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Abstract. Prescribed burning is a common land management tool used to reduce fuels, emulate the effects of wildfire
and increase heterogeneity in fire-prone ecosystems. However, the forest structure created by prescribed burning is likely
to be dissimilar to that produced by wildfire. We used three-dimensional estimates of canopy bulk density (CBD) from

lidar data to explore the relationship between fire type, number of burns and fuel structure/forest structure in the New
Jersey Pinelands National Preserve, USA. We found that in areas of previous prescribed fires, as the number of fires
increased, the understorey (1–2 m) exhibited a slight decrease in CBD, while the upper canopy (15–23 m) had higher

values of CBD for$4 fires, though these differences were not statistically significant. However, an increasing number of
wildfires was associatedwith a statistically significant increase in CBD in themid-storey (3–7m) and a decrease in CBD in
the canopy ($8 m). These results have important implications for forest resource managers because they indicate that

prescribed burning reduces ladder fuels that lead to torching and crown fires, but it does not replicate the structure created
by wildfire.

Additional keywords: airborne laser scanning (ALS), burn frequency, canopy height profile, forest structure, lidar,
prescribed fire, wildland fire.
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Introduction

Many forest ecosystems are adapted to periodic fire (Pausas and
Keeley 2009) and exclusion of fire from such areas has often

proven to be counterproductive, resulting in changes in forest
composition and structure, and more intense fires, when fires
inevitably return (Stephens and Ruth 2005). The latter is of

considerable concern in the wildland–urban interface, where
property and lives are at risk (Clark et al. 2009). Forest resource
managers therefore use prescribed fires to gain, in a more con-

trolled environment, some of the benefits of wildfire, including
reduced forest fuels, ecologically preferred outcomes such as the
maintenance of fire-adapted communities, creating wildlife
habitat, encouraging rare species and restoration of the stand- to

landscape-scale structural complexity, as well as global climate
benefits, such as stabilising forest carbon (Fernandes and
Botelho 2003; Ryan et al. 2013; Addington et al. 2015; Clark

et al. 2015; Hurteau et al. 2019). However, prescribed fires are
by design usually less intense than wildfires. Therefore, in for-
ests that are historically prone to crown fire, prescribed burning,

and even repeated prescribed burning, is unlikely to produce a

forest structure similar to that produced by wildfires. For forest
resource managers focused on habitat creation or emulating
historical conditions, this raises key concerns about whether

prescribed burning regimes are achieving the desired forest
attributes (Welch et al. 2000) and if so, how to quantitatively
show these objectives are being met.

Using a case study in the New Jersey Pinelands National
Reserve (PNR), in New Jersey, USA, we quantified how pine
forests vary in their vertical structure as a function of fire,

comparing forests burned one or more times by prescribed fires,
wildfire or both. Prior work by Boerner (1981) established that
in these forests, wildfires reduce canopy fuels and increase
understorey fuels, whereas prescribed fires cause temporary

decreases in understorey fuels and have little effect on canopy
fuels. Boerner’s (1981) findings are consistent with a general
model for fire-adapted ecological communities where high-

intensity wildfires result in substantial crown mortality and
low-intensity prescribed fires that predominantly burn under-
storey fuels and have less effect on the canopy (Agee and

Skinner 2005). Boerner’s (1981) study was based on just five
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sites within a small area of the Pinelands and his study quantified
field observations in terms of broad measures such as above
ground biomass or numbers of stems in different height classes.

In this work, we applied the lidar-canopy bulk density (CBD)
methods proposed by Skowronski et al. (2011) to quantify a
theoretical landmanagement objective in which prescribed fires

are designed to match the structural effects of wildfire. We
hypothesised that in PNR’s predominantly pine forests, areas
with a history of prescribed fire will have reduced ladder fuels

but increased canopy fuels in comparison to areas with a history
of wildfire. We also hypothesised that because prescribed fires
are expected to reduce the intensity of wildfires (Agee and
Skinner 2005), areas that have experienced both wildfires and

prescribed fires in recent years will have a structuremore similar
to that of areas with a history of prescribed fire than of wildfire.

We quantified fuel loads in terms of vertical arrangement of

the CBD (with units of kgm�3), ameasure of biomass, including
combustible foliage and woody material, per unit volume
(Botequim et al. 2019). CBD is useful metric for characterising

the structural effects of disturbance, including fire, and is also a
key input in fire behaviour models such as FARSITE (Finney
1998) and firebehavioR (Ziegler et al. 2019). CBD has been

traditionally measured using destructive methods, but can also
be modelled using non-destructive methods such as those based
on allometric equations, most notably in the Fire and Fuels
Extension to the Forest Vegetation Simulator (FFE-FVS) (Scott

and Reinhardt 2001; Reinhardt et al. 2006). As an alternative to
these approaches, airborne lidar (also known as airborne laser
scanner (ALS) data) can be used to producemaps of the variation

of CBD with height above the forest floor (Skowronski et al.
2011; Hoe et al. 2018). One particular strength of utilising lidar-
based CBD maps is the provision of detailed, spatially explicit

information covering the entire study area. Many studies have
evaluated the effect of prescribed fires and wildfires on fuels
with field methods (e.g. Boerner 1981; Little 1998) and lidar
(e.g. Loudermilk et al. 2012; Hudak et al. 2016; Botequim et al.

2019; Huesca et al. 2019), but the strength of this study is the
detailed characterisation of the canopy CBD profile in 1-m
increments, the comprehensive archive of maps of historic fires

extending back more than 80 years and the broad spatial scale
covered, which encompassed a major portion of the PNR. The
database includes areas that have been burned many times over

many years, allowing an assessment of variation in forest fuels at
the fire regime level rather than at the scale of a single event. To
our knowledge, this is the first study to do so over a broad extent

using lidar.

Study area

The PNR is a 445 000-ha forested region and UNESCO World
Heritage Site, located between New York City and Philadelphia
(Pinelands Commission 2015). The PNR region is a mixture of

undeveloped forest and small, isolated rural settlements. Our study
areawas 150 000 hawithin the PNR, comprising the south-eastern
portions of Burlington and Camden counties, New Jersey. The

boundaries of the study areawere determined by the availability of
the lidar dataset used, as discussed in the following section.

The dominant upland forest species are pitch pine, Pinus
rigida Mill., and a variety of oaks, including Quercus alba L.,

Q. velutina Lam., Q. coccinea Muenchh. and Q. prinus Willd.
(Boerner et al. 1988; Little 1998). The proportion of pine varies
from pure pine to pure oak (McCormick and Jones 1973). The

major forest communities are pine-oak, pine-scrub oak and the
so-called pine plains, a distinctive short-statured (, 2 m)
community. The understorey is generally dense, with Gayluss-

sacia spp. and Vacccinium spp. common throughout the area
and Q. ilicifolia Wangenh., Q. marilandica Muenchh. and
Q. prinoidesWilld. principally in the pine-scrub oak community

(Boerner et al. 1988; Landis et al. 2005).
The PNR is a fire-adapted landscape (La Puma et al. 2013;

Warner et al. 2017; Skowronski et al. 2020), as indicated by the
many fire-adapted traits found here, such as epicormic sprouting

and serotinous cones (Givnish 1981). Although there is limited
information on the pre-European settlement fire frequency, it
was likely greater than today (Forman and Boerner 1981).

Human settlement, especially the introduction of charcoal
production in the 1800s and the development of railroads, likely
initiated a period of increased fire frequency and larger fires.

Forman and Boerner (1981) estimated a 20-year fire return
interval for upland forests in the PNR in the early 20th century,
changing to ,65 years following the introduction of periodic

prescribed burning in the late 1930s. In a more recent forest
landscape simulation study, Scheller et al. (2008) assumed a
pre-colonial 32-year return interval for wildfire, and 186-year
return interval for the current landscape. La Puma et al. (2013)

found a return interval of 76–113 years for the wildfire-only
regime between 1963 and 2007 in upland pine-dominated
systems. In the dwarf pine plains, fires have been considerably

more frequent than in the rest of the uplands. Buchholz and
Zampella (1987) calculated a 28-year fire return interval
between 1953 and 1982 in the dwarf pine plains and La Puma

et al. (2013) calculated a 35–47-year wildfire return interval
between 1963 and 2007.

Most prescribed fires are implemented during the dormant
season andwithin the study area averaged,2450 ha year�1 over

the previous 60 years (1956–2015). Wildfires over the same
period burned 2100 ha year�1 on average, though the annual
value is currently decreasing; over the last 5 years of that interval

(2010–15) only 724 ha year�1 within the study area were
burned. An added complexity is that occasional wildfires grow
much larger in size (Mueller et al. 2017). Most wildfires have an

anthropogenic origin, with only 1% of wildfires caused by
lightning (La Puma et al. 2013).

Data

Lidar data

The lidar data of the study area were acquired in April 2015,

during the leaf-off period, by Quantum Spatial Inc., under
contract to the United States Geological Survey (USGS)
(Quantum Spatial Inc. 2015). A Leica sensor, able to record up

to four returns per pulse, was flown at ,1580 m above the
ground, with a maximum scan angle of 368, resulting in an
average of 8 points m�2. The data were post-processed by

Quantum Spatial Inc., including classification of the point cloud
into ground and canopy classes. A bare earth digital elevation
model from these points was found to have a vertical root mean
square error (RMSE) of 0.041 m (Quantum Spatial Inc. 2015).
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Burn area maps

Vector data of historical burn areas were obtained from a geo-
database compiled by La Puma et al. (2013), who digitised fire
perimeters from hardcopy fire records maintained by the New

Jersey Forest Fire Service (NJFFS). Perimeters were located and
updated by La Puma et al. (2013) using a 1930s aerial photog-
raphy mosaic (exact date not known), digital mosaics of USGS

topographicmaps, which ranged in dates from 1954 to 1997, and
more recent aerial photography, which included 1995–97 and
2006 digital orthophotos. Fires after 2007 were archived digi-

tally and added to the geodatabase by the NJFFS. The database
contains 347 wildfires and 940 prescribed fires before the lidar
acquisition date in the study area. The earliest wildfires in the
database for the study area occurred in 1930 and the earliest

prescribed fires occurred in 1956. One limitation to the data is
that the ability to verify prescribed fires before 2007was limited.
Older prescribed fires were digitised from paper maps obtained

from the NJFFS’ Division B headquarters on which the date of
burning was typically indicated. In some cases, it was clear that
burnswere planned using the papermaps, but an actual burn date

was not recorded on themap; however, shading in of burn blocks
or confirmation from local fire wardens was interpreted to mean
that burns did take place during the planned year.

Vegetation map

To identify pine forests, we used the 2012 New Jersey land use/

land cover (LULC) map, produced by the New Jersey Depart-
ment of Environmental Protection (2012). The vector map was
generated through visual interpretation of satellite and aerial

imagery and is part of a series of LULCmaps of New Jersey that
has been produced since 1986. The minimum mapping unit is 1
acre (0.4 ha). An earlier version of the map, from 2001, had an
estimated overall map accuracy of 91% (Lathrop and Kaplan

2004). The map uses a modified Anderson et al. (1976) level
III–IV classification scheme. We used classes 4210 and 4220
(coniferous forest, with crown closure of respectively 10–50%

and . 50%), as well as classes 4311 and 4312 (dominantly
coniferous, with mixed deciduous forest, and crown closure of
respectively 10–50%and.50%).These classescorrespond to the

pine-dominated forest communities of pine-oak and pine-scrub
oak discussed above; the pine plains corresponding specifically to
class 4210.

Methods

The lidar processing generally followed the procedures devel-
oped by Skowronski et al. (2011), in which the lidar point cloud
is rasterised into a three-dimensional set of voxels that charac-

terise the vertical distribution of biomass, termed the canopy
height profile (CHP). We used only the lidar first returns, to be
consistent with Skowronski et al. (2011). The voxel approach

assumes that the proportion of lidar returns, pbin, from any one
level (bin) in the canopy is an indication of the distribution of
biomass in that level. One complexity is that, as the energy from

the lidar pulses is progressively reflected away by interactions
with the upper canopy, there is less energy remaining for
potential interaction with lower layers. Therefore, the analysis is
performed sequentially from the top layer (23 m in our study) to

the lowest. Thus, pn, for a voxel in the top level of a voxel stack
of n levels, is calculated as:

pn ¼ Rn

Rtotal

ð1Þ

where Rn represents the number of lidar returns in the voxel of

height n, and Rtotal represents the total number of returns
summed over all height levels (1 to n). The subsequent, lower
levels are calculated using:

pn�x ¼ Rn�x

Rtotal �
Py¼x�1

y¼0 Rn�y

ð2Þ

where x is a value from 1 to (n – 1) (Skowronski et al. 2011).
We used the Toolbox for Lidar Data Filtering and Forest

Studies (Tiffs; Chen 2007) to produce voxels that are 30� 30 m

in the horizontal,� 1 m in the vertical. These CHP values were
calibrated to CBD (Botequim et al. 2019) using the ‘all height
bins’ equation developed within the study area by Skowronski
et al. (2011). The CBDmodel was developed with data from 19

plots � 20 height bins for a total of 380 data points for the
equation. The calibration had an RMSE of 0.015 kg m�3 and an
overall regression coefficient between the lidar and field data of

0.82. The regression coefficient between the lidar and field data
for the individual CBD 1-m layers varied as a function of height:
it increased from 0.0 at 1 m to 0.8 at 7 m, decreased to 0.4 at 9 m,

then increased again to almost 1.0 at 12 m, before decreasing
again to 0.9 at 17 m. The ‘all height bins’ equation estimates
CBD from Eqn 3 below (originally from table 4 in Skowronski

et al. 2011):

CBDbin ¼ 0:182pbin þ 0:005 ð3Þ

where CBDbin is the estimated CBD for the voxel of height bin,
and pbin is the lidar proportion value from Eqns 1 and 2.

Summary data on the canopy profile were produced by

averaging the CBD voxels for the understorey (1–2 m), mid-
storey (3–7 m), lower canopy (8–14 m) and upper canopy (15–
23m). The thresholds separating the three vegetation strata were
chosen empirically, after examining summary CHP graphs.

The lidar CBD data were then compared with the fire
frequency analysis data, after masking all areas not dominated
by pine, as indicated from our vegetation classes. Fire frequency

was mapped separately for areas that since 1930 had experi-
enced only prescribed fires, only wildfires or both. The maxi-
mum number of prescribed fires recorded at any one location

was 15, the maximum number of wildfires was 6 and for areas
that had experienced both prescribed and wildfires, the maxi-
mum number was 19 fires. However, the areas experiencing

such frequent fires were very small (, 100 ha) and we therefore
combined all pixels with$ 5 prescribed burns or wildfires in the
categories of$ 5 prescribed fires or$ 5 wildfires respectively,
and similarly areas with $ 10 combined prescribed and wild-

fires were grouped in a single category of$ 10 combined fires.
We calculated the least-squares linear relationship in the

average CBD as the number of fires increased, for each of the 23

1-m voxels for both wildfires and prescribed fires (Skowronski
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2011). The significance of the relationship between the number
of fires and CBD was determined from an F-test (Illowsky and
Dean 2012). To address the multiple comparisons problem, we

applied the Benjamini-Hochberg procedure to control the false
discovery rate (incorrect rejections of the null hypothesis) at a
critical value of 0.05 (Benjamini and Hochberg 1995). The

Kolmogorov–Smirnov two-sample test was used to evaluate the
differences in the distributions for mean CBD with various
numbers of prescribed fires, wildfires and both prescribed fire

and wildfire. We used the R ks.test function in the dgof package
(v1.2) (Arnold et al. 2016).

Results

Areas burned by only wildfires in the previous 85 years covered
the largest area within the study site, 26 912 ha (Table 1, Fig. 1).

Areas burned by only prescribed fires covered 4962 ha and areas
that experienced both wildfires and prescribed fires covered an
additional 9427 ha.

The pattern of variation in CBD values with increasing
numbers of fires generally showed the largest differences in
CBDforwildfire, intermediatedifferences forwildandprescribed

fire and the smallest differences for prescribed fires (Fig. 2).
Wildfire exhibited a strongly positive relationship (i.e. increased
biomass as the number of previous fires increased) for 2–7m and
then a strongly negative relationship above 7m, peaking at 12m.

These relationships were statistically significant from 4m to 6m
and from 9m to 18m. Prescribed fires were related to negative
differences in CBD below 15m, with a small peak at 2m and a

slightly larger peak at 11m. Above 15m, the relationship was
positive. However, none of these relationships were statistically
significant. The combination of both prescribed fires andwildfires

had a negative relationship with the number of fires below 11m
and positive values above that threshold. The coefficient of
determination of the linear relationships for this combination
class was generally low for the upper two-thirds of the canopy

profile (8–22m), with only 1–6m and 23m having statistical
significance (Fig. 2).

Fig. 3 explores these relationships byplotting thedistributionof
CBDwithin the selected strata as a function of the number of fires.
Areas that experienced wildfires generally had a wider range of

CBD values than prescribed fires, with the exception of the upper
canopy, where wildfires were mostly associated with very low
densities. The number of prescribed fires did not appear to have a

strong influence on CBD values, with the exception of the upper
canopy, where densities were higher in areas with $ 4 previous
fires. Table 2, which summarises the Kolmogorov–Smirnov

two-sample test for equality of continuous distributions, indicates
that relationships between number of fires and mean CBD were
generally significantly different for wildfires versus prescribed
fires and for wildfires versus both wildfires and prescribed fires,

with the exception of the lower canopy, where no relationships
were significantly different. However, for prescribed fires versus
both wildfires and prescribed fires, the distributions were not

significantly different, except for the upper canopy.

Discussion

Prescribed fire is used by some land managers as an attempt to
mimic the effects ofwildland fire (Kolden 2019) and by others to

reduce fire hazard (Fernandes and Botelho 2003), as well as the
likelihood of wildfires (Addington et al. 2015). The objective of
this study was to evaluate the contrasts in forest structural
response that result from wild and prescribed fires. We found

significant relationships between fire frequency and fuel loading
at most heights within the canopy for wildland fire, but the
relationships were not significant for prescribed fire (Fig. 2).

The slope of these relationships was opposite for the two fire
types for all heights within the canopy, except 8–14 m. For
instance, areas with higher wildfire frequency had a lower

density of fuel at the top of the canopy, whereas increased fre-
quency of prescribed fire had more fuels at the same height,
although the effect was only apparent after $ 4 burns. In con-
trast, increasedwildfire frequency correlatedwith increased fuel

loading in the understorey and mid-storey, with prescribed fire
showing the opposite relationship.

Following Boerner (1981), we hypothesised that, because

prescribed fires are often low-intensity fires, the greatest effect
of prescribed fire in removing fuels would be near the surface
and in the lowermost section of the canopy. Not surprisingly, our

results, as shown in Fig. 2, were consistent with this hypothesis,
because increasing fire frequency correlated with a loss of fuels
from the understorey and lower canopy (1–14 m). However,

Fig. 3 indicates that this relationship, as with the pattern in the
upper canopy, was apparent only after $ 4 fires. There may be
several reasons for this result. First, a forest parcel that has been
unburned for an extensive period will likely have a high initial

fuel loading. To mitigate risk, the firing operations during the
first several entries into the parcel will likely be very conserva-
tive and result in very low fire intensity (NJFFS, pers. comm.).

Second, much of the loss in fuel loading is likely due to
subsequent understorey stem mortality and not consumption
during the prescribed fires; repeated burns present a higher

probability of previous injury, which can lead to mortality
(Alexander et al. 2008).

In contrast to prescribed fires, wildfires are often more
intense, leading to crown fires that consume canopy fuels and

Table 1. Area of pine-dominated forest within the study burned by fire

type and number of fires

Area burned (ha)

No. of

fires

Both wildfire

and prescribed fire

Wildfire

only

Prescribed

fire only

1 11 626 1662

2 1850 10 597 1074

3 2106 3175 993

4 1965 1350 799

5 1230 163B 433C

6 1023

7 498

8 471

9 124

10 159A

Sum (ha) 9427 26 912 4962

AAreas with $ 10 combined wildfires and prescribed fires.
BAreas with $ 5 wildfires.
CAreas with $ 5 prescribed fires.
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in many cases cause overstorey stem mortality. For example,
Boerner (1981) found almost one-quarter of pine stemswere dead
3 years following wildfires. Consequently, even a single wildfire

can have a major effect on the canopy, with a strong relationship
of decreasing CBD in both the upper and lower canopy and a
marked increase inCBDat themid-storey levelwith an increasing

number of wildfires. Boerner (1981) described a dense canopy
above 1 m following severe wildfires in the PNR. In this forest
system, the most likely cause of this pattern is recruitment and

resprouting following the fire. Awildfire could result in a range of
different conditions, depending on its severity. In the case of a
low-severity fire in pitch pine stands, epicormic resprouting from
the bole and branches is common. In a more severe fire, the upper

bole and branches die and the tree resprouts at the base (Pausas
andKeeley 2017). In the case of themost severe fires, mineral soil
may be exposed, with regeneration subsequently occurring from

seeds released from serotinous cones (Landis et al. 2005) or the
development of an alternate stable community dominated by
lichens and mosses (Sedia and Ehrenfeld 2003). However, these

latter circumstances are rare in the PNR, as pitch pine is very
successful in surviving even very intense fires. Because of their
relatively lower frequency, these wildfires may self-perpetuate

because they open the canopy, allowing additional growth in
the understorey and mid-storey. Although fire exclusion over an

extended period of time leads tomore oak species, Boerner (1981)
notes that adaptations to frequent fire have resulted in a species
assemblage thatminimises species turnover in both the overstorey

and understorey following wildfires.
The canopy response to the combined effects of wildfire and

prescribed fire is perhaps our most interesting finding. The

overall patterns of variation in CBD values with increasing
numbers of fires in these areas were more like those of the
prescribed fire areas than the wildfire areas, although there are

small differences, such as in the upper canopy, where average
CBD is lower for the combinedwildfire and prescribed fire class
than for prescribed fire alone. This overall pattern could indicate
that, on average, the prescribed fires in these areas have been

successful in limiting the severity of wildfires. Additionally, the
recent history of severe and infrequent wildfires is not represen-
tative of the natural fire regime, but is instead a consequence of

fire suppression (Forman and Boerner 1981). In this scenario,
wildfires before fire suppression may have been more frequent
and of lower intensity, similar to prescribed fires. This may be

supported by the similarity in the resulting CBD patterns
between prescribed fire alone areas and regions that have
experienced both wildfires and prescribed fires.

These results provide insight for forest resource managers
in the PNR as they consider whether their prescribed burning
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programs will achieve the outcomes in forest canopy fuels that
they desire. (For descriptions of New Jersey and PNR prescribed

burning programs and their goals over the past 70 years, see Little
et al. 1948; Cumming 1969; Clark et al. 2015; BillTrack50 2018).
In considering the effectiveness of prescribed burning programs, it

is important to start from clearly identified, a priori objectives, as
there is a potential tension between avoiding devastating fires at
the wildland–urban interface on the one hand and having fires

sufficiently intense to mimic historical fire effects on the other
hand. Furthermore, we found that the areas of prescribed fires are
characterised by denser canopy fuels compared with areas of

previous wildfires and therefore are potentially at greater risk for
active crown fires if surface fires reach the canopy during extreme
conditions. For example, Duveneck and Patterson (2007) found
that the wind speed necessary to sustain an active crown fire for

pitch pine forests in Massachusetts was substantially lower in
stands that had not been thinned compared with stands that had
been thinned.

One potential interpretation of our results is that, if a more
open stand structure similar to that produced by current wildland
fire is desired, occasional, more intense fires could be intro-

duced into the burning regime, if conditions allow. However,
Fig. 3 also suggests that the historical record of mixing wildfires
and prescribed fires has resulted in a structure more like that of

prescribed fires than wildfires. A possible mechanism for this is
that prescribed fires tend to remove ladder fuels and thus when

wildfires do occur, the likelihood of passive crown fire is
reduced. Therefore, adapting prescribed burns to produce a
landscape more like that produced by wildfires may not be

simple. One possible solution might be to use silviculture to
remove the canopy and then use prescribed fire to maintain the
structure.

The methods used in this study hold potential for assessment
of other prescribed fire objectives. For example, maps of CBD,
supplemented with appropriate geographic information systems

(GIS) layers, could be useful for avoiding prescribed burning in
old-growth or for evaluating the outcome of forest management
activities such as improving wildlife habitat. Preliminary cellu-
lar tracking evidence suggests that a species of greatest conser-

vation need in New Jersey, the golden eagle, may prefer the
closed canopy and open understorey habitat created by repeated
prescribed fires (Trish Miller, unpubl. data).

It is important to note that this study did not include the
confounding variables of time since fire, the severity of the fire
at each location or how fire effects on fuel structure varied

within the study area. One or all of these variables may explain
the anomalous increase in CBD in the understorey in areas that
have experienced three wildfire burns (Fig. 3). Furthermore, as
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already described, there is greater uncertainty in the prescribed
fire boundaries before 2007. Despite these limitations, the
results are generally consistent with our original hypotheses.

In addition, it is worth emphasising that due to the wall-to-wall

coverage of the remotely sensed data, and a corresponding
extensive fire history, we summarised relationships in not just
a small test sample, but within the entire region encompassing

over 41 000 ha of pine forest that have experienced a wide range
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Fig. 3. Violin plots of the distribution of canopy bulk density (CBD) values for various numbers of wildfires,

prescribed fires and both (i.e. wildfires and prescribed fires). The width of each plot is proportional to the

relative frequency of CBD observations at that value. The black dot represents the mean CBD for the specified

number of fires. The understorey is defined as 1–2m, the mid-storey as 3–7m, the lower canopy as 8–14m and

the upper canopy as 15–23m.

1106 Int. J. Wildland Fire T. A. Warner et al.



of fire histories, including stands that have been burned only

once, to those that have burned more than 10 times.

Conclusions

Wildfire is a natural part of many ecosystems. Forest resource
managers use prescribed burns to gain the benefits of fire, while

minimising the risks of wildfire. Our study utilised lidar data of
the New Jersey PNR to characterise the forest structure asso-
ciated with wildfire and prescribed burns. Our results indicate
that areas with a history of repeated prescribed burns have a

very different forest structure than areas that have experienced
repeated wildfire.

Average CBD generally showed only limited variation with

the number of prescribed fires. The greatest observed differences
in CBD are in the understorey and lowermost part of the canopy,
where a larger number of recorded prescribed fires correlated

with a slight decline in CBD. This result suggests future research
should investigate how frequently managers need to burn to
achieve the desired fuel structure for reduced fire hazard. Pre-
scribed fires may also have a weak fertilising effect on the upper

canopy, as indicated by a small positive relationship associated
with$ 4 fires, a finding that is in agreement with Boerner et al.
(1988). In contrast, increasing numbers of prior wildfires corre-

lated with higher CBD in the mid-storey. In the upper and lower
canopy, the relationship was the opposite, with notably lower
CBD as the number of wildfires increased.

These results have important implications for forest resource
managers. The differences in the relationships between burning
regime and forest structure that are documented here will likely

result in long-term changes to the forest ecosystem. If there is a
desire to revert to a system that emulates forest structure
resulting from wildfire, in areas where the risk of wildfires is
of less concern, the prescribed burn regime of the PNRmay need

to be adapted to allow for more occasional high-intensity fires
that more closely mimic wildfires.
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