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Abstract Species distribution modelling (SDM) is a

valuable tool for predicting the potential distribution

of invasive species across space and time. Maximum

entropy modelling (MaxEnt) is a popular choice for

SDM, but questions have been raised about how these

models are developed. Without biologically informed

baseline assumptions, complex default SDM models

could be selected, even though alternative settings

may be more appropriate. Here we explored the effects

of various SDM design strategies on distribution

mapping of four forest invasive species (FIS) in

Canada. We found that if we ignored the underlying

FIS biology such as use of biologically relevant

predictors, appropriate feature selection and inclusion

of dispersal and biotic interactions when we developed

our SDMs, we obtained complex SDMs (default) that

provided an incomplete picture of the potential FIS

invasion. We recommend simplifying SDM complex-

ity and including biologically informed assumptions

to achieve more accurate dispersal predictions, par-

ticularly when projecting FIS spread across time. We

strongly encourage SDM users to perform species-

specific tuning when modeling FIS distributions with

MaxEnt to determine the best SDM design.

Keywords Forest invasive species � Species
distribution models � Niche modelling � Asian gyspy

moth � Asian longhorned beetle � Dutch elm disease �
Sudden oak death

Introduction

Invasive species pose significant threats to the eco-

nomic and ecological stability of our forests. The

United Nations identifies invasive species as one of the

greatest threats to biodiversity (Groombridge 1992)

and cause billions of dollars of damage every year

(Pejchar and Mooney 2009; Vilà and Hulme 2017).
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Given the potential impact of invasive species, tools

are needed that will help prevent invasions, or enable

effective early responses through robust interception

and surveillance frameworks (Barbosa et al. 2012;

Jiménez-Valverde et al. 2011; Lafond et al. 2019).

Unfortunately, these programs are costly and require

regional prioritization. Species distribution models

(SDMs) are one approach used to identify areas at risk

of invasion. SDMs are a combination of tools that

translate environmental conditions from a species’

known distribution to predict its potential distribution

in a new habitat. These can be combined with climatic

models that forecast future climate scenarios, provid-

ing further information on the future potential for

invasion and spread. The information provided by

SDMs is critical for conservation and management

planning and for understanding invasive species

ecology and behavior under changing climatic condi-

tions (Padalia et al. 2014).

SDMs can be broadly classified into two groups:

correlative models and process-based/mechanistic

models (Peterson et al. 2015). Correlative SDMs are

trained with species occurrence data and associated

environmental layers from a known distribution,

which is then used to identify suitable habitats in a

new range for a given invasive species (Elith et al.

2010). The process is complex and must manage

uncertainties within the modelling process (Gould

et al. 2014). Recent advances in iterative model

development, model fitting, evaluation and improve-

ment have led to an increase in accuracy; however,

questions remain around the practice of model build-

ing. Without biologically informed baseline data,

complex default SDM models could be selected, even

though alternative settings may be more appropriate

(Merow et al. 2013). Baseline data should take the

dispersal capability, effects of climate on growth and

reproduction, and interactions with hosts and sym-

biotes into account when selecting appropriate vari-

ables and settings for models. Additional scrutiny has

come to other aspects of SDM modelling, such as

estimating FIS distributions accurately within a new

geography (transferability), the choice of bioclimatic

variables, and the effect of varying model-fitting

parameters on the resulting distribution predictions

(Jiménez-Valverde et al. 2008; Srivastava et al. 2019).

Given the prevalence of SDMs within the invasion

literature, addressing these criticisms is critical.

One of the critical assumptions in these models is

that the species be in equilibrium with its environment

in the area that is used for training the model. In the

native habitat the invasive species should be in

equilibrium where it has a long history of dispersal

and colonization, but even in native regions if large

areas that are poorly sampled are used for training the

model it will perform more poorly than if a small

native range that is well sampled is used (Zhu et al.

2016). Invasive non-native species are typically in

disequilibrium with their environment (not fully

occupying all the suitable environmental niche and

temporarily occupying unsuitable habitat), especially

during the early stages of invasion and establishment

(Elith et al. 2010; Uden et al. 2015). This results from a

colonization lag time while they must buildup and

adapt locally before they begin to disperse, other

limitations to dispersal, chance movement into areas

where they can’t establish and insufficient time to

occupy all the potential suitable habitat. Data for

invasive species are also prone to two forms of

sampling bias, which can produce poorly predictive

models. First, invasive species are often unevenly

surveyed (intense survey in new areas and poorly

surveyed in native or already naturalized regions)

which can affect the model unless the spatial data is

filtered (Bean et al. 2012). When invasive species are

first discovered little may be known about their

biology and they may not be a past in the native range

so little to no information on their distribution is

available. Second, short sampling time frames in

invaded areas reduce the length of time the model is

predictive and require the models to be adaptive and

updated with new data from novel environments often

to ensure their continuing usefulness (Dimson et al.

2019). Another potential issue is the possibility that

the invasive species has expanded its realized niche in

the invaded region. If this were the case, then the

predicted range would be inaccurate and no improve-

ment would be realized by improving the data from the

native range that the model is based on.

In the past, studies have shown that model

complexity also plays a major role in transferability

of SDMs in novel environments (Moreno-Amat et al.

2015; Warren and Seifert 2011); when an SDM is

overfit it underestimates the species potential habitat

whereas when it is under fitted SDM it tends to

overestimate it. Studies recommend to optimally

balance the model complexity and accuracy by fine
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tuning model parameters (Moreno-Amat et al. 2015;

Warren et al. 2014). The practice of fine tuning SDM

parameters includes calibrating several initial models

with a wide array of model parameters, selecting the

optimal set of parameters that results in the ‘‘best

model’’, and then further calibrating the model with

the chosen parameters (Cobos et al. 2019; Warren and

Seifert 2011). MaxEnt, one of the most popular

correlative SDMs (Morales et al. 2017; Potts and

Elith 2006) enables users to map potential distribu-

tions while making a number of modelling assump-

tions and choosing a number of model settings (Barry

and Elith 2006). This includes choice of background

samples or pseudo absences (PAs), selection of

appropriate features and regularization (b) multiplier

(Elith et al. 2011). The choice of background impacts

the transferability of SDMs, thus it becomes important

to modify the background sample so that there is a

clear ecological justification for the selection (Chap-

man et al. 2019; Liang et al. 2018). It is recommended

to constrain the PA locations to the same geographic

range as presences, while also considering dispersal

constraints for accurate predictions (Liang et al. 2018).

MaxEnt is a powerful SDM capable of incorporating

complex and highly non-linear response curves using

various feature classes and it is also equally vital to

select appropriate feature shape prior to model devel-

opment along with optimal regularization value to

reduce over fitting (Anderson and Gonzalez 2011;

Merow et al. 2013). Regularization penalizes the

model in proportion to the magnitude of the coeffi-

cients and consequently shrinks many coefficients

toward zero while setting others to zero, thereby

putting off many features from the model (Merow

et al. 2013; Tibshirani 1996).

The use of MaxEnt has grown regularly every year

since 2008, in part due to increasing focus on invasive

species. Accessibility to software platforms that

implement MaxEnt, as well as forest invasive species

(FIS) distribution data have further accelerated its use

within the literature. With this accessibility there is

increased need for methodological studies that ideally

analyze effects of various SDM design strategies

implementing MaxEnt. Evaluations of SDMs are not

rare (Guisan et al. 2017; Liu et al. 2011; Potts and Elith

2006; Senay andWorner 2019), but studies evaluating

the effects of SDM design strategies on model

performance with FIS are limited. Furthermore, a

recent review (Srivastava et al. 2019), suggested that

SDM outputs should address prediction uncertainty,

biotic interactions, and link species dispersal traits

with projections of species distributions, details which

are often missing in many SDM studies (Araújo and

Guisan 2006; Engler et al. 2012). Also, SDM studies

should account for the effects of sampling bias in the

occurrence data, critical yet rarely reported details for

models based on presence-only datasets (Phillips et al.

2009). Failing to correct for sampling bias may lead to

distribution projects reflecting the sampling bias rather

than the true potential distribution of a species (Støa

et al. 2018; Syfert et al. 2013). These different aspects

of SDMs need to be addressed in an accurate

modelling framework to ensure that the FIS distribu-

tion predictions match future invasion scenarios,

especially under the inherently unpredictable changing

global climate (Venette et al. 2010).

Here we focused on four FIS to evaluate the effects

of various SDM design strategies on FIS distribution

predictions in Canada, as well as their overall global

distributions. We chose four FIS to serve as case

studies i: two insects (Asian longhorned beetle [ALB],

Anoplophora glabripennis (Motschulsky); Asian

gypsy moth [AGM], Lymantria dispar asiatica

Vnukovskij and L. d. japonica Motschulsky) and

two pathogens (sudden oak death [SOD], Phytoph-

thora ramorum Werres; Dutch elm disease [DED],

Ophiostoma ulmi (Buisman) Melin & Nannf. and O.

novo-ulmi Brasier) (Fig. 1). All four FIS pose signif-

icant threats to Canadian forests (Hamelin and Roe

2019). The two insects are considered high risk

invasives and subject to regulatory action (e.g.,

removal of tree hosts for ALB eradication, denying

vessel entry if AGM is detected) by the Canadian Food

Inspection Agency, the national regulatory body

responsible for protecting Canada’s plant resources

from invasive species. SOD has been found associated

with nursery plants in the southern coastal area of BC,

but not yet in urban or forest environments in Canada.

The CFIA conducts annual surveys for SOD in

nurseries, and if detected, the nursery is placed under

quarantine and infected plant material is destroyed

resulting in economic losses to the owner. DED has

devastated elms across most of Canada since its arrival

in the 1940’s but does not yet occur in Alberta or

British Columbia (BC). There are various provincial

and municipal groups across the country supporting

programs to protect remaining elms from the deadly

disease. Despite these efforts from various plant
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protection groups, these species continue to pose a risk

to Canada. For example, a new ALB population was

detected in Toronto in 2013 after the first population,

detected in 2003, was successfully eliminated (Tur-

geon et al. 2015). Similarly, the CFIA continues to

detect AGM on vessels coming from Asian ports

(recent find in 2019) after being eradicated around the

Vancouver port in 1992 (Nealis 2009). In addition to

focusing on these four species, we also chose to

explore the sensitivity of SDMmodelling in twomajor

ports in Canada: Vancouver, British Columbia and

Toronto, Ontario. The ports of Vancouver and Toronto

are two of the major ports in Canada wherein cargo

volume reached a record high of 147 million tons and

2.2 million metric tons in 2018 respectively. In

addition to high trade volumes, CFIA continue to

detect FIS around these two ports. Continued detec-

tions suggest that these ports are high risk entry points

(Paini et al. 2018). Thus, we hypothesize that the ports

of Vancouver and Toronto are likely to serve as points

of entry for the FIS, so we produced dispersal

restricted projections of individual FIS distributions

in various climate change scenarios that also

accounted for anthropogenic factors governing the

species spread.

By using a case study approach, we show how

distribution predictions for each FIS can vary quite

dramatically and we highlight the need for biologi-

cally informed modelling.

Materials and methods

In general, we took the following steps below to

develop SDMs for our target species and evaluate the

effects of model design on distribution predictions.

We summarize the technical workflow in Fig. 2 and

break down each step-in further detail below:

1. Obtain occurrence records for each target species

(see ‘‘Occurrence data’’ section).

Fig. 1 Selected FIS to serve as case studies
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2. Develop spatial datasets representing current

environmental conditions and future climate sce-

narios; alongside spatial information on the

human footprint in the area of interest (see

‘‘Environmental variables’’ section).

3. Build MaxEnt models to predict the potential

distribution of selected FIS in Canada. (See

‘‘Species distribution model’’ section)

4. Create dispersal-limited projections of future FIS

distributions under selected climate change sce-

narios using MigClim. (See ‘‘Dispersal mapping’’

section).

Occurrence data

We collected presence records of AGM, ALB, DED

and SOD from various sources to map the known

distributions of our selected FIS Commonwealth

Agricultural Bureaux International (CABI). The

sources included (1) Records provided by the Cana-

dian Food Inspection Agency (CFIA); (2) Global

Biodiversity Information Facility database

(2017a, b, 2018, 2019), an online database for species

occurrences; (3) CABI invasive species compendium

(Commonwealth Agricultural Bureaux International

2019a, b, c, d) and (4) Scientific articles and maps. We

screened erroneous occurrences and deleted duplicate

records such that each observation falls inside a

separate 10 km grid cell. Spatial filtering was carried

out to mitigate sampling bias in the data (Dimson et al.

2019). A total of 186, 198, 193 and 95 distinct

occurrence records were finalized for AGM, ALB,

DED and SOD respectively (Fig. 3).

The occurrence data was partitioned randomly into

training and evaluation sets (30% for the AGM and

DED models and 20% for ALB and SOD). 10,000

background locations were generated within an area

defined by a buffer of 100 km around FIS occurrences

using SDM toolbox (Brown et al. 2017). The choice of

buffer radius was made with respect to the dispersal

abilities of the focal FIS (See Appendix 7). To account

for sampling bias in the FIS occurrence data we

gathered occurrence records for the target group of FIS

and generated a bias grid that up-weights occurrence

data points with fewer neighbors in the geographic

landscape using the Gaussian kernel density of

sampling localities tool in SDMToolbox (Brown,

2014) as recommended by Phillips et al. (2009). We
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Fig. 2 Flowchart representing the modelling flow used to model FIS distribution, dispersal and uncertainty in this study
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selected families of selected FIS i.e. Erebidae,

Cerambycidae, Ophiostomataceae and Peronospo-

raceae for AGM, ALB, DED and SOD respectively

as the target group. The motive behind generating bias

grid with species target group approach was to select

background points with the same bias as occurrence

data.

Environmental variables

We downloaded 19 bioclimatic variables from the

WorldClim database version 1.4 (http://www.

worldclim.org/) (Hijmans et al. 2005), averaged for

the 1950–2000 period, at a spatial resolution of five arc

minutes (approximately 9 km resolution at the equa-

tor). For future 2050 climate projections, we used

three representative concentration pathways (RCPs) of

the IPCC—RCP 2.6 (greenhouse gas emissions peak

in 2010–2020 and declining after), 4.5 (emissions peak

around 2040 and then decline), and 8.5. (rise temper-

ature throughout the twenty first century). We chose

three general circulation models (GCMs) of physical

climate processes for which the predicted values of

each of the bioclimatic variables were available:

Community Climate SystemModel (CCSM4), Hadley

Global Environment Model 2-Earth System (Had-

GEM2-ES) and Model for Interdisciplinary Research

On Climate (MIROC5). The selected GCMs are being

used in Climate BC/WNA/NA model for producing

future grid projections of climate and species range in

Canada and North America (Wang et al. 2012). In

order to incorporate responses of dispersal and human

footprint on FIS distributions we incorporated addi-

tional data on human footprint ‘‘Human Influence

Index-HII’’ at 1 km from SEDAC and resampled to

match the native climate grid resolution. The Human

Influence Index (HII) is a measure of direct human

influence on terrestrial ecosystems, derived from nine

Fig. 3 Selected FIS occurrences in their respective native and introduced ranges
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global variables including land cover, population

density, built-up areas, roads, navigable rivers and

nighttime lights (‘‘Socioeconomic Data and Applica-

tions Center|SEDAC’’). For inclusion in the model,

these predictors were subjected to multicollinearilty

test using Pearson’s correlation coefficient (r). The

Pearson’s correlation coefficient threshold was set to

0.8 and only one variable from each set of highly

correlated variables depending on its biological

importance to the species and its relative contribution

to the overall model was selected. Regularization

multipliers ranging from one to four were tested for

each FIS and the modelled distribution and AUC (area

under curve, or area under the receiver operating

characteristic (ROC) curve) was analyzed, as over

fitted models are poorly transferable in novel envi-

ronments (Elith et al. 2010).

Once the predictor set of variables and a regular-

ization parameter value was chosen for all selected

FIS, the model was evaluated using the training data

set. The training data was portioned into ten random

subsets using k-fold cross validation function in

MaxEnt. This was done to evaluate the average

behavior of the model. In order to produce simple

models with smooth fitted functions we used only

hinge features for the tuned models (Elith et al. 2010).

Jackknife resampling was used to identify those

variables that contributed most to the model. The

method provides systematic resampling and leads to

improved estimates of the sample parameter and a

lower sampling bias (Tukey 1958).

For AGM we selected four variables (bio1-Annual

Mean Temperature, bio 17-Precipitation of Driest

Quarter, bio 19-Precipitation of Coldest Quarter and

HII-Human influence index) and for ALB, we

included five variables (bio10-Mean Temperature of

Warmest Quarter, bio13-Precipitation of Wettest

Month, bio 07-Temperature Annual Range (BIO5-

BIO6), bio09-Mean Temperature of Driest Quarter

and HII). A temperature variable chosen for AGM is

not surprising since temperature has a huge impact on

both the egg diapause and larval development (Limbu

et al. 2017; Gray et al. 2001). Precipitation is also

important for AGM because of the effects on the host

and because egg masses under snow can survive

colder conditions than they otherwise could (Andresen

et al. 2001). Temperature is the most important factor

in ALB development for all stages (Trotter and Keena

2016) and impacts dispersal (Keena 2018) so multiple

variables involving temperature is to be expected. A

precipitation variable for ALB was also chosen likely

because of host requirements and because drier

conditions in the wood can accelerate pupation (MK

unpublished data). For DED we had six variables (bio

11-Mean Temperature of Coldest Quarter, bio15-

Precipitation Seasonality, bio 18-Precipitation of

Warmest Quarter, bio 2-Mean Diurnal Range, bio

7-Temperature Annual Range and HII) and for SOD

seven variables (bio1-Annual Mean Temperature,

bio4-Temperature Seasonality, bio14-Precipitation of

Driest Month, bio15-Precipitation Seasonality, bio18-

Precipitation of Warmest Quarter, bio19-Precipitation

of Coldest Quarter and HII). The variables chosen for

SOD are tied to conditions required for the fungus to

develop and spread; temperature and moisture condi-

tions must be right for fungal development (Tooley

et al. 2009) and rain aids in spore dispersal (Kuske

1983). The variables chosen for DED are tied both to

conditions that promote fungal and beetle vector

development or spread (Jones et al. 2019). The

selected predictor set for each FIS is also shown in

Table 1.

Species distribution model

MaxEnt

MaxEnt version 3.3.3k (Phillips et al. 2006) was used

to map the potential distribution of the selected FIS

due to unavailability of FIS absence data. MaxEnt

being presence—background model has been suc-

cessfully used in mapping the potential distribution of

FIS in past (Kumar et al. 2016; Lira-Noriega et al.

2018). MaxEnt is a machine learning algorithm used

for describing probability distributions following the

principle of maximum entropy, subject to restraints

imposed by the presence of species and their sur-

rounding environment (Phillips and Dudı́k 2008).

MaxEnt model for each FIS was built separately using

available training data from native as well as intro-

duced ranges and was later projected onto Canada to

map potential suitable areas for FIS establishment.

Additionally, the fade by clamping function was used

to limit extrapolations beyond the environmental

range of the training data. Multivariate environmental

similarity surface (MESS) analysis was performed to

identify regions of extrapolation for both current and

future FIS distribution maps.
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Model comparisons with different SDM approaches

In order to evaluate the effects of various SDM design

strategies and to find the best SDM design strategy for

our case-based FIS we individually designed and

evaluated seven different MaxEnt models (Table 1).

The seven MaxEnt models were (1) MaxEnt model

with default parameters and all environmental vari-

ables (climatic predictors ? HII) (2) MaxEnt model

with default parameters and all climatic variables

(here only climatic predictors) (3) MaxEnt model with

default parameters and selected variables (ref. above

section on variable selection, only selected environ-

mental variables were kept) (4) MaxEnt model with

default parameters and selected climatic variables (ref.

above section on variable selection, here only climatic

predictors were used) (5) MaxEnt model with tuned

parameters (selected environmental variables along

with tuned regularization value) (6) MaxEnt model

with no sampling correction (selected environmental

Table 1 Summary of individually designed MaxEnt models along with their predictors

Model Number of predictors

AGM ALB DED SOD

Model details

Type i 20

(BIO1–

BIO19 ? HII)

20

(BIO1–

BIO19 ? HII)

20

(BIO1–BIO19 ? HII)

20

(BIO1–BIO19 ? HII)

MaxEnt default ? all

environmental variables

(climatic predictors ? HII)

Type

ii

19

(BIO1–BIO19)

19

(BIO1–BIO19)

19

(BIO1–BIO19)

19

(BIO1–BIO19)

MaxEnt default ? all

climatic variables (here

only climatic predictors)

Type

iii

4

(BIO1,17,19,HII)

6

(BIO7,9,10,13,HII)

8

(BIO2,7,11,15,18,HII)

5

(BIO1,4,14,15,18,19,HII)

MaxEnt default ? selected

variables (ref. above

section on variable

selection, only selected

environmental variables

were kept)

Type

iv

4

(BIO1,17,19)

3

(BIO7,9,10,13)

4

(BIO2,7,11,15,18)

3

(BIO1,4,14,15,18,19)

MaxEnt default ? selected

climatic variables (ref.

above section on variable

selection, here only

climatic predictors were

used)

Type

v

4

(BIO1,17,19,HII)

6

(BIO7,9,10,13,HII)

8

(BIO2,7,11,15,18,HII)

5

(BIO1,4,14,15,18,19,HII)

MaxEnt tuned (selected

environmental variables

along with tuned

regularization value)

Type

vi

4

(BIO1,17,19,HII)

6

(BIO7,9,10,13,HII)

8

(BIO2,7,11,15,18,HII)

5

(BIO1,4,14,15,18,19,HII)

MaxEnt tuned—sampling

correction (selected

environmental variables

along with tuned

regularization value plus

restricted background.

Here there was no

sampling correction

implemented)

Type

vii

4

(BIO1,17,19,HII)

6

(BIO7,9,10,13,HII)

8

(BIO2,7,11,15,18,HII)

5

(BIO1,4,14,15,18,19,HII)

MaxEnt tuned ? sampling

correction (selected

environmental variables

along with tuned

regularization value plus

restricted background with

sampling bias grid)
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variables along with tuned regularization value plus

restricted background. Here there was no sampling

correction implemented) (7) MaxEnt model with

sampling correction (selected environmental variables

along with tuned regularization value plus restricted

background with sampling bias grid).

Model evaluation

Model evaluation was performed using the withheld

presence data for the selected FIS. True skill statistic

(TSS) (difference between the rate of successes and

errors), sensitivity (fraction of correctly predicted

presences), correct classification rate (fraction of

correctly predicted points of presence and pseudo

absence) and omission error (presence is outside the

area predicted, also called False Negative Rates)

scores at maximizing test sensitivity and specificity

threshold were used to evaluate the models. We

extracted the same number of pseudo absences (PAs)

as testing presences in order to calculate the evaluation

scores. PAs were extracted in the same spatial range as

the presences. The same set of pseudo absences and

testing data was used for all compared models and was

excluded from all model fits. TSS was used here due to

being independent of prevalence. However, metrics

such as TSS and correct classification rate make use of

pseudo-absences rather than true absences for pres-

ence only modelling approaches. Hence, PAs should

be selected cautiously for reliable estimates on false

positives and true negatives (Leroy et al. 2018). The

TSS ranges from- 1 to? 1, where values of 0 or less

indicate a model performance no better than random,

and a value of ? 1 indicates perfect performance

(Allouche et al. 2006). The evaluation scores were

calculated using NicheToolBox (Osorio-Olvera et al.

2020).

Dispersal mapping

In order to include selected FIS specific dispersal

constraints into projections of their potential distribu-

tions under climate change, we used MigClim (Engler

et al. 2012). MigClim is a function library built in R

software that allows implementation of species dis-

persal limitations in SDM predictions under climate

change conditions. MigClim is a cellular automaton

model so cells are the measured units and here each

cell corresponds to 10 km pixel. Here a target cell

becomes colonized with the combined probability P

col:

Pcol ¼ 1�
Yn

i¼1

ð1� PDispi� PPropi

 !
Þ � Pinv

Here P Disp i is a probability function of the distance

between the target cell and the source cell i. P prop i is

a probability that is function of time since the source

cell i became occupied and represents the propagule

production potential of the source cell i over the time.

P prop is specified via two parameters: initial maturity

age [iniMatAge] and a vector indicating the probabil-

ity of propagule production for each age between

initial and full maturity [propaguleProd]. P inv denotes

the habitat invisibility of the target cell. Functions of P

Disp are provided in Appendix 8.

A dispersal kernel, which is the dispersal probabil-

ity as a function of P Disp and P prop, was created

based on a negative exponential, with values ranging

from 1 for one cell distance, to 0.06 for a distance of 4

cells for AGM. AGM females can fly from less than

1 km up to 20–40 km (Keena et al. 2001; Srivastava

et al. 2020). For the other FIS a dispersal kernel was set

to 1 with maximum probability since the short distance

dispersal was found to be limited (\ 10 km) (Dunn

2012; Grünwald et al. 2012, 2019; Smith et al. 2001).

We fixed P prop as 1 assuming the probability of the

source cell to produce propagules to be 100% as our

focal FIS are socially active. Additional, random long-

distance dispersal events were generated at a fre-

quency of 0.1 at min–max distance range of 100 (10

cells) and 200 km (20 cells) since the selected FIS are

capable of dispersal through various means of trans-

port, such as human-assisted transportation (Koch

et al. 2013). Since, DED dispersal is limited to the

presence of Elm trees, a strong barrier was imple-

mented in the model to simulate dispersal events only

in the pixels having Elm presence. Additional infor-

mation on considered FIS biology and ecology is

provided in Appendix 7. A reclassification threshold

was selected based upon maximum test sensitivity and

specificity for each FIS along with their respective

dispersal kernel.

Since MigClim does not generate habitat suitability

maps itself, we used MaxEnt to generate the required

inputs. Future FIS distribution maps for the year 2050

were produced for climate change scenarios using

MaxEnt for three RCPs (2.6, 4.5, and 8.5) and three

123

Oh the places they’ll go 305



GCMs (CCSM4, HadGEM2-ES andMIROC5). These

maps were used as an input along with an initial

distribution map of the FIS. We assumed two initial

infestation points i.e. Vancouver port and Toronto

port, since the chosen FIS have been intercepted at

these introduction points in the past (Hamelin and Roe

2019; Nealis 2009). We had one environment change

step (2050) where in total 40 dispersal steps were

simulated [envChgSteps] 9 [dispSteps], here 40,

which corresponds to 40 years from 2010 to 2050.

The simulations were repeated for 10 times producing

dispersal limited future distribution maps of FIS from

2010 to 2050 under selected climate change scenarios.

Results

Effects of SDM design on predictive performance

The performance of the seven SDM designs for

individual FIS varied. When the models were evalu-

ated using the withheld presence data, we found the

best SDM design strategy to be model type vii with

‘‘sampling correction’’ for each FIS. The performance

of models created with default parameters was found

to improve by tuning of the model parameters and

correcting the sampling bias and further improved

when both were implemented together. Upon com-

paring the model type ii (classical default SDM) with

model type vii (tuned model with sampling correc-

tion), we found that the TSS score increased from

0.482 to 0.528 for the AGM model. Likewise, for

ALB, DED and SOD it increased from 0.450 to 0.555,

0.672 to 0.734 and 0.684 to 0.842 respectively. The

detailed model evaluations for comparison between

different SDM designs for DED is shown in Fig. 4 and

for other selected FIS in Appendix 1.

Potential distribution of FIS

Modelled predictions selected from best SDM design

practice for each FIS matched closely with the

observed FIS observations in their respective envi-

ronment (Appendix 3). Predictions obtained from

analyzing these FIS models to a nonnative range

(Canada) highlighted areas at risk (available for their

potential establishment). Similar provinces were pre-

dicted to be suitable for AGM, ALB and DED

potential establishment; however, different suitability

scores were recorded in these provinces for these three

FIS. The identified suitable areas were in the provinces

of British Columbia, Alberta, Saskatchewan, Mani-

toba, Ontario, Quebec, New Brunswick, Nova Scotia

and Newfoundland. Whereas, highly suitable areas for

SOD were predicted only for the province of British

Columbia, near the western coast (Appendix 2). With

climate change, FIS distributions in Canada expanded

to the north and west (Fig. 5 and Appendix 2).

Upon comparing the current Canadian potential

distributional ranges of FIS with their future suitability

ranges in various climate change scenarios, we found

that AGM, ALB and DED expanded their ranges in all

considered GCMs and RCPs. The greatest range

expansion was recorded in RCP 8.5 and the least in

RCP 2.6 for all selected GCMs. AGM, ALB and DED

expanded their ranges by 89,259, 119,024,104,293 km2

respectively in CCSM4. Whereas, in GCM-Had-

GEMES, the range was expanded by 102,456, 109,822

and 199,175 km2. Lastly, in MIROC5, 93,822, 11,190

and 130,025 km2 expansion was recorded for AGM,

ALB and DED respectively.

Interestingly, SOD potential distributional range

was observed to contract with warming climate

change conditions. Range contraction for SOD was

highest in RCP 8.5 and lowest in RCP 2.6. Current

SOD range got shrunk by 1306.50, 5850.87 and

7725.43 km2 in RCP 2.6, 4.5 and 8.5 respectively for

CCSM4 GCM. Similarly, for other two GCMs i.e.

HADGEM2_ES and MIROC5 it shrunk by 10,111.22,

11,644.95, 5 and 5282.831, 3578.69 and 6986.97

respectively in RCP 2.6, 4.5 and 8.5 climate change

scenarios.

Environmental responses and variable

contribution

Suitable conditions (probability of presence[ 0.45,

based on maximum test sensitivity and specificity

threshold) for AGM were related to areas with annual

temperatures between 5 and 27 �C which agrees with

the temperature responses of AGM and that its

populations may struggle in areas that experience

longer periods of temperatures C 30 �C (Limbu et al.

2017). AGM distributions were found to expand into

areas where temperatures warmed to acceptable levels

and to decline in areas where temperatures began to

exceed the 30 �C level for longer periods. The

occurrence data and modelled distributions also
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Fig. 4 Evaluation summary of DEDmodels using TSS, correct classification rates, omission error and sensitivity metrics. Summary of

other FIS models are shown in Appendix 1

Fig. 5 Potential distribution of selected FIS in current and future climate change scenario
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indicate that areas receiving precipitation in the

coldest quarter between 20 and 870 mm are suit-

able for AGM establishment. ALB had the highest

suitability (probability of presence[ 0.49, based on

maximum test sensitivity and specificity threshold) in

areas receiving annual temperature range of 16–44 �C
and mean temperature of warmest quarter between 20

and 35 �C with 50–500 mm precipitation in the

wettest month. This agrees with ALB’s ability to

develop at temperatures between 10 and 35 �C and the

fact that larvae are freeze tolerant (Keena and Moore

2010, Torson et al. in prep, Roe. unpublished data).

Suitable areas for DED (probability of pres-

ence[ 0.521) were found in areas having mean

temperature of coldest quarter and annual temperature

range between - 8 and - 1 �C and temperature

annual range between 20 and 44 �C. This supports

the findings of Brasier and Mehrotra (1995) where

DED was found to be adapted to a subtropical

environment due to its high optimum growth temper-

ature. Sporulation of DED fungus are inhibited by

prolonged exposure to high summer temperatures and

low moisture content (Webber 1990). SOD potential

distribution was associated with moderate temperature

variability and high variability in precipitation. We

showed that the SOD populations can be strongly

influenced by variability in precipitation which is

more confined to regions typical to coastal areas and

islands. Most of the SOD infestation sites in California

and Oregon are located within 30 km of the Pacific

coastline or San Francisco bay (Rizzo and Garbelotto

2003). Also, moisture is critical for the germination of

spores and fungal growth (see Appendices 4 and 7).

The jackknife test identified Human Influence

Index (HII) and Precipitation of Driest Quarter (Bio

17) as the most important predictors of AGM distri-

bution, while identifying HII and Mean Temperature

of Warmest Quarter (Bio 10) for ALB distribution.

Jackknife test found Human Influence Index (HII),

Mean Diurnal Range (Bio 2) and Mean Temperature

of Coldest Quarter (Bio 11) for DED and Temperature

Seasonality (Bio 4) and Precipitation of Coldest

Quarter (Bio 19) for SOD. HII made the largest

contribution to the MaxEnt model of AGM and ALB

distribution when used in isolation and reduced the

model’s predictive ability the most when omitted.

Similarly, Mean Temperature of Coldest Quarter (Bio

11) was identified for DED and Temperature Season-

ality Bio 4 for SOD.

FIS dispersal

Inclusion of FIS specific dispersal limitations into

projections of FIS distributions under climate change

conditions limited the distribution range when com-

pared with scenarios of unlimited dispersal for all

selected FIS (Appendix 5). Figure 6 shows the total

number of cells found to be colonized at the end of a

simulation for each FIS under multiple climate change

conditions starting from two infestation points. The

increase in the number of cells colonized by AGM and

ALB was found to be highest in RCP 8.5 and when the

infestation started from port of Toronto. No cells were

colonized for DED when infestation started from port

of Vancouver and similarly, for SOD when infestation

started from port of Toronto. The number of cells

colonized by DED was higher in RCP 8.5 than RCP

2.6 and 4.5 but for SOD the colonization was lowest in

RCP 8.5 and highest in RCP 2.6. Detailed dispersal

limited output maps for each FIS under each consid-

ered scenario are shown in Appendix 6 and an example

output is shown in Fig. 7.

Discussion and conclusions

The results we generated are in agreement with the

recent findings that have shown the effects of model

complexity and varying parameters on SDM perfor-

mance (Halvorsen et al. 2016; Morales et al. 2017;

Rodda et al. 2011; Stolar and Nielsen 2015; Syfert

et al. 2013). Our analysis clearly found that the use of

default settings for the distribution modelling of FIS

were not adequate in each of the considered cases,

instead high accuracy was achieved when model

parameters were finely tuned and model complexity

was optimally balanced. The method proposed by

Brown et al. (2017) to correct sample selection bias

greatly improved the predictive performance of SDMs

when the collected data resulted from an unclear

survey design or was derived from online databases.

The importance of the background data selection

strategy in SDMs have been highlighted for a long

time (Barbet-Massin et al. 2012; Syfert et al. 2013) and

here we validated its importance in working with FIS

by improving the accuracy of our SDMs by following

an accessible background while accommodating the

dispersal constraints. We achieved both significant

improvements in the predictive performances of
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SDMs with less complex models and found them to be

more accurate in providing predictions upon transfer-

ring to Canadian (i.e. novel) environments.

HII is a measure of direct human influence on

terrestrial ecosystems, which includes access routes,

navigable rivers, nighttime lights along with other

important variables; it effectively contributed in

correctly identifying the suitable areas for each FIS.

Inclusion of human influence index ‘‘HII’’, in addition

to climatic predictors to account for FIS dispersal and

human footprint, increased the overall accuracy of the

FIS model. HII also significantly contributed to each

FIS model. The effectiveness of HII in the models can

be directly linked to the biology of each FIS. For

example, AGM can hitchhike on man-made objects

and disperse along the transportation corridors, par-

ticularly as egg masses or pupae. Dispersal of adult

moths along transportation corridors is further pro-

moted by their attraction to light sources. The SOD

pathogen shows similar association with human

influence. Spores can move with infected plants,

which helps explain why more infected trees were

detected on public lands open to general recreation

than on adjacent lands lacking public access (Cush-

man et al. 2008). Furthermore, the chances of an SOD

infection increased when sites were within 50 km of

human habitation (Cushman et al. 2008). DED and

ALB, our remaining focal taxa, also showed higher

dispersal in areas with an increased human footprint.

In fact, most of the ALB invasions are located in or

near urban areas (Appendix 5).

Climate has been considered a critical barrier for

the establishment and spread of invasive species into

temperate regions. However, climatic models predict

that eastern Canada’s average temperature will

increase by 3–5 �C by 2100 (Dukes et al. 2009). This

increase in temperature, particularly winter tempera-

tures, could eventually lead to much higher probabil-

ities of successful FIS establishments (Dukes et al.

2009; Huang et al. 2011). We chose to examine how

our FIS distributions changed as we accounted for

temperature increases associated with climate change.

Three of the four species (AGM, ALB, and DED)

showed greater distributions under future climate

projections. FIS range is expected to expand with

highest range expansion in rcp 8.5, thus leading to

much higher probabilities of FIS establishments and

spread. SOD range was observed to shrink possibly

due to its specific moisture requirements. Given the

combined threat of invasion and climate change, it is

Fig. 6 Colonization in dispersal restricted future distribution of FIS under different climate change scenarios. We assumed Vancouver

port and Toronto port as two initial infestation points
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critical to model future distributions to ensure

resources are adequately allocated to at risk areas

based on current or future climate regimes rather than

historical estimations (Huang et al. 2011).

Correlative SDMs (MaxEnt) are focused primarily

on the realized niche (actual distribution) so may

underestimate the fundamental niche (potential distri-

bution). This is because the model is representing only

a portion of niche that is represented by the observed

records and it is highly unlikely that a new FIS is at

equilibrium with its current environmental conditions

(Václavı́k and Meentemeyer 2012). This might

provide an inaccurate assessment of overall species

niche. Additionally, the habitat that is colonizable may

differ from the potential habitat so including dispersal

into habitat projections can greatly improve projec-

tions. This was shown for SOD when several types of

models were evaluated (Václavı́k and Meentemeyer

2009). Uncertainty when deciding on resource alloca-

tion for FIS control measures can lead to poor

targeting and unnecessary economic expenditures.

Our approach of addressing dispersal limitations using

MigClim integrates species-specific genetic traits

(flight capacity, long dispersal distance, etc.) and

allows for better simulating FIS spread under potential

future climate conditions. We have found suitable ar-

eas where FIS likely to spread if it gets introduced and

establishes in Vancouver and Toronto. Such informa-

tion can be used by managers to more finely focus

eradication efforts. However, it should be noted that

Fig. 7 Dispersal restricted future distribution of DED under

GCM-CCM4 and RCP 2.6, 4.5 and 8.5 climate change

scenarios. Color gradient from blue to grey represents the first

10 years of the simulation time frame when colonization first

occurred, the light grey to light yellow color gradient represents

the next 10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the hypothe-

sized point of DED introduction (port of Toronto) while the

green pixels represent suitable areas that were not colonized due

to dispersal limitations and not reached by FIS during the time of

simulation
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most of the FIS would continue to spread after year

2050 as our simulations did not reach stability and

colonization was found to be increasing at the end of

simulation. Moreover, suitable areas might be reached

through human transport specifically in the case of

ALB. Our findings suggest that the ALB control

efforts in Vancouver must be focused on the accidental

transport of the beetle.

The invasion history, ecology, and biology of each

FIS must be considered when building the model.

About 50 years ago, ALB native habitat in China was

limited to the eastern provinces and the insect wasn’t

causing serious harm to the native maples it infested.

Then, nonnative trees were widely planted and this

insect became invasive, now being found throughout

most of China (Hu et al. 2009). It was only after it

became invasive in China that it spread to other

countries. So, this insect may not be in complete

equilibrium even in what is considered its native

habitat which can adversely affect model predictions.

The native range for SOD was only recently discov-

ered, so few data points are available for it and its true

native range is still poorly known. Factors that affect

DED niche must include more than just the fungus,

since a beetle is required to move it from host to host.

Climatic factors that influence the fungus may be

different from those affecting the beetles that vector it

so more realistic predictions may be reached by

including predictors specific to the vectors present in

the region of interest once data on the effects of

climate on the vectors is available. Also, the dispersal

capability of the beetle is important to understanding

how far and fast this fungus can spread. Dispersal

capability has been shown to be an important factor in

constructing ecological niche models (de Andrade

et al. 2019). Finally, female flight capability in gypsy

moths varies across its native range (Eurasia) with

most AGM females having full flight capability, while

female flight capability in EGM is variable and

declines as you move both west and south (Keena

et al. 2008). So maybe models should include different

dispersal components in MigClim to account for the

difference in female flight capability in different parts

of the range or in invaded areas depending on weather

the invasive gypsy moth strain has females capable of

flight or not. More data and analysis of other model

parameters should still be considered in future studies

of these FIS to further refine the models.

We find that ignoring underlying FIS ecology and

biology in SDMs and using complex (i.e. default)

SDMs provide an incomplete picture of FIS invasion

both in space and time. In these focal cases we

recommend simplifying model complexity and

including dispersal and biotic factors to achieve more

accurate outputs for each species when projecting

models across time. We strongly encourage SDM

users to perform species-specific tuning when model-

ing FIS distributions with MaxEnt to determine the

best SDM design, as suggested by other authors

(Halvorsen et al. 2015; Moreno-Amat et al. 2015;

Muscarella et al. 2014; Shcheglovitova and Anderson

2013). However, often the biological and ecological

knowledge of new incoming FIS is unavailable. In

such cases, climate suitability seems to be the most

widely-accepted approach to delineate the probable

target regions for the FIS (Srivastava et al. 2019). Yet,

climate suitability alone cannot explain the niche

requirements of the species, though occasionally it is

the most important factor (Stohlgren and Schnase

2006). In such cases we suggest performing species

specific model parameterization using recently devel-

oped tools like kuenm (Cobos et al. 2019) that offers

more rigorous processes of model evaluation and

selection and further linking the SDM with simplified

dispersal models like KISSMig (Nobis and Normand

2014) which seems to be a sound alternative since it

does not require information on species demography

and dispersal processes.

Preventing FIS introductions completely is by far

the best method to protect the forest resources of a

country (Myers et al. 2000) and a key component of

the strategy involves detection of infestation areas in

the early stages of invasion by means of surveys and

constant monitoring. Maps produced from this study

provide information about the potential suitable distri-

bution ranges of focal FIS. This type of information is

useful in designing early pest surveys and setting of

domestic quarantines. Additionally, these maps can be

effectively used in making scientifically informed

management choices and help to further inform related

conservation priorities and trade decisions. However,

the maps produced should be interpreted with caution

as there is no best transferable SDM for all species and

predictions differ with varying modelling assumptions

(Qiao et al. 2015, 2019). Also, FIS infested material

could arrive to any other vulnerable port or trans-

portation destination, thus additional simulations for
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specific scenarios based on actual points of entry are

still needed. The outputs will benefit Canada’s forest

resources ecologically and economically as the mid-

range projected annual loss to industry for individual

FIS are: US$16 M for ALB, US$625 M for DED,

US$121M for the gypsy moth (Colautti et al. 2006)

and US$25 M for SOD (Nelson et al. 2009).
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Appendix 1

Evaluation summary of FIS models using TSS, correct

classification rates, omission error and sensitivity

metrics.

AGM

Evaluation metric Sensitivity TSS CCR OR

Default with all variables 0.500 0.393 0.696 0.500

Default with climate

variables

0.589 0.482 0.741 0.411

Default with select

variables

0.536 0.375 0.688 0.464

Default with select

climatic variables

0.679 0.429 0.714 0.321

With tuned parameters 0.750 0.518 0.759 0.250

Without bias file 0.464 0.375 0.688 0.536

With sampling correction 0.736 0.528 0.764 0.264
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ALB

Evaluation metric Sensitivity TSS CCR OR

Default with all variables 0.632 0.507 0.756 0.368

Default with climate variables 0.725 0.450 0.725 0.275

Default with select variables 0.684 0.484 0.744 0.316

Default with select climatic variables 0.750 0.475 0.738 0.250

With tuned parameters 0.737 0.537 0.769 0.263

Without bias file 0.526 0.501 0.756 0.474

With sampling correction 0.950 0.555 0.782 0.395
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Appendix 2

Potential distribution of selected FIS in current and

future climate change scenarios along with MESS

(multivariate environmental similarity surface) maps.

For suitability maps, higher probability (red colors)

represent areas suitable for FIS. Zero probability or

lower probability (dark green) indicates areas less

suitable. For MESS maps, increase in blue tone

denotes increasing degree of extrapolation on at least

one variable. Suitability predictions in those areas

(blue) should be treated with high caution.

SOD

Evaluation metric Sensitivity TSS CCR OR

Default with all variables 0.789 0.684 0.842 0.211

Default with climate

variables

0.789 0.684 0.842 0.211

Default with select

variables

0.684 0.579 0.789 0.316

Default with select

climatic variables

0.684 0.579 0.789 0.316

With tuned parameters 0.737 0.632 0.816 0.263

Without bias file 0.895 0.789 0.895 0.105

With sampling correction 0.947 0.842 0.921 0.053

DED

Evaluation metric Sensitivity TSS CCR OR

Default with all variables 0.690 0.638 0.819 0.310

Default with climate variables 0.759 0.672 0.836 0.241

Default with select variables 0.621 0.569 0.784 0.379

Default with select climatic variables 0.690 0.569 0.784 0.310

With tuned parameters 0.707 0.586 0.793 0.293

Without bias file 0.759 0.724 0.862 0.241

With sampling correction 0.776 0.734 0.872 0.224
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(a) Asian gyspy moth
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(b) Asian longhoned beetle
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(c) Sudden oak death
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(d) Dutch elm disease

Appendix 3
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See Fig. 8.

Fig. 8 Predicted potential distribution of selected FIS on a global scale. Higher probability (red colors) represent areas suitable for FIS.

Zero probability or lower probability (dark blue) indicates areas less suitable
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Appendix 4: environmental response curves

See Fig. 9.

(a) Asian gypsy moth 

(b) Asian longhorned beetle

Fig. 9 Relationships between environmental predictors and the probability of the presence of FIS: red curves show the mean response

and blue margins are ± 1 SD calculated over 10 replicates
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 (c)Dutch elm disease

(d) Sudden oak death

Fig. 9 continued
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Appendix 5

Comparing dispersal limited to unlimited FIS dispersal projections under climate change conditions. Here numbers

represents total number of cells colonized under each scenario.

(a) Asian gypsy moth

GCM/scenario Infestation point-Vancouver port Infestation point-Toronto port Unlimited dispersal

ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5

rcp26 3416 4143 5074 5393 5260 5499 19,142 19,509 19,265

rcp45 5262 4608 5115 5479 5532 5726 19,383 19,592 19,445

rcp85 5318 5473 5939 5619 5788 5843 19,548 19,770 19,599

(b) Asian longhorned beetle

GCM/scenario Infestation point-Vancouver port Infestation point-Toronto port Unlimited dispersal

ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5

rcp26 71 76 68 2482 2497 2446 7701 7366 7647

rcp45 75 82 72 2528 2539 2613 8117 7904 8116

rcp85 76 91 79 2567 2587 2663 8716 8510 8334

(c) Dutch elm disease

GCM/scenario Infestation point-Toronto port Unlimited dispersal

ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5

rcp26 1438 1379 1443 2051 2045 1992

rcp45 1538 1555 1524 2026 2061 2013

rcp85 1577 1616 1622 2039 2059 2040

(d) Sudden oak death

GCM/scenario Infestation point-Vancouver port Unlimited dispersal

ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5

rcp26 879 625 893 1166 977 1061

rcp45 606 650 848 1063 947 1097

rcp85 433 500 759 1033 911 1036
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Appendix 6

FIS dispersal limited distributions under different

climate change scenarios and two hypothesized infes-

tation points-

AGM (Infestation point-Vancouver port)

Dispersal restricted future distribution of AGM

under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next
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10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.

Dispersal restricted future distribution of AGM

under GCM-HADGEM2ES and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of AGM

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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AGM (Introduction point-Toronto port)

Dispersal restricted future distribution of AGM

under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of AGM

under GCM-HADGEM2ES and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of AGM

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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ALB (Introduction point-Vancouver port)

Dispersal restricted future distribution of ALB

under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of ALB

under GCM-HADGEM2ES and RCP 2.6, 4.5 and

8.5 climate change scenarios. Color gradient from blue

to grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of ALB

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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ALB (Introduction point-Toronto port)

Dispersal restricted future distribution of ALB

under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of ALB

under GCM-HADGEM2ES and RCP 2.6, 4.5 and

8.5 climate change scenarios. Color gradient from blue

to grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of ALB

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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DED (Introduction point-Toronto port)

Dispersal restricted future distribution of DED

under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of DED

under GCM-HADGEM2ES and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of DED

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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SOD (Introduction point-Vancouver port)

Dispersal restricted future distribution of SOD

under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 climate

change scenarios. Color gradient from blue to grey

represents the first 10 years of the simulation time

frame when colonization first occurred, the light grey

to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of SOD

under GCM-HADGEM2ES and RCP 2.6, 4.5 and

8.5 climate change scenarios. Color gradient from blue

to grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.
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Dispersal restricted future distribution of SOD

under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5

climate change scenarios. Color gradient from blue to

grey represents the first 10 years of the simulation

time frame when colonization first occurred, the light

grey to light yellow color gradient represents the next

10 years followed by orange and rose color gradients

(years 2031–2050). Pink colored pixel indicates the

hypothesized point of DED introduction (port of

Toronto) while the green pixels represent suitable ar-

eas that were not colonized due to dispersal limitations

and not reached by FIS during the time of simulation.

Appendix 7

AGM life history parameters and associated

references

AGM is a potent invader with more than 600 known

hosts. AGM females are capable of flight and can lay

eggs on human-made objects.

• Generations per year

• Univoltine—one generation per year (Elkinton

and Liebhold 1990)
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• Dispersal

• Adult females disperse and spread their popu-

lation naturally by sustained flight and wind-

borne dispersal of first instars (Keena et al.

2008).

• Attracted to lights at night (Montgomery and

Wallner 1988; Schaefer and Strothkamp 2014)

• Dispersal distance

• Frequent long distance dispersal flights (aver-

age less than 1 km to max range of 20–40 km)

(Iwaizumi et al. 2010; Keena et al. 2008)

• Russian females may fly distances up to

100 km and eastern Siberian females seen

crossing mountain ranges in large groups

during outbreaks (Rozhkov and Vasilyeva

1982)

• Egg masses in Japanese cities found within

1 km of forests(Liebhold et al. 2008).

• Average flight distance of 1 day old Chinese

females in 8 h on flight mills was 5.65 km and

maximum was 10.67 km (Yang et al. 2017)

• Reproductive capacity

• Producing an average of 600–1000 eggs per

egg mass (USDA)

• Distribution

• Found throughout temperate Asia. Usually east

of the Ural Mountains into Far East Russia,

through most of Japan, China and Korea. It is

not found east of the Himalayan range in India

(USDA)

• Critical temp.

• AGM populations may struggle in regions

experiencing longer periods of tempera-

tures C 30 �C and survival rate is highest

between 15and 25 �C (Limbu et al. 2017).

ALB life history parameters and associated

references

• Sex ratio

• 1-!:14 male–female (Bancroft and Smith 2005)

• 1:1 male–female (Trotter et al. 2019)

• Other papers use only the females to model

spread since she drives the establishment of

new infestations

• Generations per year

• Temperature dependent

• (Haack et al. 2010)

• (Keena and Moore 2010)

• (Faccoli and Gatto 2016)

• (Favaro et al. 2015)

• Not strictly univoltine (1 year); may take

multiple years to develop

• (Keena and Moore 2010; Trotter and Keena

2016) (in Finland may take 10? years)

• (Straw et al. 2015)

• 3 years for Paddock Woods

• (Kappel et al. 2017)

• Do not use the Newtonian Cooling

model to estimate within tree temps—

may not accurately reflect temps within

tree

• But estimated that in northern states will

take minimum 2–3 years to complete

development, some areas up to

5–6 years

• Dispersal distance

• Frequent short distance dispersal flights

(\ 1.5 km)

• (Javal et al. 2018)

• Tendency to remain on and reinfest natal tree

• (Haack et al. 2010)

• Dispersal occurs when tree host quality

deteriorates

• (Sawyer 2007)

• Rare long distance flights (\ 1.5 km)

• Human mediated transport likely more

significant at farther distances

• (Fournier and Turgeon 2017)

• * 10 km (modeled and based on graph)

• (Trotter et al. 2019)
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• Longest single sustained flight on flight mill =

4006 m; median = 247.6 m

• (Javal et al. 2018)

• Lifetime dispersal for a female = 14,060 m;

median = 3964 m

• (Javal et al. 2018)

• Spread rates

• in England in one stand, mean rate of popula-

tion spread 29.3 m/year

• (Straw et al. 2016)

• Jersey City spread 50 m/year

• (Sawyer et al. 2011)

• New Jersey spread 2.4–3.2 km in 5–6years

• (Sawyer et al. 2011)

• Italy spread 2 9 2 km in 5 years

• (Faccoli et al. 2015)

• Probability to disperse

• 55% of tethered test flights = no flight

• Javal et al. 2018

• \ 50% took flight in a number of laboratory

experiments, esp females

• (Keena 2018)

• Critical temps

• 10.2C-egg hatch

• Temperature developmental model-(Trotter

and Keena 2016)

• Adult emergence in spring after 400-degree-

days (10C threshold)

• (Smith et al. 2004)

• Dispersal ceases below 15 �C

• (Keena 2018)

• Habitat preferences

• Edge preference

• (Williams et al. 2004)

• (Shatz et al. 2013)

DED biology and vector life history

DED is vectored by several species of bark beetle:

Hylurgopinus rufipes (native), Scolytus multistriatus

(introduced-Europe), and Scolytpus schevyrewi (in-

troduced-Asia).

• Surprising lack of dispersal information for above

three species

• (Harwood et al. 2011)

• Dispersal kernel

• (Harwood et al., 2011)

• DED vectors

• Negative exponential kernel of 20 km

(15–40 km)

• Experts estimate max

dispersal = 12.88 km

• Most dispersal within 500 m of host

• Median dispersal distance of 150 m for a

negative square power law function for

incorporating radial dispersal

• Probability of 0.002 for

dispersal[ 12.88 km

• Combined beetle and firewood kernel of

3:1 beetle:firewood movement gives a

reasonable pattern of spread in early

stages of epidemic

• History of DED in UK

• (Tomlinson and Potter 2010)

• Review of factors influencing flight in bark beetles

(Jones et al. 2019)

• Bark beetles (= Scolytinae) contain vectors of

DED

• Flight capacity versus dispersal—distinct

• Capacity = physiological ability to fly

• Dispersal = capacity ? imapct of external

factors (e.g. environment)

• Long distance dispercal characterized by

above canopy flight carried by wind (e.g.

Mountain pine beetle dispersal over Rocky

Mountains; 30–100 km/day via wind)

• Dispersal distance
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• mean for beetles ranges from 500 m to 6 km;

max distances can be[ 25 km, but this is a

long thin tail, bulk of the pop is short distance

• Fat-tailed dispersal kernel needed to capture

potential for bark beetles to disperse long distances

• Min temp for flight initiation in bark beetles range

from 10.6C–21C; mean = 15.6C

• Dispersal distance

• Mark recapture-38% pop close to release site,

52% within 400–600 m from release site

(Strobel and Lanier 1981)

• 5–6 km dispersal (Wolfenbarger and Jones

1943)

• Mark recapture-1 km (Pines and Westwood

2008)

• 400–600 m dispersal (Wollerman 1979)

SOD biology and vector life history parameters

and associated references

There are no known vectors of SOD other than humans

but any organism that can move soil is potentially a

vector of SOD.(Grünwald et al. 2012, 2019; Kliejunas

2010; Rizzo et al. 2005)

• Dispersal

• Long range spread of disease through sporangia

and chlamydospores, chlamydospores can sur-

vive for a week at a constant temperature of

55 �C.
• Natural dispersal of SOD is by movement of

plant material, waterborne and soilborne

chlamydospores, and by waterborne, soilborne

and wind-blown rain containing sporangia

(Rizzo and Garbelotto 2003; Rizzo et al.

2005; Grünwald et al. 2019)

• Dispersal distance

• Splash dispersal-propagules can travel up to

60 cm above infested surfaces (Kuske 1983).

• Local spread\ 1 km (ecological (Condeso

et al. 2007; Ellis et al. 2010) and genetic

(Mascheretti et al. 2008, 2009))

• Most inoculum remains within 10 m of the host

(Davidson et al. 2005)

• Maximum dispersal distance\ 8 km during

rare storm events (apsnet.org).

• Number of trees infected was higher on public

lands that were open to recreation than on

adjacent lands lacking public access and higher

human population densities within 50 km

increased chances of fungal infection (Cush-

man et al. 2008).

• Effects of temperature and moisture on growth and

sporulation

• Fungal growth occurs 10–31 �C (Tooley et al.

2009)

• Exposure to temperatures over 30 �C decreases

survival and a few minutes at 40 �C kills the

fungus (Browning et al. 2008)

• Sporangia production occurs over the temper-

ature range of 16–22 �C (Englander et al. 2006)

• A dew period of as little as 1 h was enough for

fungal development but moisture for 24–48 h is

required for maximal disease development in

the laboratory (Tooley et al. 2009)

• Most clonal hyphal colonies can survive 24 h

exposure to - 5 C and some can withstand

- 25 C for 24 h. (Browning et al. 2008).

• Distribution

• SOD is distributed only in Europe and parts of

North America, with three identified clonal

lineages (EU1, NA1 and NA2), named for the

continent where they were first found, followed

by a number indicating the order of discovery

(Grünwald et al. 2009)

• Habitat

• Coastal forest types (Rizzo and Garbelotto

2003; Rizzo et al. 2002), moist and moderate

climates (Rizzo et al. 2005).

Appendix 8 (MigClim: Calibration of PDisp)-based

on source Engler and Guisan (2009)

PDisp, is the colonization probability of a pixel given its

distance from a source pixel. To calibrate PDisp we

defined a dispersal kernel used to model regular seed

dispersal. The kernel was based on the following

negative exponential seed dispersal probability distri-

bution function (Eq. 1).
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Pseed xð Þ ¼ e x�pixelsizeð Þ ln 1�kð Þ
DispDistð Þx: ln 1�kð Þ

DispDistð Þ ð1Þ

Further simplified in more conventional simple

negative exponential form (Eq. 2)

Pseed xð Þ ¼ 1� kð Þ�
pixelsize
DispDist�1

� �
:ex:

ln 1�kð Þ
DispDistð Þ ð2Þ

where Pseed is the probability of a seed reaching

distance x C pixelsize, pixelsize is the one-dimen-

sional size of a pixel, DispDist is the dispersal distance

reached by the proportion k of the seeds.

Since the surface composed of pixels located at

distance j from a source cell increases with distance

from that source cell, the probability of a pixel to

receive a seed is computed as (Eq. 3)

Pseed Pixelj
� �

¼ Pseed xð Þ
�
Surfacej ð3Þ

where Surfacej is the number of pixels covered by all

pixels belonging to a same distance class. Assuming

that the distribution of successful seeds (i.e. seeds

leading a pixel to become colonized) is proportional to

the overall distribution of seeds (Pseed), PDisp is

computed as (Eq. 4):

PDisp Pixelj
� �

¼ 1� ð1� Pseed Pixelj
� �

Þsuccessfulseeds

ð4Þ

where PDisp is the probability of colonisation for a

target pixel with distance j from a source pixel and

Successful Seeds the number of successful seeds

produced by a fully mature source pixel.
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