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ABSTRACT
Effective modelling of forest susceptibility to defoliating insect out-
breaks requires a better understanding of outbreak dynamics, which
includes detailed knowledge of the pre- and post-outbreak forest
status as well as subsequent feedback mechanisms. In this paper, we
strive to fill the forest status need by combining archived Landsat
sensor data (pre- and post-outbreak) with different formats and dates
of the U.S. Forest Service’s Forest Inventory and Analysis (FIA) data
(periodic [1970s, 1990s] and annual [2003–2006]). Specifically, we
explore the utility of these FIA ground data for calibrating models
of forest species and type abundance for mapping past forest com-
position in the Border Lakes Ecoregion (BLE) of Upper Midwest of the
US. Model calibration results between Landsat reflectance and FIA
ground data for both total forest basal area and balsam fir (Abies
balsamea) relative basal area, a preferred host of the spruce bud-
worm (SBW, Choristoneura fumiferana), were poor to moderate (R2adj
0.39 and 0.48, respectively). Results for aspen (Populous tremuloides)
and spruce (Picea glauca and P. mariana) abundance yielded sub-
stantially better accuracies (R2adj 0.64 and 0.78; RMSE 15.56 and
10.65 m2 ha−1, respectively). Groupings of tree species into broad-
leaved and conifers substantially improved model calibration result
(R2adj range: 0.72–0.91), except for the SBW host group (A. balsamea,
P. glauca, and P. mariana). Periodic FIA ground data from the early
1990s generated stronger models compared to other FIA-Landsat
date combinations tested. A paired t-test of abundance differences
between undisturbed forest from the older 1977 and 1990 periodic
inventories was significant (p-value < 0.0001), suggesting possible
effects of variable FIA sampling protocol or ground plot positional
accuracy through time. However, a similar paired t-test of abundance
difference between periodic FIA (1990) and annual FIA (2003–2006)
was not significant (p-value = 0.249). We posit four potential factors
that may have contributed to weak Landsat-FIA calibration results for
species abundance: 1) variation in FIA subplot arrangement and
sampling protocols through time, 2) variability in species abundance
and heterogeneity among FIA sampling across adjacent Landsat
orbital paths, 3) understory species (balsam fir) that are largely hid-
den from remote detection, and 4) cloud cover and orbital phase
mismatches preventing capture of key forest phenology aids. While
past and present FIA sampling protocols were not specifically
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designed for integration with 30-meter satellite sensor data, careful
pairing of FIA ground data (past or present) with Landsat sensor data
can facilitate reasonable estimates, of forest abundance for general-
ized forest types, and possibly forest species when heterogeneity is
low. Nevertheless, we recommend that FIA subplot sampling proto-
cols be augmented to include measurements of forest conditions
that are more amenable to integration with 30-meter Landsat sensor
data.

1. Introduction

Outbreaks of forest insects have had profound impacts on the dynamics of northern forest
ecosystems (Franklin et al. 2002; Dymond et al. 2010; Sommerfeld et al. 2018; Sturtevant
et al. 2015) and associated socio-economic processes (Dale et al. 2001; Turner 2010).
Economic losses to insect and pathogen disturbance approach 1.5 billion dollars annually
in the U.S. alone (Dale et al. 2001). More alarming is the fact that stand-killing insect
outbreaks have the potential to advance the accumulation of CO2 in Earth’s atmosphere
by converting forests from net carbon sinks to sources across relatively short time frames
(Dymond et al. 2010).

A unique aspect of insect outbreaks as a forest disturbance agent is that damage is
generally limited to a restricted taxonomy defined by the range of susceptible hosts for
a given herbivore (Sturtevant et al. 2004; Koricheva, Klapwijk, and Björkman 2012), in many
cases restricted to a particular genus or family (Jactel and Brockerhoff 2007). Broad-scaled risk
assessments quantifying forest susceptibility to specific herbivores therefore requires detailed
compositional information (e.g., Crocker et al. 2016). Evidence suggests that outbreak
dynamics (i.e., outbreak duration, frequency, intensity, or spatial synchrony) can be related
to the landscape concentration or arrangement of host (Volney andMcCullough 1994; Roland
2005; Wesołowski and Patryk 2006; Haynes, Liebhold, and Johnson 2009; Robert et al. 2018)
and the relative proportion of associated non-host species (e.g., Cappuccino et al. 1998; Raffa,
Powell, and Townsend 2013). Hence, for insect pests that cause significant mortality in their
forest host, such as the endemic eastern spruce budworm (SBW, Choristoneura fumiferana),
accurate mapping of host before and after major outbreaks is required.

Data from the national Forest Inventory and Analyses program (FIA) provide detailed
information on past forest composition and structure, changes over time, and incidences of
mortality from insects and other agents. Moreover, these FIA-based estimates are design-
unbiased, with associated estimates of uncertainty, which most map-based estimates cannot
provide (M.D. Nelson, pers. comm.). However, the distribution of FIA sample points across the
landscape is far too sparse (i.e., one-sample plot per 2,400-ha hexagon, Bechtold and
Patterson 2005) to enable finer-scale analyses of spatial process mechanics, such as those
required for the analyses of eastern spruce budworm dynamics in Minnesota, USA and
neighbouring Ontario, Canada (James et al. 2011). Reliable methods are needed whereby
FIA data may be used as ground truth to enable finer-scale, wall-to-wall mapping of past
forest composition and structure to enable more robust (i.e., long term) understanding of the
relationships of forest response to insect outbreak dynamics. Such scaling-up of past forest
inventory is possible via satellite remote sensing (Wolter et al. 2008), as the continuous
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Landsat archive dates back to ca. 1972 and 1984 (57-metre Landsat Multispectral Scanner
[MSS] and subsequent 30-metre Landsat series of sensors [TM, ETM+, and OLI]). Towards this
end, many examples of the utility of Landsat sensor data for ecosystem monitoring and
mapping exist (Franklin 1986; Hall et al. 1991;Moore and Bauer 1990; Tucker 1978; Turner et al.
1999; Vogelmann et al. 2001; Wolter et al. 1995, andmanymore). Typically, estimates of forest
structure are derived via calibration of satellite sensor data with ground data. In some
instances, ground sampling protocols are specifically designed to take advantage of the
sensor’s spatial resolution (Wolter et al. 2008; Wolter, Townsend, and Sturtevant 2009;
Wolter and Townsend 2011). Few studies have successfully combined FIA and Landsat data
to calibrate models for mapping continuous forest structure (McRoberts et al. 2007; Nelson
et al. 2009; Wilson, Knight, and McRoberts 2018). Rather, many efforts focused on developing
categorical maps of forest attributes: forest versus non-forest (Franco-Lopez, Ek, and Bauer
2001), age-class (Song, Schroeder, and Cohen 2007; Liu et al. 2008), basal area (Franco-Lopez,
Ek, and Bauer 2001), or disturbance (Nelson et al. 2009; Thomas et al. 2011). Other studies have
successfully combined FIA and other ancillary information with coarse-scale satellite sensor
data such as theModerate Resolution Imaging Spectroradiometer (MODIS, 250–500m) sensor
for regional mapping (Zhu and Evans 1994; Ruefenacht et al. 2008; Blackard et al. 2008; Nelson
et al. 2011; Wilson, Lister, and Riemann 2012; Wilson, Woodall, and Griffith 2013; Goerndt,
Wilson, and Aguilar 2019). All such studies highlight the wide potential of combining FIA and
remote sensing data to meet forest ecosystem research needs.

The spatial quality and temporal distribution of these FIA ground data are germane to
the objectives of this study. Past and current FIA data include two general sets of sampling
protocols termed periodic and annual, respectively. These two sampling protocols differ by
subplot number and configuration (Figure 1), sampling design, and types of measurement
(Goeking 2015; McRoberts et al. 2005). Former FIA surveys (before 1998) were termed
periodic as return times to a particular state for re-measurement ranged from 6 to 18 years
(McRoberts et al. 2005). The USDA Forest Service recognized issues with the periodic
sampling protocol, including bias and uncertainty due to regionally variable sampling
protocols and definitions (Goeking 2015), which, when compounded by land-use change
over long sample periods, made area and volume estimation increasingly difficult over
large regions (McRoberts et al. 2005). To alleviate such problems, the 1998 Farm Bill laid out
a plan to initiate an annual protocol of FIA sampling (after 1998) that would standardize
a national set of core variables. This included a common set of definitions, sampling
protocols, and a simplified, unbiased plot design (Figure 1). Under the new, annual FIA
sampling protocol, 20% of all FIA plots in a given region are sampled every year so that all
plots are measured once every 5 years (Vandendriesche and Haugen 2008).

Thus, two primary objectives exist for this research conducted across a landscape that
encompasses northern Minnesota and adjacent Ontario in the Border Lakes Ecoregion (BLE)
(Figure 2). First, produce spatially explicit, continuous forest composition maps (including
spruce budwormhost: balsam fir [A. balsamea] and spruce [Picea spp.]) for two periods in the
past (ca. 1985 and ca. 2005) at 30-meter grain-size using the combination of archived
satellite sensor data (Landsat TM) and archived FIA data. These two periods correspond
roughly to pre- and post-outbreak stages of a past spruce budworm disturbance event in
this region (Robert, Kneeshaw, and Sturtevant 2012; Robert et al. 2018). Second, assess
respective FIA-Landsat calibration performance differences between former (periodic) and
current (annual) FIA sampling protocols, as forest composition maps linked to each
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inventory must be comparable across time. Hence, calibration tests using these FIA data
include comparisons between periodic and annual FIA sampling design (Figure 1), lag time
between FIA sampling and satellite image acquisition dates, and heterogeneity in forest
cover proximal to FIA plot centers. To date, we are unware of studies that investigated forest
structure modelling where both Landsat sensor data and ground calibration data (i.e., FIA)
were collected greater than 13 years before the analysis period, which is the case in this
study: 1985 and 2005 (34 and 14 years, respectively).

In this study, forest basal area (BA) and relative basal area (RBA) information derived
from the national FIA program were used as metrics of tree abundance. Such forest
metrics are standard in forest ecosystem studies for quantifying the abundance of all or
individual forest species in a given area that takes into account both stem count and tree
size (Reineke 1933; Wolter et al. 2008). In this research, forest structure information at
individual species- or genus-level and groupings of species is pertinent to understanding

Figure 1. Forest Inventory and Analysis (FIA) sample plot designs for the old, periodic FIA protocol and
the new annual FIA protocol adopted in 1998. Periodic FIA data were collected using variable-radius
sampling methods. Hence, sub-plots are shown with different radii (i.e., 4.22 m, 8.45 m, and 10.56 m)
associated with tree bole diameters of 25.4 cm, 50.8 cm, and 63.5 cm, respectively. Whereas, annual
FIA sub-plots in the Minnesota region use a fixed, 7.31 m radius. The superimposed square represents
a single 30-meter Landsat pixel. In addition, a black diamond symbol represents periodic and annual
FIA full plot center as well as hypothetical Landsat pixel center.
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the mechanisms of spruce budworm (Choristoneura fumiferana) outbreaks in this region
(James et al. 2011; Sturtevant et al. 2015). Given the importance, we explore the relative
strengths and weakness of calibrating forest structure models for mapping purposes
using the newer annual and older periodic FIA data with Landsat sensor data.

There has been substantial use of nearest-neighbour techniques, such as Most Similar
Neighbour (MSN) (Moeur and Stage 1995), Gradient Nearest Neighbour (GNN) (Ohmann and
Gregory 2002), and k-Nearest Neighbour (McRoberts, Nelson, and Wendt 2002; McRoberts
et al. 2007; Wilson, Knight, and McRoberts 2018), to relate FIA ground data to satellite sensor
data for forest parameter estimation and mapping purposes. In particular, k-NN has gained
much traction, because it is non-parametric, multivariate, transparent, and a relatively simple
method for producing estimates of continuous forest structure variables (McRoberts, Nelson,
and Wendt 2002; McRoberts et al. 2007). The past remote sensing research has clearly
demonstrated that the accuracy of forest cover type mapping can be substantially improved
by careful selection of many additional satellite images that coincide with various species-
specific phenology phenomena (Wolter et al. 1995, 2008; Wilson, Lister, and Riemann 2012).
While other studies have successfully linked Landsat andFIAdata formapping forest basal area

Figure 2. The Boarder Lakes Ecoregion (BLE) study area in northern Minnesota, USA and adjacent
Ontario, Canada. The area is a mixture of managed forest (outlined in dotted and solid red lines) and
unmanaged natural or wilderness forests (simple hatch and crosshatch in black). Overlapping grey
rhombus polygons represent the six Landsat footprints that cover the study area (Landsat WRS-2
paths 26–28 and rows 26–27).
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(McRoberts et al. 2007; Franco-Lopez, Ek, andBauer 2001;Wilson, Knight, andMcRoberts 2018),
finer-scale mapping (i.e., 30-meter) of near species-level forest composition and abundance
have not yet been reported. Here, we apply the iterative exclusion partial least squares (xPLS)
regression approach (Wolter et al. 2008, 2012) designed to handle numerous, collinear input
image predictors. This basic approach for modelling and mapping forest structure has been
successfully tested and validated in this region with Landsat and other satellite sensor data
(Radarsat-1, PALSAR, SPOT-5) (Wolter et al. 2008; Wolter, Townsend, and Sturtevant 2009;
Wolter and Townsend 2011), but has not yet been tested where FIA data represent ground
truth.

2. Methods

2.1. Study area

The Border Lakes Ecoregion (BLE) encompasses northern Minnesota and neighbouring
Ontario and requires six Landsat thematic mapper (TM) images (each 170 km × 183 km
with ca. 35% side-lap) to cover this area: three Worldwide Reference System (WRS-2) Paths
(P26-P28) and two WRS-2 Rows (R26-R27) (Figure 2). The study area is a transitional sub-
boreal forest (Baker 1989; Heinselman 1973). Within this region, balsam fir (A. balsamea)
and white spruce (P. glauca)) are the preferred host tree species of the spruce budworm,
with black spruce (P. mariana) serving as a less-preferred host. Non-host tree species
includes broadleaved species: aspen (Populus tremuloides, P. grandidentata), paper birch
(Betula papyrifera), maples (Acer rubrum, A. Saccharum), ash (Fraxinus spp.), and other
coniferous species: jack pine (Pinus banksiana), big-pines (P. resinosa, P. strobus), tamarack
(Larix larcinia), and northern white cedar (Thuja occidentalis). The current forest species
composition in the BLE reflects the legacy of fire suppression over the last century (Baker
1992; Frelich and Reich 1995; Scheller et al. 2005) and intensive management for pulp-
wood (Blais 1983; Wolter and White 2002; Pastor, Sharp, and Wolter 2005).

Substantial patch size contrast exists in clear-cut harvest legacies between northern
Minnesota and Ontario, which has created a unique landscape dichotomy (Wolter et al.
2012b). Historically, managed forests in the Ontario portion of the BLE were more homo-
genous compared to managed forests in Minnesota (Wolter and White 2002) due to
a combination of past forest management practices and substantial differences in both
the magnitude of public land ownership and average cut-block size between the two
countries (Sturtevant et al. 2014; Wolter et al. 2012b). While management differences were
evident in these landscapes in the past, cut-block sizes in Ontario have decreased in
recent years (Sturtevant et al. 2014; Wolter et al. 2012b). Wilderness forests in the BLE,
including the Boundary Waters Canoe AreaWilderness (BWCAW), Voyageurs National Park
in Minnesota, and the Quetico Provincial Park in Ontario, bisect the two dominant forest
management zones in respective countries (Figure 2).

Recent analyses suggest that divergent land management legacies across the study
area have influenced outbreak dynamics of SBW (Robert et al. 2018). Moreover, host in
mixture with non-host species, especially broadleaved, can decrease the severity of SBW
outbreaks on host species (Su, Needham, and MacLean 1996; Cappuccino et al. 1998),
which is similar within western conifer forest attacked by native bark beetles (Raffa,
Powell, and Townsend 2013). The last major SBW outbreak in the region attained
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maximum defoliation in the mid-1990s over a large portion of the study area. Other
important native forest defoliators in this region include forest tent caterpillar
(Malacosoma disstria) affecting hardwood tree species, jack pine budworm
(Choristoneura pinus pinus), and potentially eastern larch beetle (Dendroctinus simplex)
(Crocker et al. 2016). Additional invasive insect pests, such as European gypsy moth
(Lymantria dispar dispar) and emerald ash borer (Agrilus planipennis) currently threaten
the region.

2.2. Field data

Forest Inventory and Analysis (FIA) field plot data from 1977 and 1990 (periodic) and from
2003, 2004, 2005 and 2006 (annual) for northern Minnesota were obtained from the USDA
Forest Service under a memorandum of understanding between the US Forest Service and
Iowa State University. We did not obtain forest inventory data from Ontario’s Ministry of
Natural Resources and Forestry to represent the Canadian side of the study area since
a specific goal was to evaluate the use of FIA. Moreover, Canada’s national forest inventory
differs substantially from FIA in sampling design, subplot configuration, and measurement
protocol (McRoberts et al. 2009), whichwould confound validation efforts. Hence, validation of
Landsat-FIA calibrations for the entire Border Lakes Ecoregion (BLE) is based solely on
Minnesota FIA data. The FIA field plot locations are permanent positions established across
the United States using a stratified random, equal probability sampling technique (Bechtold
and Patterson 2005). Periodic FIA plots were designed as a 10-point cluster of variable-radius
subplots, but were plagued by spatial, temporal, and methodological inconsistencies and
poorly documented sampling strategies that precluded reliable long-term forest change
analyses (Goeking 2015). The new, annual FIA protocol has a national standard sampling
strategy across a simplified plot design: a central subplot surrounded by three satellite
subplots separated by 120 degrees with centers 36.6 m (120 ft) from the center subplot
(Figure 1), which represents the full FIA plot center (Bechtold and Patterson 2005). The reader
should note thatwhile sample intensity can still vary among states, within states, and between
years, the annual FIA sample intensity in Minnesota has been consistent within and between
years (M.D. Nelson, pers. comm.).

In this study, we used only forested FIA plots (both periodic and annual) where total forest
basal area was greater than 14.5 m2 ha−1, according to Wolter et al. (2008), and all subplots
(10 periodic and 4 annual, Figure 1) had the same forest condition code (i.e., accessible forest
land). This procedure served to avoid sources of spatial heterogeneity in ground data related
to mixtures of forest and non-forest sub-plot conditions co-occurring within a full FIA plot.
Under broad, homogeneous forest conditions, a relatively small FIA sub-plot (i.e.,
7.32 m radius) can certainly represent the conditions of a much larger 30-meter pixel. Under
heterogeneous forest conditions, individual sub-plot species diversity may be quite different
from the overarching heterogeneity associated with the larger pixel area sampled by the
satellite sensor (Wilson, Lister, and Riemann 2012). Moreover, positional uncertainty in the
ortho-rectified and geo-corrected Landsat products provided by the USGS can be in error by
as much as 12 m on the ground (Irons, Dwyer, and Barsi 2012). And in cases where a pixel
center is not perfectly aligned with the FIA plot center, a maximum additional positional
variance of up to 21.2 m (0.5 × diagonal pixel dimension) is possible. Hence, FIA plot-wise
averages of the sub-plot BA data (Figure 1) were calculated and used as response variables to
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further reduce the impact of fine-grain spatial variability when compared to the area repre-
sented by a 30-meter Landsat pixel, including inherent spatial error due to imperfect image
geo-registration. Because of the various spatial mismatches discussed above (pixel-to-ground,
FIA-to-ground, and FIA-to-pixel), we did not attempt to parse FIA sub-plots by pixel or
groupings of pixels for any Landsat-FIA calibrations. Past attempts to do so have reported
mixed effects on accuracy (SeeMcRoberts 2009; Ohmann, Gregory, and Roberts 2014 formore
detail). Thus, we believe averaging basal area values across all sub-plots provides a more
robust representation of ground conditions within the range of potential space occupied by
a single Landsat pixel. These averages included total forest basal area (TOTBA, m2 ha−1) and
associated relative basal areas (RBA, entity BA/TOTBA) of each major forest species, or genus,
and species grouping such as spruce budworm (SBW) host species (A. balsamea + P. glauca +
P.mariana), all conifers combined (CON), and all broadleaved species combined (BLF) (Table1).
Species and species grouping were defined based on insect’s host and non-host species as
well as to enhance the model accuracy.

We performed additional screening of FIA plots to guard against instances where the
forest state may have changed due to disturbance between ground sampling and
associated image capture dates. Forest masks for each period (1985 and 2005) were
developed (discussed below) and applied to ensure all recent disturbances in that period
were excluded from analyses (Table 2). After all screening was complete, 1082 of the
periodic FIA plots (inventory year 1990) and 1053 of the annual FIA plots (inventory years
2003–2006) remained for analyses. We withheld 20% of these FIA plots from model
development for validation. However, due to the smaller relative size of US land area in
WRS-2 P26 (Figure 2), the number of annual FIA plots needed for both calibration and
validation was limited (182 plots vs. 428 and 443 plots in WRS-2 P27 and P28, respec-
tively). Therefore, we obtained additional ground data (122 plots) from another Minnesota
study (Wolter et al. 2008) solely for P26 model validation purposes.

2.3. Landsat data

Landsat Thematic Mapper (TM) imagery for WRS-2 P26-P28 and rows R26-R27 was down-
loaded from www.earthexplorer.org as fully processed surface reflectance products that
were both ortho-rectified and geo-corrected as part of the Landsat Ecosystem

Table 1. Dependent FIA plot data represent forest species and groups of species for model calibration
with Landsat sensor data.
FIA species variable Type level Species

Ash Genus Black and green ash (Fraxinus nigra and F. pennsylvanica)
Aspen Genus Quaking and big-toothed aspen (Populus tremuloides and P. grandidentata)
Maple Genus Red and sugar maple (Acer rubrum and A. saccharum)
Birch Species Paper birch (Betual papyrifera)
Pine Genus Red, white and jack pine (Pinus resinosa, P. strobus and P. banksiana)
Big-pines Group Red and white pine (P. resinosa and P. strobus)
Balsam fir Species Balsam fir (Abies balsamea)
Spruce Genus White and black spruce (Picea glauca and P. mariana)
Black spruce Species Black spruce (P. mariana)
Cedar Species Northern white cedar (Thuja occidentalis)
Tamarack Species Tamarack (Larix laricina)
Broadleaves (BLF) Group Birch, maple, aspen, and ash
Conifers (CON) Group Pine, balsam fir, spruce, cedar, and tamarack
Spruce budworm (SBW) host Group Balsam fir, white spruce and black spruce
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Disturbance Adaptive Processing System (LEDAPS) (USGS 2015, detail in Vermote et al.
1997; Masek et al. 2006). We carefully evaluated our selection of Landsat images based on
five conditions:

● temporal proximity to FIA field data;
● potential capture of species-specific forest phenology phenomenon (Wolter et al.
1995, 2008);

● avoid haze or cloud contamination;
● avoid images concurrent with the ca. 1995 SBW outbreak in this region (Robert,
Kneeshaw, and Sturtevant 2012); and

● imagery for a given WRS-2 row in a given WRS-2 path must have an acceptable date
complement for either the preceding or successive row in that path (Table 2).

Hence, ca. 1985 (hereafter simply 1985) pre-outbreak forest composition maps were
based on the calibration of 1977 and 1990 FIA field data with Landsat imagery from 1984
(Landsat-5 launched March 1984) to 1992 window. Similarly, post-outbreak maps were
based on calibration of 2003–2006 FIA field data with Landsat imagery from a 2000–2008
window. However, we allowed images from 14 May 1999 (aspen, leaf-flush) and
3 October 2010 (maple and aspen senescent foliar colouration) as exceptions for 2005
WRS-2 P26 to capture unique and distinct forest phenology (Wolter et al. 1995). As
indicated above, 1977 FIA data were collected 8 years before Landsat-5 TM was launched.
Though earlier Landsat Multi-spectral Scanner (MSS) data from ca. 1977 exist, expanded
use of these more poorly resolved Landsat-MSS sensor data (Moore and Bauer 1990) from
1972–1983 would have certainly confounded the goals of this study. With that said, we
allowed the use of a specific Landsat-4 (MSS) image from 16 September 1984 in P27 to
capture the narrow timing of maple foliar senescence (Wolter et al. 1995). Ultimately, for
both mapping timeframes (1985 and 2005) wider date ranges were needed to procure
suitable TM imagery, as instances of excessive cloud cover and a few instances of orbital
cycle-to-phenology mismatches prevented tighter temporal constraints on our image
search, which is typical in such studies (Vogelmann et al. 2001; Wolter, Johnston, and
Niemi 2006). Given the five constraints listed above, a total of 36 Landsat images (Table 2)
were used in this study to map SBW host species abundance and distribution from FIA
observations.

As briefly discussed in the FIA weeding protocols above, forest masks were developed
for each WRS-2 path using the most recent Landsat image in each mapping timeframe
(1985 and 2005). In doing so, changes in forest state (e.g., due to harvest or natural
disturbance) that occurred between FIA ground sampling date and the most recent,
respective, Landsat image dates could be excluded from model development. In general,
winter conditions (i.e., with snow ground cover) were considered ideal to produce forest/
non-forest masks. Under such conditions, white snow patches indicate non-forest and
stand-replacing forest disturbances, which are clearly visible and easily distinguished from
both intact conifer (Wolter et al. 2008) and deciduous forests (Wolter et al. 2012). For this
study, a simple threshold applied to the green band (band 2, 520–600 nm) of the
respective winter images discriminated forest from non-forested areas. We visually
assessed this non-forest masking process using the ‘Historical Imagery’ functionality
available within the Google Earth Pro program (Earth version 7.3.2).
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2.4. FIA-Landsat model calibrations

2.4.1. Predictor variable selection
Landsat image selections for each of the three respective WRS-2 paths (P26-P28) resulted
in a set of images that were date-matched by row within each WRS-2 path, but not
matched between paths (Table 2). Hence, Landsat-FIA calibration models for the two
separate periods (1985 and 2005) were path-specific, resulting in six sets of models. In
addition, we developed five sets of models to test various FIA data stratifications. Initial
Landsat predictor variables for a given WRS-2 path consisted of the individual sensor
bands (three visible, one near-infrared, and two shortwave infrared bands) and commonly
derived indices and ratios (Tables 2 and 3) used in past forest structure mapping studies
(Wolter et al. 2008; Cohen and Spies 1992; Hansen et al. 2001, and many more).

Calibrations between respective image predictor variables and dependent FIA ground
data were performed using iterative exclusion partial least squares (xPLS) regression (Wolter
et al. 2012), which is an iterative variant of standard partial least squares (PLS) regression
(Geladi and Kowalski 1986). In general, the use of PLS regression is appropriate in cases
where independent or dependent regression variables are highly collinear (Geladi and
Kowalski 1986), which is the case with Landsat sensor data stacks (Wolter et al. 2008). The
xPLS routine is unique in that it iteratively weeds out predictor variables that show little or
no response to dependent variables based on intermediate model performance evaluation
(minimum root mean squared error) using a leave-one-out cross-validation (LOOCV)
approach (Gong 1986). The xPLS routine results in a parsimonious set of predictor variables
that minimizes dependent variable estimation error (Wolter et al. 2012). Final predictor
variable sets are then used in a similar PLS routine (nonlinear iterative PLS [NIPALS], Geladi
and Kowalski 1986) with 1000 random permutations to generate coefficients for mapping
forest species for each path and period. Resulting models include estimates of total BA
(TOTBA) and relative BA (RBA) for all dominant forest species (or genera) and important
groupings of species (e.g., SBW host, all conifers [CON], and all broadleaved species [BLF]).

Table 3. List of vegetation indices (VI) and associated formulations used in this study.
Index and Abbreviation Equation Reference

Normalized Difference
Vegetation Index (NDVI)

(TM4 – TM3)/(TM4 + TM3) Rouse et al. 1974

Moisture Stress Index (MSI) TM5/TM4 Rock et al. 1986
Shortwave to Visible Ratio (SVR) (TM5 + TM7)/(TM1 + TM2 + TM3) Wolter et al. 2008
Normalized Burn Ratio (NBR) (TM4 -TM7)/(TM4 + TM7) Key and Benson 1999
Autumn Index (AI) TM3/TM1 Wolter and Townsend 2011
Normalized Difference Moisture
Index (NDMI)

(TM4 -TM5)/(TM4 + TM5) Hardisky et al. 1983

Tasselled Cap Brightness (TC1) (0.2043 × TM1) + (0.4158 × TM2) +
(0.5524 × TM3) + (0.5741 ×
TM4) + (0.3124 × TM5) +
(0.2303 × TM7)

Healey et al. 2005

Tasselled Cap Greeness (TC2) (−0.1603 × TM1) + (−0.2819 ×
TM2) + (−0.4934 × TM3) +
(0.7940 × TM4) + (−0.0002 ×
TM5) + (−0.1446 × TM7)

Healey et al. 2005

Tasselled Cap Wetness (TC3) (0.0315 × TM1) + (0.2021 × TM2) +
(0.3102 × TM3) + (0.1594 ×
TM4) + (−0.6806 × TM5) +
(−0.6109 × TM7)

Healey et al. 2005

Disturbance Index (DI) TC1 – (TC2 + TC3) Healey et al. 2005
Visible Vegetation Index (VVI) TM2/TM3
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Salient predictor variables from the xPLS routine are reported following Wolter et al.
(2008, 2009), as this presentation enables assessment of different spectral features for their
sensitivity to dependent variables of interest and, thus, the realism of the prediction models
with respect to known spectral characteristics of vegetation types. Image predictor variables
have a range in magnitude from 0 to 1 with either positive or negative sign (i.e. −1 to +1).
Here, we used ‘+’ or ‘-’ followed by the image predictor variable to denote the sign of
magnitude (Table 2). To conserve space, we report only important variables fromWRS-2 P27
with a magnitude greater or equal to 0.8 (Wold 1994).

2.4.2. Field data stratification tests
Rather than using all FIA data, we investigated Landsat-FIA model calibration sensitivity to (1)
the spectral variability in shortwave infrared reflectance (band 5 SWIR, 1550–1750 nm) within
a 3 × 3 pixel neighbourhood (kernel) around each FIA plot centre on the ground, and (2)
differences in temporal lag between image acquisition and FIA inventory dates. For the first,
we assessed the coefficient of variation (CV) in SWIR reflectancewithin a 3 × 3 pixel neighbour-
hood around each FIA plot center. Landsat TM’s SWIR band 5 is especially sensitive to forest
composition differences, such as conifer/broadleaved and forest/non-forest (Hopkins,
Maclean, and Lillesand 1988). If the CV of SWIR reflectance around an FIA plot was less than
or equal to the neighbourhood mean plus one standard deviation (SD), then the plot was
classified as spectrally homogeneous (HOM), otherwise plotwas classified as spectrally hetero-
geneous (HET).

Similarly, temporal lag effect was assessed by using the separate dates of periodic FIA
data (1977 and 1990) with the same suite of 1985 Landsat predictor variables to calibrate
two, respective, sets of forest structure models. Because periodic FIA dates have approx-
imate lag-time separations with respect to the 1985 sensor data of 8 and 5 years, our
hypothesis was that the 1990 periodic FIA data would produce superior calibration results.
For this purpose, we selected Landsat image data from WRS-2 P27, as it overlaps P26 and
P28 by roughly 70% at this latitude and encompasses the majority of the study area
(Figure 2). We then developed five additional Landsat-FIA regression calibration models to
estimate TOTBA and RBA of species and species groups for 1985 using (1) all FIA data, (2)
all HET FIA, (3) all HOM FIA, (4) 1977 HOM FIA, and (5) 1990 HOM FIA. Further stratification
of HET FIA plots by inventory year was not performed due to small sample sizes. As before,
model performances were evaluated based on leave-one-out cross-validation (LOOCV) for
each respective set of periodic FIA calibration data used. Preferred calibrations selected
for mapping were characterized as having superior adjusted coefficient of determinations
(R2adj) of each forest species or group of species, predicted residual error sum of squares
(PRESS) statistics, and a relatively concise set of image predictor variables. The PRESS
statistic is computed on centre-scaled data and provides an overall measure of model
performance (Allen 1971; Wolter et al. 2008).

In addition, we tested the relative difference in TOTBA by using a non-parametric
paired t-test (Wilcoxon signed-rank) for 1977 vs 1990 and 1990 vs 2003–2006 FIA plots
that share the same physical ground location (n = 122 and 58, respectively). Further,
paired two-tailed student t-tests were conducted to assess the significant difference in
forest structure models performance between the inventory period (1977 vs 1990), WRS-2
paths and FIA plot designs (annual vs periodic).
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2.5. Assessment of mapping sensitivity

Receiver Operating Characteristics (ROC) curves (Hanley and McNeil 1982; Wolter and
Townsend 2011) were applied to the final, continuous estimates to identify the true lower
boundary of mapping sensitivity relative to false positives for different BA or RBA cut-off
points. Here, we used the Youden index (Youden 1950) as a criterion to assess the
maximum of vertical distance of ROC curve from the point on diagonal chance line for
different BA cut-off iterations, which maximizes the difference between sensitivity and
1-specificity. Hence, by maximizing sensitivity plus specificity across various thresholds,
the optimal lower cut-off point was determined (Youden 1950).

3. Results

3.1. Model performance by FIA stratification

3.1.1. Periodic FIA and forest spectral variability
Stratifying Landsat-FIA model calibrations by forest spectral variability proximal to
periodic FIA plot centers, irrespective of inventory date, revealed no significant differ-
ences (all p-values > 0.588) in overall performance (based on R2adj values) between the
three sets of models (ALL FIA, ALL HET FIA, and ALL HOM FIA). However, of the three
periodic FIA stratifications above, those using spectrally heterogeneous (HET) FIA plots
benefited five of the eight RBA models for conifer species and groups (Table 4).
Conversely, for total BA and RBA models for broadleaved species and groups, all but
one (birch) performed better when spectrally homogeneous (HOM) FIA plots were used
(Table 4).

In each instance of periodic FIA data stratification listed above, the Y-block of depen-
dent forest variables (i.e., TOTBA and all RBAs) was calibrated simultaneously as a set of
models within one overall xPLS regression run. Stratification by periodic FIA date showed
the 1990 HOM FIA model set had a lower PRESS value (Table 4, 78.59%) than all other
model sets, where six of the thirteen forest structure models had superior overall R2adj
values. In terms of structure model sets, five of the eight conifer models calibrated using
ALL HET FIA plots had the best overall R2adj values (Table 4). We did not produce maps
from this latter set of models due to concerns over small sample size (e.g., 29 for big-pines;
19 for both jack pine and tamarack; and 22 for cedar).

3.1.2. Forest spectral homogeneity and periodic FIA date (1977 vs 1990)
Stratification of spectrally homogeneous periodic FIA plots (HOM FIA) by inventory year (1977
and 1990) for structuremodel calibrations is shown in Table 4. Models calibrated using just the
1990 HOM FIA data and 1985 Landsat sensor data (ca. 5-year lag) performed significantly
better overall in terms of R2adj values (p-value = 0.0096) than those calibrated using the 1977
HOM FIA inventory with these same Landsat sensor data (ca. 8-year lag). The two 1977 HOM
FIA exceptions were big-pines and cedar, despite the greater FIA-to-image time-lag.
Moreover, the set of structure models calibrated using the 1990 HOM FIA ground data
produced a better PRESS value (78.59%) than did the 1977 HOM FIA model set (83.42%),
while the number of image predictor variables in each case was similar at ca. 35. Further
analysis of 122 common sample plots, we found that the TOTBA variables between 1977 and
1990 were significantly different (p-value < 0.0001).
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3.1.3. Periodic FIA stratification and overall model performance
With the exception of the 1990 HOM FIA model set, all other model sets calibrated using
1985 Landsat variables and periodic FIA ground data stratified in various ways (Table 4)
did not yield significant differences in overall model performance (all p-values > 0.588). Of
these, the All HET FIA set of models used the fewest image predictors (17) compared to
35–39 for the other sets, but this was also coupled with the highest overall model PRESS
value and the poorest RBA estimate for SBW host species (R2adj = 0.21, balsam fir).
Moreover, the All HET FIA set of species models also produced the least accurate
estimates of RBA for three out of the four broadleaved species (Table 4).

Test stratifications of these periodic FIA inventory data revealed superior calibration results
for certain species or groups of species here and there at different levels. However, the best
overall model calibration set between periodic FIA inventory data and the 1985 Landsat
sensor data resulted from the use of the 1990 HOM FIA ground data. Moreover, this model set
also produced the best estimates for SBW host species (balsam fir, white spruce and black
spruce) (Table 4), which is germane to our specific research needs. Hence, the 1990 HOM FIA
model set was selected for mapping forest species abundance and distribution in the ca.
1985-time step.

3.1.4. Periodic vs. annual FIA plot stratification
Separate forest structure calibration tests using just the spectrally homogeneous (HOM) FIA
plots, but stratified by the two plot designs (periodic [1990] vs. annual [ca. 2005], Figure 1) for
the ca. 1985 and 2005 Landsat image time frames, respectively, are shown in Tables 5 and 6.
Twoof the three 1985 forest structuremodel sets (WRS-2 P26, P27) calibrated using 1990HOM
periodic FIA data performed significantly better (p-values = 0.0202 and < 0.0001, respectively)
than their 2005 FIA companion. However, performance between respectiveWRS-2 P28model
sets calibratedwith respective versions of FIAwas not significantly different (p-value > 0.2381).
Closer examination of common sample plots (n = 58) to annual (2003) and periodic (1990), we
found TOTBA variable was not significantly different (p-value = 0.249). When compared by FIA

Table 4. Forest structure calibration results (R2adj values and associated sample size (n)) stratified by
FIA plot spectral variability proximal to plot centre and periodic FIA date (ca.1985) for WRS-2 P27.

All FIA All HET FIA ALL HOM FIA 1977 HOM FIA 1990 HOM FIA

Stratification R2adj n R2adj n R2adj n R2adj n R2adj n

TOTBA 0.26 632 0.15 101 0.31 550 0.25 323 0.36 371
Ash 0.56 179 0.32 7 0.59 172 0.62 97 0.65 122
Aspen 0.59 450 0.43 58 0.63 404 0.56 239 0.67 267
Maple 0.50 230 0.19 17 0.52 214 0.53 101 0.58 159
Birch 0.36 435 0.40 48 0.35 395 0.32 224 0.37 265
Pine 0.39 147 0.65 36 0.34 117 0.35 62 0.39 81
Big-pines 0.39 111 0.59 29 0.31 88 0.37 47 0.35 59
Jack pine 0.14 68 0.30 19 0.13 51 0.17 25 0.19 39
Balsam fir 0.28 422 0.21 62 0.33 373 0.37 207 0.40 258
Spruce 0.75 306 0.82 73 0.72 248 0.69 127 0.79 184
Black spruce 0.77 196 0.82 62 0.73 148 0.70 75 0.79 112
Cedar 0.40 146 0.47 22 0.42 131 0.49 84 0.38 87
Tamarack 0.44 73 0.09 19 0.50 56 0.47 29 0.61 45
PRESS 79.37 85.88 79.72 83.42 78.59
No. of Variables 39 17 38 35 36

Note: Overall model PRESS (predicted residual error sum of squares) statistics range from zero to hundred, where lower is
better. Model R2adj values shown in bold represent the best structure calibrations across the five FIA stratifications listed.
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protocol (periodic vs annual) according to two general functional groups (i.e., broadleaved
and conifer species and groups) across the three WRS-2 paths, the periodic 1990 FIA to 1985
Landsat model calibrations (Table 5) were significantly better for both broadleaved (five
models) and conifer models (10 models) in P27 (p-values each < 0.0008) than their P27
complements using both 2005 Landsat and annual FIA data (Table 6). In P26, the 1990 periodic
FIA-calibrated set of conifer RBA models performed significantly better (p-value = 0.0372)

Table 5. Structure models calibrated using only spectrally homogenous (HO) 1990 periodic FIA plots
(n) and ca. 1985 Landsat imagery. Accuracy metrics (R2adj, LOOCV, Test-RMSE) for ca. 1985 forest
structure models are presented for each WRS-2 paths.

P26 P27 P28

Species R2adj (n) LOOCV Test-RMSE R2adj (n) LOOCV Test-RMSE R2adj (n) LOOCV Test-RMSE

TOTBA 0.34 (204) 3.00 0.70 0.37 (371) 3.45 0.42 0.31 (507) 3.18 0.48
Ash 0.19 (27) 3.28 1.45 0.64 (122) 7.25 1.06 0.57 (205) 7.88 0.91
Aspen 0.54 (135) 12.02 1.31 0.63 (267) 13.92 0.37 0.64 (368) 15.56 1.35
Maple 0.82 (65) 8.25 1.02 0.55 (159) 7.62 1.03 0.44 (184) 5.79 1.14
Birch 0.52 (152) 11.13 1.29 0.34 (265) 8.28 0.26 0.21 (305) 5.31 1.42
Pine 0.43 (45) 8.31 1.91 0.37 (81) 7.94 0.74 0.41 (88) 8.91 0.01
Big-pines 0.41 (30) 5.50 0.03 0.32 (59) 6.05 1.46 0.32 (70) 5.61 0.15
Jack pine 0.21 (22) 5.18 1.88 0.17 (39) 3.18 0.73 0.31 (41) 5.74 0.16
Balsam fir 0.43 (146) 7.03 0.64 0.36 (258) 6.66 0.14 0.42 (260) 6.84 3.08
Spruce 0.77 (131) 12.92 2.10 0.78 (184) 10.84 2.56 0.75 (194) 11.46 0.29
Black spruce 0.78 (83) 13.44 1.65 0.79 (112) 10.65 1.36 0.74 (125) 10.50 0.02
Cedar 0.32 (45) 8.56 2.77 0.36 (87) 9.12 0.20 0.44 (111) 10.73 0.87
Tamarack 0.45 (32) 5.32 0.77 0.54 (45) 7.19 0.51 0.64 (80) 8.31 1.00
BLF 0.90 (172) 10.56 0.96 0.82 (238) 13.43 0.52 0.86 (360) 13.55 0.68
CON 0.91 (177) 10.38 0.95 0.82 (277) 13.45 0.44 0.86 (344) 13.50 0.96
SBW host 0.67 (169) 14.67 2.74 0.66 (277) 12.98 2.70 0.67 (299) 13.13 2.79

Note: Metrics LOOCV (leave-one-out cross-validation) and test-RMSE (Root Mean Sum of Squares) were computed during
model calibration and model testing, respectively. Units for LOOCV and test-RMSE are same for TOTBA (m2 ha−1) and RBAs
of species (%) models. Model R2adj values shown in bold represent the best overall calibration across three WRS-2 paths.

Table 6. Structure models calibrated using annual FIA plots (n) inventoried from 2003–2006 and ca.
2005 Landsat imagery. Accuracy metrics (R2adj, LOOCV, Test-RMSE) for ca. 2005 forest structure models
are presented for each WRS-2 paths.

P26 P27 P28

Species R2adj (n) LOOCV Test-RMSE R2adj (n) LOOCV Test-RMSE R2adj (n) LOOCV Test-RMSE

TOTBA 0.31 (182) 3.71 2.23 0.29 (428) 3.34 1.02 0.39 (443) 3.98 1.09
Ash 0.28 (41) 11.81 1.16 0.50 (300) 9.31 3.60 0.59 (190) 13.80 0.86
Aspen 0.51 (124) 22.08 5.44 0.48 (139) 15.52 0.32 0.57 (302) 24.31 3.01
Maple 0.76 (74) 12.91 1.12 0.43 (179) 7.39 1.51 0.45 (150) 4.98 1.90
Birch 0.44 (131) 18.58 2.93 0.22 (266) 14.83 0.59 0.15 (232) 3.55 2.30
Pine 0.29 (24) 13.83 0.24 0.27 (84) 15.60 1.29 0.46 (68) 9.76 4.55
Big-pines 0.29 (13) 14.90 0.96 0.26 (60) 5.63 1.47 0.42 (61) 7.59 2.97
Jack pine 0.31 (15) 9.53 0.72 0.14 (42) 9.78 0.18 0.20 (27) 3.85 1.57
Balsam fir 0.48 (149) 8.18 0.06 0.29(304) 6.12 1.85 0.28 (208) 5.57 0.14
Spruce 0.61 (105) 10.26 13.83 0.62 (210) 12.19 3.05 0.72 (159) 9.84 1.97
Black spruce 0.31 (72) 11.54 1.37 0.57 (150) 11.95 0.50 0.77 (107) 9.69 0.72
Cedar 0.32 (43) 22.66 6.48 0.32 (94) 19.28 0.68 0.49 (109) 13.27 1.45
Tamarack 0.28 (15) 7.05 1.52 0.51 (52) 7.26 0.36 0.30 (64) 11.46 4.76
BLF 0.83 (165) 11.92 1.93 0.72 (323) 15.82 4.60 0.80 (379) 15.02 2.80
CON 0.84 (166) 11.89 0.32 0.76 (319) 15.66 3.61 0.85 (308) 14.23 3.11
SBW host 0.64 (165) 11.82 13.77 0.56 (307) 13.18 1.20 0.63 (269) 11.67 2.10

Note: Metrics LOOCV (leave-one-out cross-validation) and test-RMSE (Root Mean Sum of Squares) were computed during
model calibration and model testing, respectively. Units for LOOCV and Test-RMSE are same for TOTBA (m2 ha−1) and
RBAs of species (%) models. Model R2adj values shown in bold represent the best structure calibrations across three
WRS-2 paths.
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compared to the 2005 annual FIA-calibrated set of conifer RBAmodels, while the broadleaved
species RBA models were similar between dates (p-value = 0.7483). Moreover, all individual
P27 models and all but three P26 models (ash, jack pine, and balsam fir) calibrated using
1990 periodic FIA outperformed the 2005 FIA-Landsat calibrations. The westernmost path
(P28) was more evenly split between the two FIA plot designs, with the 1990 periodic FIA
calibrations appearing to perform slightly better for broadleaved species (p-value = 0.0867)
compared to conifers (p-value = 0.1519). For the three WRS-2 paths and two FIA plot designs
the number of FIA calibration plots for jack pine (average n = 31) and ash (average n = 63)
were relatively low compared to the number of plots used for most other model calibrations,
especially for P26 (Tables 5 and 6).

3.2. Structure model performance by WRS-2 path and Landsat image dates

The amount of variation in the 1990 periodic FIA data explained by the 1985 image
predictor variables for each respective structure variable across the three WRS-2 paths
ranged from low (e.g., R2adj = 0.19 and 0.17 for black ash and jack pine, respectively) to
high (e.g., R2adj = 0.79 and 0.82 for black spruce and maple, respectively) (Table 5). While
the magnitude of R2adj and RMSE values for individual Landsat-FIA structure model
calibrations for species and group RBA varied substantially within a particular WRS-2
path, this path-wise variability was similar across the three WRS-2 paths (Table 5), with
a few notable exceptions in P26 (e.g., maple and birch), P27 (ash) and P28 (e.g., tamarack,
cedar, and jack pine). Thus, accuracy for modelled estimates of SBW host remained
consistent with R2adj values of ca. 0.67 across the three WRS-2 paths for 1985. Separate
R2adj values for the spruce (white spruce and black spruce) and balsam fir RBA estimates
ranged from 0.75 to 0.78 and 0.36 to 0.43, respectively (Table 5).

With respect to the ca. 2005 structure model calibrations using concurrent annual FIA
data (Table 6), path-wise performance among the individual structure models also varied
substantially, with R2adj and RMSE values ranging from 0.14 to 0.85 and 0.06–13.8, respec-
tively. However, as was observed in 1985, this path-wise variability was similar among the
three WRS-2 paths. Nevertheless, the 1990 models for P28 were significantly better (p-value
= 0.0076) as a set than the other two WRS-2 paths, where nine out of 16 P28 models were
superior to those from the other two Landsat paths. Moreover, three P28 exceptions
(tamarack, BLF, and SBW) were only marginally outperformed by their P26 counterparts.
Coupled with the superior performance of the P28 models is the fact that this path had
significantly more FIA plots available for calibration in 1990 than P26 (p-value < 0.0001),
while sample sizes between P28 and P27 were not significantly different (p-value = 0.4782).

Model results for SBW host species RBA (spruce, black spruce, and balsam fir) were
mixed within a given WRS-2 path but generally consistent by path across the two
mapping periods (Tables 5 and 6). The variation accounted for by the spruce models
(spruce and black spruce) across both dates ranged from moderate to high (R2adj range
0.61 to 0.78, RMSE range 0.02–13.83%). While the balsam fir RBA model results were
generally poor across all WRS-2 paths and image dates, results within P26 for both image
dates were higher than the other paths (e.g., R2adj = 0.43 and 0.48 for 1985 and 2005,
respectively) irrespective of FIA plot-design differences. Balsam fir RBA model cross-
validation results yielded RMSE values ranging from 5.57% to 8.18% of their observed
TOTBA values. Calibration of models improved substantially when we combined FIA data
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into more generalized dependent variable groups: broadleaved [BLF], conifers [CON], and
SBW host (i.e., R2adj ranged 0.72–0.83 and 0.76–0.85, for BLF and CON, respectively). Lastly,
accuracy among the combined SBW host species RBA models was moderate across the
three paths and two calibration dates (average R2adj = 0.64 and RMSE = 12.91%), which is
of particular importance to this study (Tables 5 and 6).

3.3. Salient Landsat predictors for 1985 and 2005 mapping periods

The relative importance of respective image predictors variedmore by date than they did by
WRS-2 path. In some instances, known forest phenology windows used to target Landsat
data acquisition for each WRS-2 path and date were not perfectly captured. This was due to
annual variation in phenology (see Ahlgren 1957), TM orbital phase mismatches (16-day
revisit), or excessive cloud cover. Therefore, we present frequency of important Landsat
predictors for all model sets (Figure 3, scaled loadings ≥ |0.8|) and the relative importance of
Landsat predictors for 1985 (Figure 4) and 2005 (Figure 5) for P27 only.

In general, Landsat indices such as NDVI, NDMI, NBR, MSI, SVR, and Tasselled Cap
transformations (Table 3) were more frequently retained by the xPLS routine during
model calibration than were individual sensor bands (Figure 3). There were also clear
differences in the number of predictors and magnitude of predictor importance between
the two calibration periods (Figures 4 and 5). For the 1985 (Figure 4), the aspen and ash
species RBA models show strong (scaled loadings ≥ |0.8|) dependence on indices from
two seasons (April [P] and September [S2], respectively), while the spruce models (black
spruce and spruce) and tamarack models had a wider profile of predictor importance, but
with less emphasis in September (Table 2). Conversely, the 2005 calibration period
involved nearly twice the number of image predictors with a more even distribution of
strong variable loadings among the various models (Figure 5).

3.4. Receiver operator curve (ROC) analysis: gauging model sensitivity

Receiver operator curve (ROC) analysis has been used to identify the optimal lower threshold
value at which the true-positive rate of identification is maximized and false-positive rate is
minimized so as to mitigate the chances of over mapping erroneously low RBA values
(Wolter and Townsend 2011). Here, optimal RBA threshold values for each of the respective
forest structure models for 1985 and 2005 are shown in Table 7. In general, optimal RBA cut-
off value for all forest structure models was not significantly different between the two time-
periods (p-value = 0.6478). Broadleaved species had higher RBA threshold values than
conifer species, with the exception of ash. Aspen had the highest threshold value at
27.97% and 26.16% RBA for 1985 and 2005, respectively. Optimal lower RBA values for the
pine groups (i.e., pine, big-pine, and jack pine) range from 5.3% to 12.12%, while the balsam
fir RBA threshold was about 11.50% for both 1985 and 2005 periods. The two spruce
categories (spruce and black spruce) and cedar had relatively high RBA threshold values
(12.23–17.63%) among conifer species RBA models. Optimal threshold values for the remain-
ing three combined species models (BLF, CON, and SBW host) were somewhat higher than
individual species and genus-level RBA models (Table 7). We used the optimal lower RBA
threshold values during the production of final forest composition and abundance maps for
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each of the two periods. However, due to the sheer volume of graphic data, we chose to
display only the spatial distribution maps of SBW host for each mapping period (Figure 6).

4. Discussion

4.1. Influences of FIA stratification on model calibration

4.1.1. Spectral heterogeneity
Overall, stratification of FIA plots according to forest neighbourhood spectral variability in
the SWIR did not have a significant impact on ground-to-satellite model calibration

Figure 3. Frequency distribution of the salient (≥ |0.8|) centre-scaled image predictor variables
retained by xPLS regression during Landsat-FIA model calibrations for total basal area (TOTBA) and
the relative basal areas (RBA) of species and groups of species.

Figure 4. Landsat TM image predictor variables for WRS-2 P27 ca. 1985. The loading of each predictor
is displayed in a continuous range of colour from blue (high negative importance) through inter-
mediate yellow (low importance) to green (high positive importance). Stars indicate image predictor
variables that had absolute loadings greater than or equal to 0.8.
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performance. However, HOM stratification is likely optimal for ash, maple, and aspen
because they frequently grow in relatively pure stands in this region (Wolter and
Townsend 2011), while birch diverges from this generalization. Birch can be found in
pure stands and in mixtures with aspen adjacent to Lake Superior, but farther inland birch
is more commonly found in mixtures with conifers and a wider variety of other broad-
leaved species (Wolter and Townsend 2011). Notably, while there were many HOM birch

Figure 5. Landsat TM image predictor variables for WRS-2 P27 ca. 2005. The loading of each predictor is
displayed in a continuous range of colour from blue (high negative importance) through intermediate
yellow (low importance) to green (high positive importance). Stars indicate image predictor variables that
had absolute loadings greater than or equal to 0.8.

Table 7. Minimum relative basal area (RBA, %) threshold values used for mapping respective species
and species groups for ca. 1985 and ca. 2005 forest structure layers. Minimum values were calculated
using receiver operating characteristic (ROC) curve analyses and assessed via the Youden index
(Youden 1950).

Species

Minimum relative basal area (RBA, %)

ca.1985 ca.2005

Ash 6.85 10.45
Aspen 27.97 26.16
Maple 16.08 11.97
Birch 14.51 14.51
Pine 9.13 9.13
Big-pines 8.09 12.12
Jack pine 7.05 5.30
Balsam fir 11.38 12.01
Spruce 15.16 12.20
Black spruce 17.63 17.63
Cedar 16.66 16.79
Tamarack 11.68 7.51
BLF 23.21 28.99
CON 21.20 15.88
SBW host 22.16 22.42
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plots (n = 395) compared to HET birch plots (n = 48) based on SWIR-5 forest reflectance,
only 25 plots contained birch RBA greater than 50%, of which, only three HOM birch plots

Figure 6. Spatial distribution of spruce budworm (SBW) host species: balsam fir (Abies balsamea) and
spruce (Picea spp.) abundance for ca.1985 and ca. 2005 mapping periods.
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may be considered pure birch stands (RBA of birch >70%). Simply put, plots with birch
tended to be spectrally homogenous, regardless of associated species composition.

In contrast, among the conifers, balsam fir, white spruce, upland black spruce, and the
three pine species do not generally grow in pure stands of similar patch sizes as broad-
leaved species. Hence, while spectral variability in Landsat SWIR-5 reflectance may be low
(i.e., either pure conifer or pure broadleaved), conifer species diversity could be high.
Tamarack (almost exclusively a wetland species), lowland black spruce, and pure planta-
tions of the three pine species are exceptions. For example, considerable areas of
tamarack are abundant within the study area (Wolter et al. 2012b), which we believe
explains the higher performance of HOM over HET tamarack model calibrations. This also
explains the opposite scenario for HET black spruce models (Table 4), as inter-mixing of
black spruce with jack pine, white spruce, balsam fir, and broadleaved species in uplands
of the northern half of the study area is common (Dimitrov, Bhatti, and Grant 2014).

Stratifying FIA ground data by Landsat-measured surface SWIR reflectance prior to
structuremodel calibration with Landsat sensor variables shed light on the effects of unique
species compositions on species mapping across this landscape. While the HOM spectral
neighbourhood stratification produced calibration accuracy results higher than those where
all FIA data were used (p-value = 0.0035), we do not recommend stratifying FIA ground data
by Landsat surface reflectance in the future. Though not attempted here, we also do not
recommend stratification of FIA plots by purity within the FIA database to streamline or
improve similar calibration efforts using Landsat sensor data due to substantial spatial
uncertainty in both data sources. Spatial uncertainties include suboptimal FIA subplot
spatial orientation and size with respect to 30-meter Landsat pixel (Figure 1), spatial location
accuracy of FIA plot centers (Hoppus and Lister 2007; Miles, Chen, and Leatherberry 1995),
and geo-registration accuracy of Landsat pixels (Irons, Dwyer, and Barsi 2012).

4.1.2. Periodic FIA (1977 vs 1990)
Clear date-wise differences in model performance raised questions of possible effects
related to variability in either changes in FIA sampling protocol between these dates
(Goeking 2015; Miles, Chen, and Leatherberry 1995; Miles et al. 2007) or possible Landsat-
FIA temporal lag effects, when all other factors (FIA plot locations, relative sample sizes,
image dates, and FIA plot design) were held constant. The ability of the Landsat sensor to
detect sub-pixel forest change diminishes with increasing time (Wilson and Sader 2002; Jin
and Sader 2005; Coppin and Bauer 1996). Here, however, the apparent relationship between
ground inventory and space-based forest reflectance appears to have changed substantially
with only a marginal increase in time lag (e.g., 1977–1985 and 1990–1985) between ground
and space-based observations. Contrary to our results, Nelson et al. (2011) found an
insignificant difference in biomass and forest classification accuracy when Landsat images
from 2000 and 2007were usedwith 2003 field plot data. The small overall relative difference
in time-lag between FIA-image combinations (5 versus 8 years) led us, rather, to suspect
variability in the periodic FIA sampling protocols between 1977 and 1990 as a more likely
explanation for skewed model performance in favour of the 1990 FIA-Image combination
(Table 4). While we cannot say with certainty that this is the case, we did find a significant
difference in TOTBA values between the two sampling periods for undisturbed forest (n =
122, p-values < 0.0001). As such, Goeking (2015) warns FIA data users of the pitfalls of failing
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to distinguish between actual and apparent change resulting from different inventory
designs.

There are several potentially significant factors with respect to the 1977 and1990periodic
FIA sampling protocols that could have contributed to differences in model calibration
results shown in Table 4. First, to keep costs down during the 1990 inventory period, two-
thirds of all forested FIA plots in 1977 that were classified as undisturbed by 1990 in northern
Minnesota – via interpretation of aerial photography – were ‘modeled’ rather than actually
revisited in the field to update forest biophysical parameters for the 1990 FIA period (Miles,
Chen, and Leatherberry 1995). The remaining one-third of undisturbed forest plots were
both re-measured and modelled as a calibration/validation step for this modelling process
(Miles, Chen, and Leatherberry 1995). Modelling was performed using the 1977 FIA field
data and individual tree growth models to simulate plot-wise re-measurement, which then
became the basis for the 1990 periodic FIA for undisturbed forest plots (Hansen et al. 1990;
Miles, Chen, and Leatherberry 1995). However, data used in this study from the two dates
(1977 and 1990) within the northeastern and north-central regions of Minnesota are
recorded as not being modelled, but the reliability of these data entries is unknown (M.D.
Nelson USFS pers. comm.). Second, while the 1977 and 1990 FIA plot designs each consisted
of 10 variable-radius subplots (Figure 1), there are some clues that during the 1977 inventory
there were more instances where fewer than 10 subplots were actually measured per full
plot compared to the 1990 sample period (Miles, Chen, and Leatherberry 1995). Third, many
of the 1977 FIA plots that were selected for field revisits in 1990 inventory period could not
be located. Hence, the remedy was to replace the older plot with a new plot at the
‘approximate location’ of the 1977 plot centre, but neither the absolute or relative positional
accuracy with reference to the old FIA plot centres was documented (Miles, Chen, and
Leatherberry 1995).

4.1.3. Periodic vs annual plot design
The comparatively better performance of our periodic FIA-based models over those using
annual FIA data (Table 5, 6) is not as easily explained by differences between FIA sampling
protocols, since different complements of image predictor variables were used (Table 2).
However, with the exception of P26 images were more closely matched in time with their
respective sets of FIA ground data (10.4-, 2.3-, and 6.3-year ranges for P26-P28, respec-
tively). Though this is usually preferable in terms of minimizing potential time-lag issues,
finding the full complement of species-specific phenology images known to be important
in this region for identifying forest species (Wolter et al. 1995; Wolter and Townsend 2011;
Wilson, Lister, and Riemann 2012) was not always possible. For instance, early September
is a key date for identifying stands of black ash in this region, which tend to drop their
leaves in early autumn long before other broadleaved species (Eder 1989; Wolter et al.
1995). From Table 2, 5, and 6, in each instance where an early September image is missing
(i.e., P26 in 1990 and 2005), the associated ash RBAmodel performance suffered (R2adj 0.19
and 0.28, respectively, compared to an average R2adj of 0.58 otherwise for ash). In other
cases, where Landsat images from within general phenology timeframes were acquired,
slight shifts in peak phenology due to inter-annual variability (Ahlgren 1957) likely
dampened the effectiveness of these predictors. Hence, not all differences in Landsat-
FIA model calibration performance can be attributed to changes in ground sampling
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protocol (Figure 1) that took place upon adoption of the annual FIA strategy (Bechtold
and Patterson 2005; Vandendriesche and Haugen 2008).

Despite this, we suspect themore numerous, more tightly spaced, variable-radius subplots
around plot center under the older, periodic FIA design better represents ground reflectance
in the neighbourhood of a single Landsat pixel (Figure 1). The closest six variable-radius
periodic FIA subplots are 21.3 m from plot center. The three annual FIA fixed-radius (7.32 m)
subplots are 36.6 m from plot center, which represents an additional 15.3 meters (Figure 1).
Under the periodic FIA subplot design, if a Landsat pixel is registered to the ground in error by
up to one half a pixel (15 m) the surface reflectance recorded by the sensor would still be
represented, in part, by ground information from as many as 4–7 of the 10 subplots depend-
ing on the direction of error. Moreover, substantial error inherent in autonomous code-phase
GPS positioning of FIA plot centers only adds spatial uncertainty to this scenario (McRoberts
2010). While both FIA plot designs clearly include information from outside this theoretical
spatial error zone of a single Landsat pixel, the salient difference is that the annual FIA plot
design leaves the majority of this error zone unsampled (Figure 1). Therefore, a Landsat pixel
withmodest spatial registration error is represented by just one of the four subplots under the
annual FIA design, which represents 18.7% of a 30-meter pixel. As mentioned earlier, under
idyllic homogenous forest conditions such spatial sampling differences may be of little
consequence, but become increasingly relevant as forest spatial heterogeneity increases.
One could simply select the center annual FIA subplot (or any such subplot that appears to
coincide with a pixel) and ignore data from the remaining subplots, but uncertainty in spatial
accuracy among both FIA plot centers and Landsat pixelsmay bring into question thewisdom
of such a decision (Franco-Lopez, Ek, and Bauer 2001; McRoberts, Tomppo, and Næsset 2010).

There are several examples in the literature where ground inventory data were paired
with satellite sensor data for quantifying forest structure with little or no discussion of the
potential impacts of sampling design/protocol or time-lags on modelled forest structure
results (Franco-Lopez, Ek, and Bauer 2001; McRoberts et al. 2007; Ohmann and Gregory
2002; Wilson, Lister, and Riemann 2012). However, performance between our FIA-
calibrated forest TOTBA and RBA models and those from similar studies in this region
supports the conjecture that the difference among ground sampling designs is a salient
factor. Working in the same area, Wolter et al. (2008) achieved substantially better
calibration accuracies for total BA and balsam fir RBA (average R2adj 0.65 and 0.69,
respectively) by using ground subplot sampling designed specifically for integration
with 30-meter Landsat sensor data: four variable-radius subplots arranged orthogonally
around, and 30 m from, a central subplot. From Figure 1, one can see that neither the
periodic or annual FIA full plot designs match well with a single 30-meter Landsat sensor
pixel, especially given the positional uncertainties in periodic FIA discussed above. By
comparison, Franklin (1986) used various circular plot sizes (100 m2, 250 m2, or 314 m2)
depending on forest stand purity to collect field data in order to improve the model
accuracy. Our results support their assertion that matching ground plot sampling designs
with either sensor spatial resolution characteristics or forest composition characteristics,
or both, are important factors to consider when upscaling plot-level data to landscapes
using satellite sensor data.

Other factors, as discussed, may certainly confound the accuracy potential of satellite-
based forest structure models calibrated using ground plot data, such as ground plot
positional accuracy (Hoppus and Lister 2007; McRoberts 2010), annual variation in forest
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phenology aids, critical phenology gaps in the satellite archive (Wolter and Townsend
2011), or variability in species abundance across the landscape discussed below. However,
based on comparisons to past research in this heterogeneous forest region (Wolter et al.
2008; Wolter and Townsend 2011), we believe FIA subplot configuration was a key factor
affecting our ability to produce more accurate, continuous map estimates of past forest
structure conditions (Figure 1, Tables 4, 5 and 6).

4.2. Species abundance and modelling accuracy

Previous studies mention the inherent variability in species abundance across the three
Landsat WRS-2 paths that cover this region of northeastern Minnesota (Franco-Lopez, Ek,
and Bauer 2001; Wolter et al. 2008). Franco-Lopez, Ek, and Bauer (2001) reported classifica-
tion accuracies of 68%, 18%, and 0% accuracy for species from high to low abundance in
their study area (aspen, balsam fir, and white pine, respectively). The abundance-to-
calibration accuracy conjecturemay hold in cases where tree species are 1) well represented
in upper canopy positions and 2) have RBA levels within an FIA plot high enough to be
detected by the satellite sensor (Figure 7–9). For example, spruce species are generally
considered common throughout this region of Minnesota (Wolter et al. 2008; Wolter and
Townsend 2011), but typically occur in lower to moderate abundance (Figure 7), with the
exception of more sparsely distributed lowland black spruce stands that frequently achieve
100%RBA in this region. Analysis of our FIA grounddata (i.e., 338 and 325 FIAplots contained
either white or black spruce in 1985 and 2005, respectively) shows that the RBA of ‘spruce’ is
frequently less than 35% (Figure 7). However, since spruces typically share over-story
position with associated tree species, calibration results for RBA of the spruce group were
among the most accurately modelled species or genus group in this study, with an average
R2adj across the two time periods of 0.71 (Tables 5 and 6). Balsam fir, on the other hand, is also
ubiquitous on this landscape (n = 422, Table 3), with typical FIA plot-wise abundance below
40% RBA [Figure 7]). The key difference is that balsam fir is primarily an understory species
(Wolter and Townsend 2011) and, thus, is far less visible to optical satellite sensors in spite of
relatively high spatial abundance. As such, balsam fir’s unique growth habit explains the
poor calibration performance (average R2adj = 0.38 for two time-periods) compared to the
spruce model (Tables 5 and 6). In agreement with this conjecture, Wolter et al. (2008) also
noted differences in model performance between balsam fir and spruce RBA within this
landscape (R2adj = 0.69 and 0.88, respectively).

In other cases, where species appear to have more or less similar abundance in the FIA
data, we see clear disparities in model calibration accuracy (Tables 5 and 6) due to species
phenology. For instance, tamarack (n = 187) and cedar (n = 202) often occur in truly pure
stands and each has relatively high abundance, as indicated by the number of FIA plots.
However, calibration accuracy is, on average, higher for tamarack than cedar. Specifically,
tamarack is a deciduous conifer and, hence, our combined use of both summer and winter
Landsat sensor data augments detectability of tamarack compared to cedar (see Wolter
et al. 1995, 2008). Conversely, mixed results for maple (n = 667) and aspen (n = 355) across
the three WRS-2 paths are more a function of spatial distribution rather than specific
phenological differences (Figure 8). For instance, both aspen and maple have strong
phenological differences that we took advantage of in our selection of Landsat sensor
data (Table 2) following the example of Wolter et al. (1995) and other studies in this region
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(Wolter et al. 2008). We posit that the reason for the strong divergence in model
performance between maple (R2adj > 0.76) and aspen (R2adj < 0.51) in P26 compared to
the other WRS-2 paths is linked to the fact that our ‘maple’ dependent variable includes
both sugar and red maple. Sugar maple forms nearly pure stands that exist almost
exclusively within the North Shore Highlands ecological subsection that parallels the
Lake Superior shore. This lakeshore sugar maple belt is completely captured in P26,
partially captured in P27, and completely absent from P28. Red maple, on the other
hand, is more evenly distributed across the whole study area but at relatively low RBA
levels in association with other hardwood and conifer species. Though each of these
maple species has distinct autumn leaf colouration (Eder 1989; Wolter et al. 1995), the
generally low RBA of red maple across the landscape serves to largely dampen its Landsat-
scale multi-spectral advantage, compared to that of sugar maple, especially within P26
(Tables 5 and 6).

Similarly, the big-pines (white and red combined) and jack pine both have comparable
relative abundance (average n = 49 and 31, respectively) and distribution (Figure 9). However,
the big-pines models were typically better than the jack pine models (Tables 5 and 6). Similar
differences inmodel calibration performancewere noted in two previous studies (Wolter et al.
2008; Wolter and Townsend 2011), but logical explanations for observed differences in model
calibration performancewere not provided.Whether this is due to spectral advantage, growth
character, or field plot design with respect to varying forest heterogeneity (Riemann et al.
2010; Franklin 1986; Ohmann, Gregory, and Roberts 2014; Ruefenacht et al. 2008) remains
a vexing problem. Nevertheless, our study focuses on the utility of FIA data as a source of
ground data to calibrate continuous forest composition models. Whether the various FIA
subplot sizes and orientations between the two dates are differentially better for some species
assemblages over others was beyond the scope of this study. Given the nature of the
discussion above, it is clear why our highly generalized forest structure variables, BLF and
CON, were consistently higher compared to the SBW host model or any of the species RBA
models (Tables 5 and 6), a trend that is well known (Franklin 1986; Franco-Lopez, Ek, and Bauer
2001; Ohmann and Gregory 2002; Wolter et al. 2008).

Figure 7. Distribution of FIA plot data for spruce budworm (SBW) host species: (a) balsam fir and (b)
spruce used in xPLS regression model calibrations for the ca.1985 (dark grey) and ca. 2005 (light grey)
mapping periods by the three WRS-2 paths.
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We believe forest species abundance estimates derived via the integration of FIA and
Landsat sensor data will continue to be poor to only moderately effective for regions of
the US where species and spatial heterogeneity are relatively high, as in northern
Minnesota (Moore and Bauer 1990). However, the effectiveness of the Landsat-FIA
union will likely improve where forest heterogeneities are naturally less complex, such
as in the Black Hills of South Dakota, USA (Brown and Cook 2006), or where forest
management has had a simplifying effect through time (Ishii, Tanabe, and Hiura 2004).
In both cases, the lack of spatial parity between FIA subplot arrangement and satellite
sensor spatial resolution should become less relevant as forest homogeneity increases.

Lastly, though comparisons to various modelling approaches in the literature were not an
objective of this research, two studies conducted inMinnesota provide insightful comparisons
(Franco-Lopez, Ek, and Bauer 2001; Wilson, Knight, and McRoberts 2018), as each combined
Landsat imagery and ground data for estimation and mapping purposes. Among three
different models: xPLS regression (our method, Wolter et al. 2012), K-NN (Franco-Lopez, Ek,
and Bauer 2001), and Random Forest with fourier transformation of Landsat time series data
(Wilson, Knight, and McRoberts 2018), precision for TOTBA estimates is better using Random
Forest (average RMSE 3.5, 9.1, and 0.33 m2 ha−1, respectively). In case of the generalized
broadleaved group (BLF), xPLS models had explained more variance in the ground data than
random forest regression (Wilson, Knight, and McRoberts 2018) (model R2adj 0.77 vs 0.49).

Figure 8. Distribution of FIA plot data for broadleaved species: (a) ash, (b) aspen, (c) maple and (d)
birch used in xPLS regression model calibrations for the ca.1985 (dark grey) and ca. 2005 (light grey)
mapping periods by the three WRS-2 paths.
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However, these metrics of model performance (R2adj and RMSE) for corresponding species
were somewhat better in Wolter et al. (2008) where a sensor-specific sample plot-design was
used, andwas further improvedwhen integratedwithmulti-sensor data (C-band SAR (5.3 GHz,
Radarsat-1), L-band SAR (1.27 GHz, Palsar-1), Landsat and SPOT-5) (Wolter and Townsend
2011). In particular, results for balsam fir RBA (R2adj = 0.78, RMSE = 2.26%) were clearly better
than any of our balsam fir RBAmodels calibrated via FIA ground data and Landsat sensor data
alone (Tables 5 and 6). Hence, while combination of Landsat-specific ground plot design with
ancillary satellite sensor data, such as SAR, has improved forest structure model calibrations,
results may be further improved via the use of more elegant modelling approaches.

4.3. Future recommendations for integration of FIA and satellite sensor data

Stratification of FIA plots by Landsat-based spectral variability proximal to FIA plot centre
explained unique, species-wise modelling performance issues related to the degree of
conifer and hardwood mixture. However, stratifying by crown position and heterogeneity
among species or group of species within the FIA database itself may shed more light on
how to best use FIA data for mapping forest structure using Landsat sensor data; above
and beyond issues related to changes in sampling protocol across years. Also, our decision
to calculate plot-wise averages of FIA forest structure information across all subplots

Figure 9. Distribution of FIA plot data for conifer species: (a) big-pines, (b) jack pine, (c) cedar, and (d)
tamarack used in xPLS model calibrations for the ca.1985 (dark grey) and ca. 2005 (light grey) mapping
periods by the three WRS-2 paths.
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(periodic and annual) rather than selectively picking subplots that appeared to match 30-
meter pixel positions was deliberate. This was done expressly to understand differences in
effectiveness for modelling forest structure between versions of FIA and to compare
results in studies where Landsat-optimized plot designs were used (Wolter et al. 2008;
Wolter and Townsend 2011). However, because of the uncertainty in both pixel-to-ground
registration and documented uncertainty in FIA plot locations (McRoberts 2010; Miles,
Chen, and Leatherberry 1995), we suggest avoiding the temptation to single out indivi-
dual subplots/pixel combinations for these purposes. The reader should note that new
approaches are being developed to improve the positional accuracy of annual FIA plot
locations, but periodic FIA locations not coincident with annual FIA will remain
unchanged (M.D. Nelson, pers. comm.). Evidence from this study clearly shows, based
on the nearly identical study conducted by Wolter et al. (2008) where Landsat-tailored,
custom ground plot sampling was used, that neither past nor current FIA ground
sampling strategies are optimal for use with 30-metre Landsat sensor data. Although,
the more numerous and tighter spatial arrangement of subplots under the older periodic
FIA sampling design appears to offer some benefits over the current FIA design (Figure 1),
especially under heterogeneous forest conditions. An important similarity between this
study and the Wolter et al. (2008) work is that the relative species- and group-specific
differences in calibration precision reported here were also evident in Wolter et al. (2008)
study, which points to the limitations of the Landsat sensor mentioned above and not FIA.
However, the overall lower magnitude of model calibration accuracy compared to that of
the Wolter et al. (2008) study, we believe, specially reflects differences in ground plot
design. Hence, with reference to the use of periodic FIA, using just the six subplots that are
immediately adjacent to the centre subplot (Figure 1) will likely improve FIA-Landsat
model calibration results, especially among increasingly heterogeneous forest stands.

Though the Landsat sensor certainly exhibits limitations in the context of this forest
mapping study, it does combine relatively high spatial resolution (30-meter, optimized for
forest monitoring, Short 1982) with a relatively large footprint size (170 km x183 km) that is
considered optimal for national mapping efforts (Vogelmann et al. 2001). Other optical
satellite sensors with higher spatial resolution have been shown to incrementally improve
the accuracy of forest mapping efforts (Salajanu and Olson 2001), but at the expense of
smaller coverage areas and often substantially increased cost. Moreover, the specific issues
related to hidden forest understory components discussed above would likely persist.

Alternatively, airborne Lidar data combined with Landsat sensor data are often touted as
the solution to canopy penetration issues and have proven highly effective formapping forest
structure in this region (Deo et al. 2017; Engelstad et al. 2019). In other instances, however,
such a union was largely ineffective for quantifying understory balsam fir abundance
(Engelstad et al. 2019). Hence, we believe further exploration of the fusion of repeat-pass,
polar-orbiting SAR sensor data, especially at L-band frequencies (Blomberg et al. 2018; Wolter
and Townsend 2011), with multi-temporal Landsat sensor data is warranted, especially where
the detection of understory forest layers, such as balsam fir, is critical. With that said,
systematic, spatial mismatches between FIA plot configuration and sensor spatial resolution,
especially at 30-meter, will likely continue to confound forest structure mapping results.
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5. Conclusion

In this study, we demonstrated the combined use of archived FIA and Landsat sensor data to
produce past forest species distribution and abundance maps of northern Minnesota to
support forest ecosystem studies, including spruce budworm outbreak dynamics (Robert
et al. 2018). Our findings suggest that calibrations between FIA ground data and Landsat
sensor data are influenced by three salient factors, although the relative contribution of each
was not specifically quantified in this study. Factors include variation in FIA subplot sampling
protocols (Figure 1), variability and heterogeneity in species abundance captured by FIA
sampling across three adjacent Landsat orbital paths (Figure 7–9), and the ability of the
Landsat sensor to detect species that are either partially hidden from view (e.g., balsam fir) or
that lack some phenology-based, multi-spectral/multi-temporal advantage for detection. It is
important to note that the last factor is not a limitation related to FIA, but rather limitations of
optical, polar-orbiting sensors such as Landsat (e.g., repeat cycle, cloud issues, and canopy
penetration).

Evidence from this study clearly shows, based on the nearly identical study conducted by
Wolter et al. (2008) where Landsat-scale, custom ground plot sampling was used, that neither
past nor current FIA ground sampling strategies are optimal for use with 30-meter Landsat
sensor data in this region of the country. However, the more numerous and tighter spatial
arrangement of subplots under the older periodic FIA sampling design offers some benefits
over the current FIA design, especially in heterogeneous forest conditions. Hence, given our
national commitment to the future of the Landsat mission (Irons, Dwyer, and Barsi 2012), we
recommend that the FIA sampling protocol should eventually be augmented to include
measurements of forest structure that are more easily integrated with 30-meter Landsat
sensor data, as the majority of US forests area not conveniently homogeneous. In tandem
with such FIA augmentation, we recommend the fusion of multi-temporal Landsat sensor
data and L-band SAR sensor data as a solution to afford more complete detection of forest
structure, as past studies have yielded encouraging results in this region (Wolter and
Townsend 2011).
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