information covering 49 cities across the conterminous U.S.
and southern Canada (Fig. 2). The Canadian cities of Calgary
and Toronto were included because of their close proximity to
the U.S. border. Due to the large number of species present
(964), species groups that generally reflect those developed by
the FIA program (U.S Forest Service 2015) were used to fa-
cilitate analysis (Online Resource 1). A summary of the 29
species groups is given in Table 1.

A limitation of the combined data is that only variables
collected and having identical definition in common to both
sources can be utilized. As will be discussed in the subsequent
section, the primary variables that were ultimately of interest
in this study were crown width, diameter, and total height.
Distribution statistics for these variables by species group
are shown in Table 2.

Analysis

There were few variables in common to both data sources.
Apart from the primary variables crown width, diameter, and
height, the only relevant tree-level variable for consideration
in model development was crown light exposure (CLE, U.S.
Forest Service 2017). CLE describes the amount of sunlight
the crown receives as categorized by 6 levels ranging from
no light to full light (open grown). It was also possible to
ascertain if a tree was measured in an area that was consid-
ered to function as a forest (FOR, U.S. Forest Service 2017).
In these cases, it might be expected that trees would have
characteristics similar to those growing in rural forest
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Fig. 2 Map of cities in the U.S. and southern Canada where urban forest inventories were conducted using i-Tree or FIA Urban protocols

Fig. 1 Urban plot design used by the FIA program
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landscapes. For both CLE and FOR, inclusion in a regression
model requires indicator (0,1) variables.

Initial model development proceeded by evaluating the
predictive ability of DIA and HT due to their common
availability in many urban tree inventories. Evaluation of
correlations between these variables and CW suggested a
linear model would adequately describe the relationship.
As forestry is more complex than rocket science
(Bunnell 1999), it was surmised that more intricate phe-
nomena may be present than those accounted for by sim-
ply using DIA and HT as individual predictor variables. A
typical exploration would include an interaction term in
the model as well, i.e., DIA*HT. Further, crown charac-
teristics can also be correlated with tree size relationships

in the form of bole taper (Valentine and Gregoire 2001);
which suggested inclusion of a taper-based metric such as
DIA/HT. To facilitate a linear relationship between DIA/
HT and CW, a natural logarithm transformation was used.
In summary, the model was specified as:

CWjk ¼ β0 þ β1DIAjk þ β2HTjk þ β3DIAjk*HTjk

þ β4log
DIAjk

HTjk

� �
þ ∈jk ð1Þ

The model components are CWjk = crown width (m) in
city j for tree k, HTjk = total height (m), DIAjk = diameter
(cm), log = natural logarithm, ∈jk = random error, and β0 –
β4 = estimated parameters. Further refinement of the model

Table 1 Species group summary
showing number of species and
dominant species information for
urban inventories in 49 cities (Fig.
2). The star (*) designation indi-
cates the subgroup having diame-
ter measured at root-collar

Dominant species by frequency

Group Description # spp Species code Common name % of group

1 Loblolly and shortleaf pines 2 PITA loblolly pine 99.7%

2 Other yellow pines 9 PIVI2 Virginia pine 68.4%

3 Eastern white pine 1 PIST eastern white pine 100.0%

4 Spruce and balsam fir 6 PIRU red spruce 80.6%

5 Eastern hemlock 3 TSCA2 Carolina hemlock 99.1%

6 Other eastern softwoods 92 TSME mountain hemlock 20.6%

7 Woodland softwoods 16 PIMOF Arizona pinyon pine 98.1%

7* Woodland softwoods 5 PIED common pinyon 99.6%

8 Select white oaks 6 QUMU chinkapin oak 82.3%

9 Select red oaks 8 QULA Lacey oak 82.1%

10 Other white oaks 8 QUOG Oglethorpe oak 75.5%

11 Other red oaks 11 QUVE black oak 34.8%

12 Hickory 20 CACA38 S. shagbark hickory 16.1%

13 Hard maple 6 ACLE chalk maple 88.6%

14 Soft maple 2 ACSA2 silver maple 62.9%

15 Beech 1 FAGR American beech 100.0%

16 Sweetgum 1 LIST2 sweetgum 100.0%

17 Tupelo and blackgum 1 NYSY blackgum 100.0%

18 Ash 9 FRBE Berlandier ash 66.6%

19 Cottonwood and aspen 17 PONI Lombardy poplar 68.2%

20 Basswood 4 TIAMC Carolina basswood 98.3%

21 Yellow-poplar 2 LITU yellow-poplar 99.9%

22 Black walnut 1 JUNI black walnut 100.0%

23 Other eastern soft hardwoods 54 MEQU melaleuca 17.5%

24 Other eastern hard hardwoods 21 ULTH rock elm 25.5%

25 Eastern noncommercial hardwood 143 PEAM3 avocado 19.7%

26 Woodland hardwoods 18 RONE New Mexico locust 80.0%

26* Woodland hardwoods 7 COHO Bluewood 74.2%

27 Tropical/subtropical hardwoods 259 YUAL aloe yucca 17.9%

28 Urban-specific hardwoods 215 ZACL Hercules’club 8.9%

29 Urban-specific softwoods 26 TACU Japanese yew 53.3%
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was attempted by adding FOR and CLE variables as de-
scribed earlier; however, the anticipated improvements in
model performance were not realized and the model
shown in [1] was chosen as an appropriate balance of
parsimony and prediction accuracy. Examination of the
variability of the random errors (∈jk) in [1] indicated that
heteroscedasticity was present; particularly in the form of
increasing variance with increasing tree size. The variance
increase appeared to be linear with respect to both DIA
and HT such that the error distribution could be adequate-
ly described by:

∈jk≈N 0;σ2
e

� �
≈N 0; θ0 þ θ1DIAjk þ θ2HTjk

� � ð2Þ

where N(0, σ2
e) indicates a normal distribution with mean

0 and variance σ2e; θ0 – θ2 = estimated parameters.
Models [1] and [2] were used as the basis for a

mixed-effects model formulation to account for correlat-
ed observations within species groups and individual
cities (Gregoire and Schabenberger 1996). The inclusion
of random effects parameters also allows for customized
calibration for different cities within the species groups.
An important consideration when developing mixed
models is the placement of the random parameters.
After considerable experimentation and examination of
regression analysis outcomes, the overall model provid-
ing the best fit to the data was specified as:

Table 2 Sample size and summary statistics for crown width (CW, m), diameter (DIA, cm), and total height (HT, m) attributes for 29 species groups
across 49 cities. DIA is measured at root collar for groups 7* and 26*; all others at breast height (1.37 m)

Minimum Mean Maximum Standard deviation

Group n CW DIA HT CW DIA HT CW DIA HT CT DIA HT

1 1168 0.3 2.5 1.2 4.9 24.7 15.6 16.8 86.4 33.5 2.6 13.5 6.2

2 215 0.3 1.5 0.9 6.4 28.2 12.1 17.1 68.6 40.2 3.2 15.7 8.0

3 545 0.9 2.5 1.8 5.3 25.6 12.8 18.0 94.5 32.0 3.2 17.9 8.0

4 284 0.3 1.0 0.3 3.7 18.6 7.3 10.8 63.5 28.7 2.3 13.4 5.0

5 316 0.5 2.5 1.8 4.7 21.3 9.9 16.5 91.4 29.0 2.7 16.1 6.3

6 3114 0.3 0.5 0.3 3.6 17.0 7.3 15.1 154.9 45.7 2.4 14.7 4.9

7 1112 0.3 2.5 0.5 4.2 21.5 6.8 31.9 137.7 19.2 2.1 10.1 2.1

7* 2120 0.3 2.8 1.5 4.1 21.0 6.6 21.5 137.7 15.5 1.8 9.6 1.9

8 896 0.3 2.5 1.8 7.8 30.2 14.9 27.6 131.0 45.1 5.2 24.6 8.4

9 1212 0.3 1.8 1.8 7.7 29.8 14.9 29.9 170.2 50.1 4.6 23.0 7.9

10 1228 0.6 2.5 1.8 7.3 28.9 10.4 28.0 170.2 30.5 3.9 17.4 4.5

11 1150 0.6 2.5 1.8 7.6 29.9 15.2 30.6 138.7 38.0 4.5 21.8 7.0

12 764 0.3 2.5 2.3 6.1 19.9 13.0 26.8 133.3 39.6 3.7 16.7 7.1

13 1431 0.3 2.4 1.5 6.6 22.4 10.2 36.4 109.2 32.3 3.9 18.1 5.1

14 3322 0.3 1.8 0.9 6.1 19.7 12.5 24.4 114.3 35.1 3.5 16.8 6.3

15 735 0.6 2.5 0.6 6.2 16.7 11.2 25.5 127.0 35.4 3.9 20.1 7.7

16 1272 0.3 2.5 1.8 4.8 18.8 13.4 19.5 101.6 37.5 3.0 14.0 6.7

17 457 0.8 2.5 1.5 4.9 14.3 10.3 22.9 69.1 29.0 2.9 11.8 6.2

18 2151 0.3 0.3 0.3 5.4 19.8 10.9 34.0 104.4 36.0 3.5 15.7 5.6

19 2217 0.3 1.5 0.5 2.9 11.7 8.2 24.4 109.5 32.9 2.6 12.4 5.5

20 344 0.3 2.5 0.3 5.5 21.0 10.6 18.3 104.4 30.5 3.7 20.1 5.9

21 684 0.3 2.5 0.9 7.9 33.7 20.2 25.0 132.1 43.6 4.9 27.3 10.7

22 335 0.6 2.5 2.4 7.5 26.4 13.5 23.8 99.8 30.2 4.2 17.1 6.3

23 8784 0.3 0.5 0.8 5.3 17.9 9.9 31.1 180.3 45.1 3.4 15.4 5.4

24 3846 0.3 0.8 0.9 5.3 17.0 8.8 27.6 119.4 39.6 3.4 15.7 5.4

25 5091 0.3 0.5 0.9 4.8 16.3 9.1 24.4 258.1 46.0 3.2 16.0 5.9

26 95 0.3 4.6 1.8 4.6 21.6 7.6 16.6 94.5 26.9 3.0 14.4 4.3

26* 356 0.3 2.8 1.5 5.0 20.5 6.4 14.3 70.6 13.4 2.9 11.4 2.5

27 1097 0.3 2.5 0.5 4.2 17.8 6.6 17.7 159.1 32.0 2.5 17.1 4.3

28 4180 0.3 0.5 0.5 4.5 16.0 6.9 33.1 180.0 81.4 3.4 17.8 4.7

29 105 0.3 2.5 0.3 2.3 12.1 4.6 10.6 55.9 16.5 2.3 11.3 3.4
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CWjk ¼ β0 þ ψ0 jð Þ
� �

þ β1 þ ψ1 jð Þ
� �

DIAjk

þ β2 þ ψ2 jð Þ
� �

HTjk þ β3DIAjk*HTjk

þ β4log
DIAjk

HTjk

� �
þ ∈jk ð3Þ

where ψm jð Þ≈N 0;σ2
ψm

� �
σ2
e ¼ θ0 þ θ1DIAjk þ θ2HTjk ð4Þ

ψm(j) are random effect parameters for subject city j¸which
are assumed to be normally distributed having mean = 0 with
variances σ2

ψm
(m = 0 to 2). The regression analysis was per-

formed separately for each of the 29 species groups.
Model performance for each species group was quantified

using the proportion of variation explained by the model (a
pseudo-R2), root mean squared error (RMSE), and mean ab-
solute residual (MAR):

R2 ¼ 1−
∑ CWjk−dCWjk

� �2

∑ CWjk−CW
� �2 ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ CWjk−dCWjk

� �2

n

vuut
ð6Þ

MAR ¼
∑ CWjk−dCWjk

			 			
n

ð7Þ

where dCWjk = predicted value of CWjk, CW = mean of ob-
served CWjk, and n = sample size.

Validation of the model was performed using an enhanced
bootstrap approach which assesses the over-optimism in mod-
el accuracy that may result from overfitting the model to the
data (Harrell et al. 1996). The R2, RMSE, and MAR statistics
were evaluated in the process. Using R2 as an example, for
each species group this procedure entailed:

1) Fitting model [3] to the original data consisting of n ob-
servations and calculating R2

app.

2) Drawing a bootstrap sample of size n with replacement,
fitting model [3] using only terms consistent with the
significant parameter estimates (as shown in Table 3

below) to these data, and obtaining R2
boot.

3) Applying the fitted model from step #2 back to the orig-

inal data and calculating R2
orig.

4) Conducting 200 repetitions of steps #2 and #3 and calcu-

lating the mean optimism O ¼ ∑ R2
boot−R

2
orig

� �
=200.

5) Calculating the optimism-adjusted statistic as
R2
O ¼ R2

app−O.

Generally, the implementation of urban tree inventories has
accelerated at a pace faster than supporting research needs can
be identified and accomplished. For lack of any alternative,
models developed from data collected in forested environ-
ments are often used. The disadvantage of this approach is
that an unknown and potentially large bias in predictions can
result due to a number of factors pertaining to different micro-
and macro-site conditions. To better understand and justify the
need for urban-specific crown width models, forest-based
models (Bechtold 2003; Bechtold 2004) were used to predict
crown widths for the urban data used in this study. This anal-
ysis was performed only for the subset of tree species which
were common to both studies. Comparisons were made be-
tween observed and predicted values to gauge the effect of
using forest-based models in urban environments.

As crown width predictions are often used to replace time-
consuming and costly direct measurement, it is important to
evaluate how the predictions may alter analytical outputs. A
key parameter modeled in the i-Tree software suite is tree leaf
area – defined as the total amount of surface area (one-sided)
of leaves found on a tree. As the leaf area models depend
either directly or indirectly on crown width as one of the input
variables (Nowak 1996, 2020), assessments of leaf area were
made using both the observed and predicted crown widths. To
focus on effects of crown width, default assumptions of aver-
age crown dieback of 13% and average percent foliage miss-
ing of 13% were used. The calculated leaf areas (m2) based on

observed crown width cLACW

� �
and predicted crown width

cLAcCW
� �

were used to calculate the mean difference (D ),

mean percent difference (D% ), mean absolute difference

( D
		 		 ), and mean percent absolute difference D

		 		%� �
as com-

pared to the mean cLACW (expressed as LACW ) for each species
group.

D ¼
∑ cLACW−cLAcCW
� �

n
ð8Þ

D% ¼ D

LACW

x 100 ð9Þ

D
			 			 ¼ ∑ cLACW−cLAcCW

				
				

n
ð10Þ

D
			 			% ¼

D
			 			
LACW

x 100 ð11Þ
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Results

Estimated fixed-effects parameters for models [3] and [4] are
given in Table 3, where missing values indicate parameter
estimates not significantly different from zero at the 95% con-
fidence level; with the exception of intercepts (β0, θ0), which
were always retained regardless of statistical significance. The
estimated β1 parameter was always significant and positive in
sign, which agrees with the biological intuition that tree crown
width increases as diameter increases. Similar outcomes were
generally found for tree height as well, with positive β2 sug-
gesting that taller trees support larger crown widths. The β3
parameter associated with the interaction term DIA*HT was

usually negative when statistically significant. For these spe-
cies groups, predictions of crown width decrease slightly with
increasing height for a given diameter value. Viable explana-
tions include taller trees being unable support so much crown
that they become too ‘top-heavy’, or perhaps overall crown
size is similar to shorter trees but taller trees tend to have a
more vertical distribution (vs. horizontal). The exception to
this trend was species group 8 (Select white oaks), which
had a positively valued β3. An examination of the data sug-
gests this outcome was due to the largest diameter trees only
being intermediate in height, such that height increases at a
given diameter were associated with increasing crown sizes.
Finally, the taper-based metric of (log) DIA/HTonly provided

Table 3 Estimated parameters from [3] and [4]. Intercepts were always
retained in the model; similarly estimated parameters β1 and β2 were
retained if the DIA*HT interaction parameter estimate β3 was

significantly different from zero; all other parameter estimates shown
were statistically significant at the 95% confidence level

Group β0 β1 β2 β3 β4 θ0 θ1 θ2 σ2
ψ0

σ2
ψ1

σ2
ψ2

1 0.26887 0.21706 0.05721 −0.00355 – −0.26512 0.08932 0.06089 – – –

2 0.63686 0.08472 0.31310 – – 0.11386 – 0.09640 – – 0.01218

3 1.22240 0.26890 0.00045 −0.00414 −0.86997 −0.16282 0.08404 – – – 0.02622

4 0.60236 0.14731 0.15467 −0.00414 – 0.25101 0.04655 – – 0.00072 –

5 0.91811 0.15601 0.22104 −0.00347 −0.93469 −0.45151 0.04974 0.17780 – – 0.00462

6 0.81503 0.12815 0.17060 −0.00134 −0.28382 0.09823 0.04153 0.07040 0.31771 0.00225 0.01707

7 0.27966 0.12481 0.18078 – – −0.20351 0.02914 0.24323 – – –

7* 0.23035 0.14370 0.12422 – – −0.07487 0.06130 – – – –

8 1.67999 0.13469 0.08817 0.00129 – 0.28565 0.14696 – – – 0.01359

9 1.35908 0.16661 0.14409 −0.00123 – −0.32173 0.04744 0.23604 0.20061 0.00049 –

10 0.15256 0.20214 0.20333 0.00241 – −0.53226 0.06174 0.19591 – – –

11 0.92771 0.18969 0.12068 −0.00158 – −0.33939 0.09692 0.12604 – 0.00062 –

12 1.81689 0.16685 0.06044 – – 1.61331 0.14678 −0.08505 – 0.00150 –

13 0.38891 0.06271 0.15861 −0.00230 – 0.01515 – 0.38762 – 0.03093 0.11145

14 1.46265 0.00995 −0.01005 −0.00318 – 0.54157 0.14712 – 0.35039 0.04365 0.04531

15 1.95625 0.07069 0.26438 – 0.72412 0.00805 0.17804 0.08709 – – –

16 1.43392 0.14489 0.05339 – – 0.02758 0.08844 0.07348 – 0.00114 –

17 1.59178 0.09983 0.17138 – 0.85449 0.05100 0.16584 – – 0.00221 –

18 0.89987 0.22704 0.12519 −0.00339 −0.43398 −0.13186 0.12276 0.12748 – 0.00219 0.00975

19 0.29314 0.22682 0.09594 −0.00311 −0.18327 −0.15161 0.07129 0.04302 – 0.00150 –

20 1.42256 0.11728 0.16063 – – 0.86678 0.07208 – – – 0.00986

21 1.25326 0.19692 0.09704 −0.00212 – 0.68759 0.25456 −0.10805 – – –

22 1.21121 0.17342 0.12961 – – −0.23520 0.23919 – – – –

23 1.31894 0.17904 0.14886 −0.00134 −0.28756 0.47668 0.14225 0.01433 0.23405 0.00124 0.01140

24 1.04849 0.19611 0.20067 −0.00422 – 0.53985 0.19380 −0.03923 0.31784 0.00118 0.00729

25 0.90807 0.13670 0.23432 −0.00166 0.35309 −0.02600 0.13064 0.07932 0.30258 0.00100 0.01051

26 0.83980 0.17540 – – – 2.89215 – – – – –

26* −0.31517 0.24651 0.22999 −0.00766 – −0.48536 0.17728 – – – –

27 0.41657 0.09213 0.43246 −0.00265 – 0.14396 0.04365 0.20212 – – 0.01782

28 0.86620 0.14232 0.28551 −0.00245 – −0.26134 0.11889 0.17348 0.43134 0.00122 0.01022

29 0.13617 0.06807 0.40388 – – −0.15678 0.08557 – – – 0.03523
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significant information for about one-third of the groups, i.e.,
the statistical significance of β4. Further, there was inconsis-
tency in the sign of β4 among species groups (Table 3).
Negatively valued β4 for some groups (Eastern white pine
(3), Eastern hemlock (5), Other eastern softwoods (6), Ash
(18), Cottonwood and aspen (19), and Other eastern soft hard-
woods (23)) resulted in smaller crown width predictions as
trees increasingly favored diameter growth in relation to
height; whereas the reverse was true for other groups (Beech
(15), Tupelo and black gum (17), and Eastern noncommercial
hardwoods (25)) with β4 > 0.

Model error variances [4] were largely driven by diameter,
where increases in diameter resulted in increases in error
(Table 3). For Other yellow pines (2) and Hard maples (13),
diameter was not a statistically significant driver of error vari-
ance; however, increased error was associated with taller tree
heights. Generally, greater tree size as measured by either di-
ameter or height produced larger estimates of error variance.
Exceptions were noted for Hickory (12), Yellow-poplar (21),
and Other eastern hard hardwoods (24), where increasing
height at a given diameter reduced variance. Figure 3 illustrates
the general trend of error variance as a function of tree size.

The inclusion of cities as random parameters in the model
showed there was a statistically significant city effect for 22 of
the 29 species groups (Table 3). Essentially, there are two parts
to assessing whether the city effect should be included. First,
there is an assessment of which term(s) in the model should
contain a random component. In studies where this decision is
not dictated by an a priori experimental design, this exercise
entails evaluation of various alternative model formulations
from which a final model can be chosen. Subsequently, the
inclusion of a random parameter in the model is predicated on
the variance of the random effects across cities being statistical-
ly different from zero (σ2

ψ0;
σ2
ψ1
;σ2

ψ2
in Table 3). Note there

exists a distribution of random effect values – for some cities
the effect can be relatively large, while for others the effect may
be small. For this study, a complete listing of random effects by
species group and city is provided in Online Resource 2. When
the random effect is not significant, its numerical value is con-
sidered to be zero.

The model goodness-of-fit to the data exhibited large var-
iation among the 29 species groups, where the ranges were: R2

(0.53–0.84, mean 0.73), RMSE (0.93–2.63, mean 1.71), and
MAR (0.66–1.93, mean 1.21) (Table 4). Model validation re-
sults were generally promising, with optimism-adjusted fit
statistics (R2

O, RMSEO, MARO) showing only slight deterio-
ration (Table 4). For comparative purposes, the bounds of
these statistics were: R2

O (0.52–0.82, mean 0.71), RMSEO

(1.13–2.65, mean 1.79), and MARO (0.71–1.94, mean 1.26).
Generally, the species groups with relatively small sample
sizes exhibited the largest losses, as the small samples are
more likely to be overfitted.

The application of crown width models developed from
forest-grown trees (Bechtold 2003, 2004) generally showed
underprediction of crown widths for urban trees (Table 5). The
magnitude of differences was highly dependent on the species
group, where some groups exhibited 1.0% or less difference
(Loblolly and shortleaf pine (1) and Eastern noncommercial
hardwoods (25)) while others exceeded 15.0% (Other yellow
pines (2), Spruce and balsam fir (4), Hard maple (13), Soft
Maple (14), Beech (15), Tupelo and blackgum (17), and Black
walnut (22)). The Other yellow pines group was most notable
in terms of percent difference (21.5%). The remaining notable
results were for the species groups Eastern hemlock (5) and
Other white oaks (10), where the forest-based crown widths
were on average predicted to be slightly larger than those
found in urban settings. Again, this outcome is likely due to
differences in the data sources which at least partially arise

Fig. 3 Expected model error
variance from [4] for Yellow-
poplar (group 21)
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from the particular environments the sample trees were grow-
ing in. The general inference from this comparison is that use
of forest-based models for prediction of urban tree crown
width is not recommended.

The use of predicted crown widths instead of observed
crown widths for calculations of leaf area per i-Tree methods
(Nowak 1996, 2020) showed a range of mean percent differ-

ences (D% ) of approximately ±10% across the species groups
(Table 6). An exception was group 29 (Urban-specific
softwoods) where the difference was nearly 23%. This result
should be interpreted in the context of group 29 having sub-
stantially smaller crowns than the other groups, such that the

relatively unexceptional D of 4.13 m2 translates into a large
percentage difference. The mean absolute percent differences

D
		 		%� �

varied from about 20–35% among groups; with the

exceptions of group 7 (Woodland softwoods) having much

smaller values of D
		 		% near 7% and group 29 being consid-

erably larger at about 47%. These outcomes suggest that pos-
sibly the leaf area models for Woodland softwoods are only
marginally responsive to crownwidth andmay bemore heavi-
ly influenced by other inputs such as crown length (which
would remain the same each tree regardless of the predicted
or observed crown width input). Conversely, the leaf area
models for Urban-specific softwoods appear to be highly sen-
sitive to the crown width value such that relatively minor
differences between observed and predicted crown width
translate into large changes in calculated leaf area.

Discussion

As is consistently found in other crown width modeling ef-
forts, DIA was the principal predictor variable. Although its
use in other studies has been sporadic, HT was also found to
be an important predictor for many species groups. The incon-
sequential improvements from additional predictors FOR and
CLE suggested tree size and form variables may already man-
ifest these influences. For example, open-grown trees would
tend to have large CLE, but also have relatively large DIA/HT
values. Similarly, competition within forested environments
(FOR) tends to produce smaller DIA/HT relationships due to
smaller CLE. Further research is needed to understand the
numerous inter-related factors influencing tree growth across
the gradient of social-ecological conditions encountered in
urban and forest environments. Additionally, future availabil-
ity of a broader suite of consistent urban tree data may lead to
modeling refinements. For example, inclusion of variables
such as crown ratio and height-to-crown may improve predic-
tive accuracy (Sharma et al. 2016; Bechtold 2003).

A key discussion point is to put this research in the context
of previously published crown-width models for urban trees.
The breadth of this study is considerably larger than other
analyses in terms of number of cities (49 cities; Fig. 1) and
species coverage (964 species; Online Resource 1). In com-
parison, McPherson et al. (2016) used street tree data from 17
cities and 171 species, and Blood et al. (2016) data comprised
97 species across 12 locations in the Southeastern U.S. Most
other efforts have been confined to limited spatial extent and/
or species coverage (Russell and Weiskittel 2011; Sánchez-
González et al. 2007; Marshall et al. 2003; Peper et al. 2001).
Other notable methodological differences include:

1) Approaches to accounting for spatial trends: In this study,
random effects parameters were employed to account for
differences among cities; with statistical hypothesis test
outcomes providing the basis for inclusion in the models
(Blood et al. 2016). An alternative approach is to fit

Table 4 Original and optimism-adjusted fit statistics [5–7] for 29 spe-
cies groups

Group R2 R2
0 RMSE RMSE0 MAR MAR0

1 0.558 0.554 1.698 1.705 1.310 1.315

2 0.805 0.773 1.394 1.518 1.078 1.179

3 0.817 0.790 1.350 1.457 0.954 1.017

4 0.794 0.759 1.034 1.127 0.762 0.821

5 0.688 0.637 1.534 1.676 1.138 1.227

6 0.777 0.757 1.132 1.184 0.776 0.807

7 0.442 0.426 1.545 1.550 0.853 0.855

7* 0.576 0.568 1.160 1.174 0.769 0.771

8 0.824 0.803 2.174 2.304 1.544 0.620

9 0.785 0.773 2.147 2.208 1.551 1.595

10 0.725 0.719 2.034 2.065 1.348 1.357

11 0.773 0.757 2.141 2.226 1.536 1.582

12 0.738 0.709 1.918 2.030 1.356 1.412

13 0.755 0.732 1.920 2.017 1.278 1.329

14 0.737 0.722 1.795 1.854 1.298 1.333

15 0.762 0.759 1.924 1.940 1.373 1.379

16 0.694 0.682 1.653 1.691 1.223 1.245

17 0.715 0.684 1.556 1.648 1.124 1.175

18 0.707 0.683 1.913 1.993 1.299 1.344

19 0.794 0.771 1.198 1.262 0.689 0.711

20 0.842 0.817 1.452 1.581 1.073 1.161

21 0.717 0.713 2.628 2.651 1.930 1.944

22 0.684 0.678 2.367 2.399 1.753 1.772

23 0.698 0.684 1.853 1.897 1.283 1.304

24 0.690 0.665 1.868 1.942 1.303 1.344

25 0.725 0.708 1.693 1.751 1.193 1.225

26 0.688 0.697 1.692 1.739 1.328 1.360

26* 0.602 0.594 1.840 1.862 1.368 1.379

27 0.646 0.615 1.506 1.576 1.068 1.104

28 0.757 0.735 1.666 1.746 1.109 1.145

29 0.827 0.720 1.932 1.238 0.659 0.813
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models separately to subsets of the data corresponding to
each location or region (McPherson et al. 2016). The lat-
ter approach is often implemented without consideration
of whether the spatial disaggregation of the data is appro-
priate, can result in relatively small sample sizes, and
possibly introduce model-overfitting issues. Conversely,
if done effectively, these data subsets may reduce model
error via grouping of trees having similar characteristics
and thus minimizing error due to spatial variability
(Westfall 2015).

2) Species inclusion and applicability: In this study, all spe-
cies present in the data were included in the analyses and
were aggregated into 29 species groups. Because the sam-
pling is area-based, it can be argued that the frequency of
any given species is approximately in proportion to its
presence in urban areas – thus a ‘self-weighting’ occurs
for the species-level influence in the group-level model.
Many studies have developed models at the species-level.
In some cases, this approach may give rise to issues sim-
ilar to spatial partitioning, i.e., relatively small sample

sizes and increased likelihood of model overfitting. The
advantage of species-level models may be to reduce error
by eliminating inter-species variation not accounted for
via model predictor variables.

3) Modeling considerations: Perusal of the literature shows a
wide range of approaches to modeling crown width, par-
ticularly in the forms of the models and the predictor
variables used. Some studies compared a number of mod-
el types for each species and selected the best fit as the
final model (McPherson et al. 2016; Blood et al. 2016;
Peper et al. 2014; Troxel et al. 2013).While the intent is to
find the best model for the data, only validation with
independent data will reveal whether this approach truly
produces the most accurate models or whether the result is
model overfitting to the data. Another key modeling con-
sideration is exclusion criteria, which removes certain ob-
servations from the data. One approach is to exclude spe-
cies having small sample sizes (Blood et al. 2016).
Monteiro et al. (2016) employed a number of criteria to
omit certain sample trees – including those of small size

Table 5 Results of using crown-width models based on forest-grown
trees applied to trees growing in the urban environment. Notational def-

initions are CW = mean of observed data (m), dCWF forest-based model

prediction (m), and n = sample size. Species in groups 7 and 26–29 were
not present in the forest-based models

Group n CW dCWF %
difference

1 1026 5.32 5.27 1.0

2 180 7.23 5.67 21.5

3 394 6.39 5.62 12.0

4 175 5.08 4.28 15.8

5 200 5.90 6.05 −2.5
6 1307 5.01 4.54 9.4

8 657 9.43 8.91 5.4

9 912 9.12 8.20 10.1

10 1133 7.64 7.69 −0.7
11 929 8.75 8.35 4.6

12 285 8.06 7.32 9.2

13 879 8.51 7.06 17.0

14 1945 7.91 6.37 19.5

15 268 9.91 8.37 15.6

16 799 6.00 5.43 9.6

17 214 6.89 5.71 17.1

18 1386 6.82 5.95 12.8

19 275 7.28 6.26 14.0

20 195 7.55 6.73 10.9

21 483 9.90 8.57 13.4

22 269 8.57 7.12 16.9

23 4953 6.92 6.58 4.9

24 1632 7.29 6.57 9.9

25 1821 6.43 6.41 0.3
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or abnormal allometry. Similarly, McPherson et al. (2016)
eliminated observations that were deemed outliers based
on residual plots. These data exclusion methods produce
domains that may be subject to poor model extrapolation
in practical applications, e.g., calculating predictions for
excluded species or tree sizes. These differences in data
reduction methods also make it difficult to compare mod-
el goodness-of-fit statistics across studies.

The need for urban-specific crown width models has been
demonstrated here via application of forest-based models
(Bechtold 2003, 2004) to urban trees. The empirical results
generally confirmed the supposition that urban trees would
exhibit wider crowns for a specified tree diameter (Table 5).
Thus, the misguided use of forest-based models would likely

produce systematic underestimation of crown width in urban
assessments. Crown width is often used to evaluate growing
space requirements (Dahlhausen et al. 2016; Pretzsch et al.
2015), where prediction biases could have a long-term detri-
mental effect due to erroneous planning decisions. Crown
width also plays an integral role in estimation of crown or leaf
area – from which many ecosystem service metrics are calcu-
lated, e.g., rainfall interception, shading/cooling effects, car-
bon sequestration, and air pollution amelioration (Nowak et al.
2016; Gómez-Baggethun and Barton 2013). Thus, the use of
urban-specific crown width models is imperative to avoid
underestimating the contributions of urban trees to environ-
mental health and human well-being.

The i-Tree software suite uses calculated values of leaf area
to provide estimates of various eco-system services such as

Table 6 The mean difference (D, m2) mean percent difference (D% ), mean absolute difference ( D
		 		, m2) and mean percent absolute difference

D
		 		%� �

between i-Tree leaf area calculations based on observed crown widths and those from predicted crown widths

Group D D% D
		 		 D

		 		%
1 10.93 7.56 47.72 32.98

2 2.42 2.33 19.31 18.59

3 6.75 4.30 40.06 25.51

4 0.66 0.74 27.75 31.39

5 1.98 1.14 42.52 24.54

6 4.07 4.36 28.63 30.65

7 0.18 2.96 0.46 7.54

7* 0.14 2.22 0.45 7.33

8 2.34 1.30 41.56 23.07

9 0.17 0.08 47.02 23.31

10 −1.58 −1.05 35.96 23.91

11 −4.60 −1.83 60.91 24.24

12 8.25 4.14 45.84 23.01

13 9.81 4.38 54.49 24.34

14 2.56 1.14 59.15 26.23

15 0.44 0.18 72.83 30.22

16 −15.58 −9.87 51.81 32.83

17 −0.36 −0.35 37.7 36.44

18 3.14 2.57 38.15 31.15

19 0.89 0.43 49.93 24.19

20 −3.83 −1.80 48.87 22.88

21 −40.28 −8.95 147.10 32.70

22 17.73 4.61 108.78 28.25

23 2.95 1.70 50.55 29.08

24 1.73 1.89 29.80 32.59

25 1.28 1.35 30.25 31.79

26 0.06 1.65 0.39 10.36

26* 0.03 0.94 0.49 13.17

27 1.25 1.89 21.20 32.00

28 6.43 8.37 24.17 31.47

29 4.13 22.91 8.51 47.22
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rainfall interception and air pollution removal (Nowak et al.
2008). Substitution of predicted crown widths in the leaf area
estimation process should generally have little effect on i-Tree
outputs; however, the realized differences would also depend
on the species present and their relative frequency (Table 6).
The average absolute prediction errors are relatively large,
which suggests a high level of variability in the data. This
variability manifests in two general ways: 1) trees that are
small as described by dbh and height, but have uncharacteris-
tically large crowns, and 2) conversely, trees that would be
considered large-sized based on dbh and height attributes,
however the crowns are divergently small. In the former case,
trees with abnormally large crowns likely are growing in con-
ditions with little competition for light where crown expansion
is essentially uninhibited. Small crowns relative to tree size
may occur due to storm damage, pruning, or simply overall
poor tree health. Thus, crown widths for urban trees tend to be
more highly variable than forest-grown counterparts which
makes accurate model prediction more elusive.

Application of the modeling results is fairly straightforward
for cities (and associated species occurence) included in the data
used for this analysis. Use of the models outside this domain will
require further consideration. For situations lacking lack specific
treatment from this study, perhaps the simplest approach would
be to adopt the model parameters that are ‘closest’ to the city/
species being considered. Several situations may be present un-
der this implementation: 1) the species group is known, but no
random effect exists for the new city, 2) the city random effect is
known, but the species is new and lacking group assignment, or
3) both city and species are new, with no city random effect and
no species group assignment. The latter is perhaps the most
troubling as it requires assumptions for both city and species
group effects. Regardless, practitioners employing this approach
should be aware that bias in model predictions is unknown and
possibly large. In contrast, random effects may be predicted for
cities/species groups not in the original data; however, this would
require collection of new data in order to perform the calcula-
tions. Prediction of random effects for new observations has been
well-addressed in the statistical literature (Vonesh and Chinchilli
1997) and forestry-specific applications are also sufficiently doc-
umented (Trincado and Burkhart 2006, Westfall 2010). These
publications and references therein are recommended to practi-
tioners desiring to predict random effects for new observations.

Conclusion

Ultimately, practitioners need to ascertain whether statistical
models are adequate for their specific uses. The crown width
models presented herein extend the species and geographic cov-
erage beyond those found in other published studies. The analyt-
ical results allow for comparison with both forest- and urban-
based crown width models that may be found in the literature.

Generally, localized models tend to outperform those that have
wider application; however, the use of city-based random effects
in this study may produce comparable prediction accuracy at
local scales. Thus, the possibility of using prediction models in
lieu of field-measured crown widths may be considered.
Although there has been ongoing advancement of urban crown
width modeling, it seems clear that continued research is needed.
A topic worthy of further investigation is assessment of alterna-
tive methods to account for spatial variability, such as the use of
latitude/longitude/elevation or other continuous variables that re-
flect different growing environments. As efforts such as i-Tree
and Urban FIA continue to expand data availability in both spa-
tial extent and consistency of protocols for field measurements,
the ability to further increase the accuracy of national-scale crown
width models seems highly plausible.
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