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Abstract

Forecasting the spread and potential impacts of invasive, alien species is vital to relevant management and 
policy decisions. Models that estimate areas of potential suitability are useful to guide early detection and 
eradication, inform effective budget allocations, and justify quarantine regulations. Machine-learning is a rap-
idly emerging technology with myriad applications, including the analysis of factors that govern species’ dis-
tributions. However, forecasts for invasive species often require extrapolation into novel spaces, which may 
severely erode model reliability. Using the popular machine-learning platform, MaxEnt, we integrate numerous 
tools and recommendations to demonstrate a method of rigorous model development that emphasizes as-
sessment of model transferability. Our models use Lymantria dispar dispar (L.) (Lepidoptera: Erebidae), an 
insect brought to the United States in the late 1860s from Europe and subsequently well monitored in spread. 
Recent genetic analyses provide evidence that the eastern North American population originated in Germany, 
France, and northern Italy. We demonstrate that models built and assessed using typical methodology for 
invasive species (e.g., using records from the full native geographic range) showed the smallest extent of 
extrapolation, but the worst transferability when validated with independent data. Conversely, models based 
on the purported genetic source of the eastern North American populations (i.e., a subset of the native range) 
showed the greatest transferability, but the largest extent of extrapolation. Overall, the model that yielded high 
transferability to North America and low extrapolation was built following current recommendations of spa-
tial thinning and parameter optimization with records from both the genetic source in Europe and early North 
American invasion. 
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The goal of modeling and mapping invasive species distributions 
often is to visualize areas threatened by a given species. Forecasts 
of the geographic dynamics of invasive species inform management 
and policy decision-making, and are a vital component of pest risk 
assessment (Venette et  al. 2010). Maps and models do not neces-
sarily depict comprehensive risk, but may contribute components to 
its overall assessment (e.g., likelihood of establishment, habitat suit-
ability, pathway analysis, potential impacts) (Venette et  al. 2010). 
A  common challenge with modeling invasion risk is the scarcity 
of biological and ecological data for species new to a region. Little 
more than observed location data are typically available, which can 
themselves be sparse. As a consequence, correlative models are com-
monly used to quantify relationships between an invasive species’ 
known presence (or presence and absence, or abundance) and envir-
onmental variables in the those areas (Elith 2017). Then, inference is 

made about a species occurrence in other regions where similar en-
vironmental correlations may occur in space and time. The growing 
availability of large, open biodiversity and environmental data stores 
and increased computing power have fueled a rapid rise in the de-
velopment and use of correlative models (i.e., species distribution 
models) (Zimmermann et al. 2010, Guisan et al. 2017a).

Currently, MaxEnt is among the most popular methods for spe-
cies distribution modeling and has been shown to perform well 
compared to alternatives (Elith et al. 2006, Heikkinen et al. 2012, 
Venette 2017). Its applications have varied (Elith et al. 2011) and 
it is increasingly used to forecast future distributions of invasive spe-
cies (e.g., Sobek-Swant et al. 2012, Zhu et al. 2012, Dos Santos et al. 
2017). MaxEnt is a machine-learning algorithm that was specifically 
developed to approximate an unknown distribution for scenarios 
where only locations of presence are known (Phillips et  al. 2006, 
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Dudik et al. 2007). It uses the information theory of maximum en-
tropy to parse out differences between environmental conditions 
where the species is present from those at background locations 
where the species presence is unknown. Further description on the 
detail and underlying functioning of MaxEnt is well summarized 
elsewhere (Phillips et al. 2006, Elith et al. 2011, Merow et al. 2013).

With MaxEnt’s expanding usage, several a large increase in ex-
tensions to its original default user interface have been developed, 
including support tools and new features (e.g., Warren et al. 2010, 
Muscarella et  al. 2014, Brown et  al. 2017, Hijmans et  al. 2017, 
Phillips et al. 2017, Kass et al. 2018). These developments are in part 
due to the finding that the default settings of the program should 
not be assumed appropriate (Anderson and Gonzalez 2011, Rodda 
et al. 2011, Syfert et al. 2013, Yackulic et al. 2013, Radosavljevic 
and Anderson 2014). Multiple recommendations and critiques have 
emerged, but how to most appropriately implement MaxEnt for 
many of its myriad applications remains an active area of discussion 
and research.

Developing MaxEnt models for novel environments, specific-
ally with respect to invasive species and climate change, remains 
philosophically and methodologically challenging (Elith et al. 2010, 
Peterson et al. 2011, Elith 2017). For invasive species, MaxEnt users 
frequently estimate new occurrences among other known presences 
(interpolation; e.g., Crall et al. 2013, Steen et al. 2019) or identify 
new geographic areas that might be environmentally suitable (ex-
trapolation; e.g., Zhu et  al. 2012, Kumar et  al. 2014). The para-
mount assumption in both applications is that presence data have 
come from a random sample of the environment with a consistent 
probability of detecting the species where it occurs (Merow et  al. 
2013). Arguably, this assumption is more likely to be satisfied with 
presence data from the native range where the species might be pre-
sumed to be in equilibrium with its environment (Elith et al. 2010). 
A related assumption is that presence data used to develop the model 
reflect conditions to which the model will be applied. Using data 
from the full native range for model development, as is often done 
for invasive species, assumes not only that the native range niche 
is conserved with invasion (Broennimann et al. 2007), but that the 
dynamics of an invading population would be unaffected by any pre-
vious genetic divergence (and possible phenotypic variation) within 
the specific region of the native range where the population origin-
ated. To our knowledge, the extent to which the latter is a robust 
assumption not been investigated in the context of species distribu-
tion modeling, particularly for invaded populations that result from 
only one or a few introductions. In contexts where records from the 
invaded range exist, whether to include these records remains debat-
able (Elith 2017), with the common argument that these presences 
better approximate a species’ fundamental niche and future invasion 
potential while presence records from the native range better reflect 
the realized niche.

Performance assessment of MaxEnt models for invasive species 
in novel environments is also challenging. Transferability, the per-
formance of a model when projected into different areas of space 
and/or time, is critical to the reliability and usefulness of a model 
(Phillips 2008, Venette et  al. 2010). Model transferability can fail 
for multiple reasons, such as from effects of predictor variable se-
lection (Petitpierre et al. 2017) and violation of the assumption of 
niche conservatism (Broennimann et al. 2007). Statistical measures 
such as area under the receiver operating curve (AUC), kappa statis-
tics, or explained deviance remain common to assess transferability 
though are arguably inappropriate in cases of extrapolation (Elith 
et al. 2011, Peterson et al. 2011). When the goal is to model the suit-
ability of a new geographic space for an invasive species, measures of 

performance from typical training and test data may not be inform-
ative (Elith 2017). Evaluation using data that are fully independent 
of model development or verification is the most robust assessment 
of model results (Fielding and Bell 1997, Araujo et al. 2005). Often, 
models that perform best in model development regions do not 
maintain their rank in terms of accuracy in new areas, particularly 
for models considered to be more complex such as MaxEnt (Guisan 
et  al. 2017b). A  recent example shows that modestly informative 
MaxEnt models (AUC = 0.6–0.7) may perform well (i.e., high True 
Test Statistic) when applied to new locations (Briscoe Runquist et al. 
2019), and another demonstrates how common evaluation metrics 
favor models overfit to the input data and penalize those that are 
more transferable to new regions (Fourcade et al. 2018).

Here, we add to the otherwise sparse empirical assessments of 
spatial transferability for models of invasion risk (Araujo et al. 2005) 
using an insect, the European gypsy moth Lymantria dispar dispar 
(L.). Native to Europe, this subspecies was intentionally introduced 
by Leopold Trouvelot to the east coast of the United States in 1868 
or 1869 and has since continued to spread (Liebhold et  al. 1989, 
Tobin et al. 2012). Historical records do not indicate where precisely 
Trovelot obtained L. dispar dispar  (Liebhold et al. 1989). Genetic 
analysis of the eastern North American population suggests that 
L. dispar dispar was only introduced once from a region spanning 
portions of France, Germany, and northern Italy, and that subse-
quent introductions, if any, had little effect on the genetic compos-
ition of current populations (Wu et al. 2015).

With a well-documented extent of occurrence in the United 
States and Canada, L. dispar dispar offers the under-utilized oppor-
tunity with invasive species to assess the transferability of species 
distribution models with spatially independent data from an invaded 
range (Barbet-Massin et al. 2018). In this study, we rely on tempor-
ally shifted assessments of the invasion of L. dispar dispar in eastern 
North America. We investigated which MaxEnt models built with 
different scenarios of species information (i.e., different portions of 
the native range and inclusion of the invaded range before 1960) and 
model construction (i.e., default or optimized settings) performed 
best at forecasting areas that proved to be climatically suitable for 
establishment (i.e., newly invaded areas in the North America from 
1990 to 2016).

More specifically, we assessed how well the purported genetic 
source of invasion from the European range informs a portion of 
the current invaded range in eastern North America, and whether 
inclusion of a separate portion of the invaded range in model de-
velopment improves forecasts. Invading populations often result 
from small founder events that represent a small portion of the 
genotypic and phenotypic diversity found in the native range (Lee 
2002, Dlogosch and Parker 2008). If there is genotypic and pheno-
typic structuring among L.  dispar dispar locations within its na-
tive range (Wu et  al. 2015), then focusing model development on 
the geographic region that is the most likely source of the North 
American population should increase transferability to the future 
invaded range. Including portions of the invaded range in model 
development was also expected to improve model performance in 
North America. Previous studies have concluded that species distri-
bution models for invasive species benefit from having representa-
tion of the invaded range (Mau-Crimmins et al. 2006, Broennimann 
and Guisan 2008, Beaumont et al. 2009) because it better reflects 
the conditions in which the species can occur than the native 
range alone. However, results to the contrary have also been found 
(Vaclavık and Meentemeyer 2012, Barbet-Massin et al. 2018) and 
evaluations using MaxEnt and invasive insects are limited (but see 
Sobek-Swant et al. 2012).
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We also compared how the extent of climatic extrapolation 
changed with model development dataset. Transferring a model to 
a different space or time can be unreliable when there is extrapola-
tion; the modeled response of a species to the predictor variables and 
their interactions can change in new conditions (Elith et al. 2010, 
Petitpierre et al. 2017). Areas of extrapolation, therefore, also serve 
to identify regions of uncertainty in model forecasts. Here, we an-
ticipated that the total area of extrapolation would be smaller for 
models that involved a larger geographic extent of occurrence re-
cords. This expectation is based on the assumption that a wider array 
of environmental conditions may be sampled in these instances.

Materials and Methods

Occurrence Records and Background Selection
Georeferenced occurrence records of L.  dispar dispar in Europe 
and North America were obtained from the Global Biodiversity 
Information Facility (GBIF; www.gbif.org), EDDmapS (www.
eddmaps.org), the primary literature, and the Slow the Spread pro-
gram (STS; Sharov et al. 2002). Records were inspected and removed 
where needed based on coordinate errors, imprecise coordinates, un-
certain sources, or duplicate information. No detections of L. dispar 
from western North American were included because the subspecies 
involved and establishment status were uncertain. The STS data-
base tracked the invasion front of L.  dispar dispar in the eastern 
United States and contained high-density trapping records from 
1994 through 2016 (predominantly after 2000, when the program 
formally began). The STS records used for analysis were limited to 
those sites where 10 or more moths were captured at a time, which 
is a trap density considered indicative of an established population 
(Tobin et al. 2004).

We distinguished four groups of distribution records from the 
above data (Fig. 1). The first group (n = 820; all blue points in Fig. 
1A), designated “Native,” were those records considered part of na-
tive range in Europe (i.e., west of the Ural Mountains; Hajek and 
Tobin 2009). Second, a subset (n = 249; light blue points in Fig. 1A) 
of the native range, designated “Source,” was made to include only 
those records from Germany, France, and Italy that represent the 
likely geographic source of the eastern North American population 

(Wu et al. 2015). A third group (n = 2,761; red points in Fig. 1B), 
designated “Invaded,” was occurrence records in North America 
from 1960 and earlier; this dataset was included when the invaded 
range was represented in model development (see Model Tuning 
and Development below). This region was considered generally in-
fested with L. dispar dispar (Liebhold et al. 1997), so we assumed 
the insect would exhibit widespread, dense presence similar to re-
gions formally documented by STS. Using ArcMap (ESRI ArcGIS 
Desktop 10.6, Redlands, CA), we constructed a 10-km grid within 
the region considered infested (Liebhold et  al. 1997)  and selected 
the centroid of each cell. The final group of points was composed of 
North American occurrence records that were west of the U.S. inva-
sion front in 1990 (Liebhold et al. 1997). Occurrences in the United 
States came from the STS program and records for Canada came 
from the literature and EDDMapS. The combined records were 
spatially thinned to a minimum distance of 10 km, resulting in a 
validation dataset of 101,300 records (orange points in Fig. 1B); 
this dataset was spatially and temporally independent of all other 
datasets and was used only for model validations.

We limited selection of background sites to a minimum convex 
polygon (MCP) with a 10 km buffer, the approximate annual dis-
tance spread by gypsy moths (Tobin et al. 2015), around the occur-
rence points for a given region (polygons in Fig. 1) as recommended 
by Jarnevich and Young (2015). A random sample of 10,000 total 
locations (i.e., the default for MaxEnt) was taken from these reduced 
areas to serve as background locations for a given model. For models 
developed from space in both the native and invaded range, 10,000 
background locations were split between each region’s MCP, based 
roughly on the relative size of the MCPs to each other (i.e., 50:50 or 
70:30; Table 1).

Environmental Data
We used 19 gridded BIOCLIM variables derived from temperature 
and precipitation climate summaries (1970–2000) in the WorldClim 
dataset (v. 2; www.worlclim.org/bioclim) (Hijmans et  al. 2005) at 
2.5 arc-minute resolution. The climate rasters were clipped to the 
extent of a given buffered MCP using the R package “raster” (v. 2.6-
7) (Hijmans 2017). Then, to reduce the potential confounding effects 
of collinearity among climate variables (Dormann et al. 2013), we 

Fig. 1. Records of occurrence for L. dispar dispar used for model development (blue and light blue in [A] and red in [B]) and validation (orange in [B]). Colored 
polygons correspond to the space from where background locations were randomly sampled for a given model: blue was used in the “Native” and “Native + 
Invaded” models, light blue was used in the “Source” and “Source + Invaded” models, and red was used in the “Native + Invaded” and “Source + Invaded” 
models. The tan ellipse indicates the space within which the independent validation metric for each model was calculated. Maps are unprojected.
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calculated a Pearson correlation coefficient matrix within each MCP 
space or pair of MCPs. Only variables with correlations of |r| <0.70 
were retained. When selecting variables to remove in instances of 
correlation, those of combined temperature and precipitation were 
removed first due to cautions noted by others (e.g., Elith et al. 2013). 
The final climate variables provided to each model are listed in Table 
1. MaxEnt provides coefficients (i.e., lambda values) for the vari-
ables used in each model (data not shown). Variables with lambda 
values of zero (i.e., not contributing to MaxEnt results) were also 
noted in Table 1.

Model Tuning and Development
We built 16 models for L.  dispar dispar using MaxEnt version 
3.3.3k (Phillips et  al. 2006) (http://biodiversityinformatics.amnh.
org/open_source/maxent). An overview of procedures is provided in 
Table 1. Processing and additional analyses were conducted in R ver-
sion 3.5.2 (R Core Team 2018), RStudio version 1.1.456 (RStudio 
2016), and ArcMap.

Four primary models, based on the aforementioned distribution 
datasets, were produced to compare the effects of modeling using two 
extents of occurrence within the native European range (“Native” 
or “Source”) and with/without the invaded North American range 
by 1960 (Table 1). Within each primary model, four submodels 
were made with different spatial thinning distances (unthinned or 
thinned) and tuning parameter (default or optimal) combinations, 
the details of which are described below.

The unthinned and default tuning models represented those prac-
tices frequently used in MaxEnt modeling (Morales et al. 2017) des-
pite growing caution. Unthinned datasets were modeled with only one 
record allowed per grid cell (i.e., the default “remove duplicate pres-
ence records” setting in MaxEnt), but were not otherwise modified. 

In contrast, “thinned” datasets were reduced in size prior to modeling 
to reduce the confounding effects of sampling bias on model outputs 
(Aiello-Lammens et al. 2015). Records were thinned by using the R 
package “spThin,” with a thinning distance set to the expected mean 
distance for a random distribution among the presence points as es-
timated through Average Nearest Neighbor analysis (ArcMap). The 
resulting dataset maximizes the number of records retained for a 
given thinning distance (Aiello-Lammens et  al. 2015). Thinning dis-
tances were always based on occurrence records from Europe as the 
European records covered larger areas than those in North America.

The default settings in MaxEnt can potentially result in overfit 
and poor performing models so species-specific tuning is highly re-
commended (see Anderson and Gonzalez 2011 and Merow et  al. 
2013 for further detail and explanation). Briefly, tuning involved 
selecting values for two of the major settings in MaxEnt, feature 
classes and the regularization multiplier, which can greatly influ-
ence the fitted models. Feature classes are various transformations 
of the environmental predictor variables that can allow MaxEnt to 
fit complex, non-linear relationships to the data provided (Merow 
et al. 2013). The current default is to allow all feature classes except 
“threshold” features. To reduce overfitting (i.e., when a model fits 
only the data provided and nothing else), MaxEnt uses regulariza-
tion to penalize models that include parameters that contribute little 
information. The intensity of regularization can be increased from 
the default value of 1.0 by specifying a multiplier that is applied to 
all regularization values. Optimized settings for the regularization 
multiplier and feature class combination were selected here by using 
the “ENMeval” R package (Muscarella et al. 2014) to generate can-
didate models with regularization values between 1 and 6 (inclusive; 
0.5 increments), in combination with the features classes linear, linear 
+ quadratic, hinge, linear + quadratic + hinge, and linear + quadratic 

Table 1. Model data and parameters used in MaxEnt models of L. dispar dispar

Primary 
model

Environmental  
variablesa

Background  
records 

(number; 
region) Submodel n

Thinning  
distance (km)

Regularization  
multiplier Feature class(es)

Native BIO5, BIO6, BIO8, BIO12, BIO15 10,000; Native 
MCP 

A 820 Unthinned Default Default
B 820 Unthinned 1.0 Linear 
C 188 69 Default Default
D 188 69 4.5 Hinge 

Native + 
Invaded

BIO5
b, BIO6, BIO7, BIO8, BIO12, 

BIO15

7,000; Native 
MCP 

3,000; Invaded 
MCP

A 3,581 Unthinned Default Default
B 3,581 Unthinned 2.5 Linear 
C 224 69 Default Default
D 224 69 4.0 Linear, quadratic,  

hinge, product
Source BIO3, BIO4

b, BIO5, BIO8, BIO9, 
BIO12, BIO15

10,000; Source 
MCP 

A 249 Unthinned Default Default
B 249 Unthinned 6.0 Linear 
C 84 32 Default Default
D 84 32 4.5 Linear, quadratic

Source + 
Invaded

BIO3
b, BIO5, BIO6

c, BIO8
b,c, BIO9

c,  
BIO12

c, BIO15
c

5,000; Source 
MCP 

5,000; Invaded 
MCP

A 3,010 Unthinned Default Default
B 3,010 Unthinned 6.0 Linear 
C 244 32 Default Default
D 244 32 4.5 Hinge 

Environmental variables (www.worldclim.org/bioclim) and region(s) within which background locations (10,000 total for each model) were randomly gener-
ated were constant within each primary model. See Fig. 1 for depictions of each minimum convex polygon (MCP). Model names refer to the dataset used to develop 
the model, with n occurrences used in each submodel (A–D).

aBIO3 = isothermality; BIO4 = temperature seasonality; BIO5 = max. temperature of warmest month; BIO6 = min. temperature of coldest month; BIO7 = tempera-
ture annual range; BIO8 = mean temperature of wettest quarter; BIO9 = mean temperature of driest quarter; BIO12 = annual precipitation; BIO15 = precipitation 
seasonality.

bCoefficient (i.e., lambda) of zero in the unthinned, optimized tuning model.
cCoefficient (i.e., lambda) of zero in the thinned, optimized tuning model.
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+ hinge + product to represent a range of complexity of L. dispar 
dispar response to spatial variation in the environmental variables. 
As per Phillips et al. (2017), we did not include “threshold” features 
in any combination because they are unnecessarily complex and 
likely unrealistic. “ENMeval” allows multiple methods to partition 
data into training and testing bins to generate cross-validation stat-
istics. We ran candidate models with “block” spatial partitioning, as 
recommended when model transferability is of interest (Muscarella 
et  al. 2014). Block partitioning splits occurrence and background 
localities into four bins based on latitude and longitude, training a 
model using three of the bins and then testing the results with the 
fourth. It repeats this four times, using a different bin for testing each 
time, and provides cross-validation statistics for the average of the 
four models (Muscarella et al. 2014).

Based on the evaluations metrics from “ENMEval,” we used se-
quential criteria (e.g., Shcheglovitova and Anderson 2013, Galante 
et al. 2018) to select the optimal settings (i.e., feature classes and regu-
larization multiplier) to be used for each final MaxEnt model. First, 
we prioritized models that did the best, on average, in predicting test 
occurrence records as suitable based on the 10% training presence 
threshold (Pearson et al. 2007) (i.e., prioritized the lowest average 
test OR10). Then, if a tie, we prioritized the models that balanced 
goodness-of-fit with the least amount of complexity based on the 
sample size corrected Akaike information criteria (i.e., the lowest 
∆AICc) (Warren and Seifert 2011).

The final default and optimal models were run in the MaxEnt 
graphical user interface using 5-fold cross-validation with default or 
optimized feature classes/regularization, respectively. Five-folds al-
lowed for each replicate (fold) across all datasets to have at least 30 
occurrence records used in training (Wisz et al. 2008). All other settings 
were default except the “fadebyclamping” argument was selected as an 
intermediately conservative extrapolation method (Phillips et al. n.d.), 
and “addsamplestobackground” was unselected to prevent occurrence 
records from being included as background samples.

Model Projections
Median logistic MaxEnt outputs (calculated from each 5-fold cross-
validation model) were multiplied by 100, rounded to integers, and 
visualized in ArcMap to show global and region-specific areas of 
relative climate suitability for L. dispar dispar. Because the results 
from MaxEnt can be unreliable in novel climates (i.e., extrapolated 
to climate conditions that differ from those areas used to develop 
the model) (Elith et  al. 2010), we identified geographic areas with 
model extrapolation by examining the Multivariate Environmental 
Similarity Surface (MESS). The MESS calculates how similar a 
given point is to a reference set of points (here, the known occur-
rence records) for a given climate variable, with values less than zero 
indicating locations where at least one variable was extrapolated 
(Elith et  al. 2011). Not all inputted variables may ultimately con-
tribute to a fitted MaxEnt model, so we produced the MESS maps by 
using only variables with non-zero lambda values (Phillips et al. n.d.).

For invasive species, forecasts into novel climate conditions may 
be of interest though such extrapolations are unadvisable from a 
statistical perspective. To communicate areas of uncertainty for 
a given model, we specified map regions with MESS values ≥0 as 
having no extrapolation, 0 > MESS ≥ −10 as having moderate ex-
trapolation, and MESS < −10 as having high extrapolation.

Model Evaluation
The majority of distribution models for invasive species are evaluated 
based on internal validation, which uses resampling methods to test 

prediction within the model training region (Guisan et al. 2017a). To 
mimic this, we compiled conventional metrics, including AUC and 
an omission rate for the averaged cross-validation results of each 
model. The AUC is a threshold-independent performance measure 
that reflects the probability that a randomly chosen presence site will 
rank above a randomly chosen background site (Phillips et al. 2006). 
Values near 1.0 indicate high discriminatory ability, whereas values 
of 0.5 (or less) indicate discrimination no better than random (Elith 
2000). Omission rates (ORs) calculate the proportion of test loca-
tions with suitability values lower than a specified threshold. The 
10% threshold omission rate (OR10) uses the smallest value after 
excluding the lowest 10% of training suitability values (Anderson 
and Gonzalez 2011). In ideal models, the expected OR10 is 10%, 
and values higher than expected suggest overfitting. The OR10 was 
chosen instead of the omission rate based on the minimum training 
threshold because it is less likely to be influenced by outlier occur-
rence locations (Radosavljevic and Anderson 2014). Additionally, 
the AICc was included for each model due to its potential as a useful 
model selection measure, particularly one less impacted by sampling 
bias (Warren and Seifert 2011, Muscarella et al. 2014, Galante et al. 
2018).

To assess transferability, we externally validated performance for 
all models using the North American occurrences that were not used 
in any model development (orange points in Fig. 1B). The appropri-
ateness of many commonly used evaluation metrics (including the 
above) for presence-only models like MaxEnt is questionable (Lobo 
et al. 2008, Jiménez-Valverde et al. 2011, Sofaer et al. 2019). One 
measure, the continuous Boyce Index (CBI), has been suggested to 
evaluate how well a presence-only model predicts the suitability of 
known occurrences compared to a random expectation within an 
area (Boyce et al. 2002, Guisan et al. 2017a, Petitpierre et al. 2017). 
To avoid the shortcomings of arbitrary selection of suitability clas-
sification (“bins”), the CBI uses a “moving window” that iteratively 
evaluates continuous predictions (Hirzel et  al. 2006). The CBI is 
presented as the Spearman rank correlation coefficient between the 
suitability values and the predicted-to-expected ratio of evaluation 
points, with values close to 1 indicating good predictions, values 
near 0 indicating predictions no different from random, and value 
near −1 indicating poor predictions (i.e., low suitability areas con-
tained the most occurrences) (Hirzel et  al. 2006). We used the R 
package “ecospat” (Di Cola et al. 2017) to calculate the CBI for the 
dataset of independent occurrences in North America. This index is 
sensitive to the size of the area used for validation. We delineated the 
validation area based on an estimate of the space potentially avail-
able to the species at present. Given that the majority of the eastern 
North American population appears to the be result of spread from 
the initial introduction (Wu et al. 2015), we first estimated the ra-
dial distance from Medford, MA (the original site of introduction) 
to the STS site furthest from Medford with ≥10 captured moths and 
added an additional 10 km buffer to account for dispersal. As a re-
sult, all sites within 1,870 km of Medford were considered accessible 
to L. dispar dispar (tan ellipse in Fig. 1B). We recognize that this esti-
mate of available space comes with an assumption that the processes 
driving the spread of L. dispar dispar are constant in space and time, 
which may be tenuous. We nonetheless feel it to be a reasonable as-
sumption given lack of defensible alternatives.

Lastly, we compared the relative amount of extrapolated space 
across models to communicate forecast uncertainty within the area 
used for model validation (tan ellipse in Fig. 1B). Using ArcMap 
(ESRI ArcGIS Desktop 10.6), we calculated the change in total area 
with no extrapolation (i.e., those areas with a MESS ≥0) relative to 
the model producing the largest area with no extrapolation. We did 
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the same comparison for areas with high extrapolation (i.e., those 
areas with a MESS < −10), but calculated the change relative to the 
model producing the smallest area for this category. Therefore, the 
reference point for both measures (i.e., ∆MESS = 0) was set as the 
MESS value for the model with the most desirable outcome (i.e., the 
model with the least amount of uncertain space due to extrapolation 
or high extrapolation).

Results and Discussion

We generated 16 MaxEnt models that were each applied to North 
America and Europe, yielding 32 maps of climate suitability for 
L.  dispar dispar (Figs. 2–5 and Supp Figs. 1–4 [online only], re-
spectively). The four primary models, designated “Native,” “Native 
+ Invaded,” “Source,” and “Source + Invaded,” are distinguished 
by the source of the presence points that were used to train and 
test the models. Submodels, designated “A”–“ D,” differ in methods 
that were applied during model development: “A,” no thinning of 

presence points and default settings for regularization and feature 
class; “B,” no thinning of presence points and optimized settings for 
regularization and feature class; “C,” thinned presence points and 
default settings for regularization and feature class; and “D,” thinned 
presence points and optimized settings for regularization and feature 
class. Our primary intent is to focus on methods that yield trans-
ferable models, so we do not discuss projected spatial variation in 
climate suitability from any one model at length. Rather, we focus 
on how methodological choices among models affect spatial pat-
terns of suitability, internal validation metrics, external validation, 
and uncertainty associated with extrapolation. The Native-A model 
represented methodology often used for invasive species, where 
all available native range data are used and left unthinned and de-
fault MaxEnt settings are selected (Fig. 2A and Supp Fig. 1A [on-
line only]). The relative impact of each of these decisions on model 
outcomes were then tested against alternatives (i.e., submodels 
B–D), with particular emphasis on comparing potential effects of 
local adaptation or population differentiation within the subset of 

Fig. 2. Forecasted climatic suitability of L. dispar dispar in North America using the “Native” occurrence dataset. Four submodels were constructed in MaxEnt 
using this dataset based on thinning of occurrences and regularization multiplier/feature class combinations: (A) unthinned and default settings, (B) unthinned 
and 1/linear, (C) 69 km thinning and default settings, and (D) 69 km thinning and 4.5/hinge. The partial ellipse delineates the space within which the independent 
validation metric for each model was calculated. Colored regions with no patterned overlay had MESS (Multivariate Environmental Similarity Surface) values ≥0 
(no extrapolation). Regions with a light gray overlay with dots had MESS values <0 and ≥ −10; light gray with cross-hatching had MESS values < −10. Maps are 
depicted using the North America Albers Equal Area projection. Refer to Fig. 1B for records of occurrence in North America; they were not included for reference 
here to avoid obscuring model results.
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the native range where the invaded population is estimated to be 
from versus the whole native range (i.e., the primary models using 
“Native” and “Source” data). Overall, based on current recom-
mendations for model construction and theoretical justification, our 
expectation was that the model showing the greatest spatial trans-
ferability to North America would be the Source + Invaded-D model 
(Fig. 5D and Supp Fig. 4D [online only]).

All 16 models performed well in their ability to internally dis-
criminate occurrence points from background points. The average 
AUC for all models ranged from 0.629 to 0.869 (Table 2). Common 
interpretation of AUC values follows that: AUC >0.9 as “excel-
lent”; 0.9 > AUC > 0.8 as “good”; 0.8 > AUC > 0.7 as “fair”; 0.7 > 
AUC > 0.6 as “poor”; 0.6 > AUC > 0.5 as “fail”; and AUC < 0.5 as 
counter-predictions (Araujo et al. 2005, Guisan et al. 2017c). Here, 
most AUC values were 0.7 or more (“fair” to “good”). The highest 
average AUCtest within each primary model was >0.75, always by 
using the unthinned data with default MaxEnt settings (i.e., each 
submodel A in Table 2). This result is consistent with the reputation 

of MaxEnt for generating models with high discrimination (Elith 
et al. 2006). The OR10 estimates were typically near 0.10 and differ-
ences in AUC between training and test datasets were <0.04, both 
providing evidence that models were generally not overfitted to 
model training data (Jarnevich and Young 2015).

Because the primary models were built with different datasets, and 
therefore different extents, direct comparisons of internal validation 
statistics across primary models were not appropriate (Lobo et al. 2008, 
Radosavljevic and Anderson 2014). However, when using a common, 
independent dataset for external validation (orange points in Fig. 1B) 
comparisons can be made. The CBI, one of the few metrics appropriate 
to presence-only (or presence-background) data, revealed patterned dif-
ferences in the ability of different primary and submodels to forecast cli-
mate suitability for L dispar dispar into novel space in North America. 
Below, we compare the effects of data filtering (thinned vs unthinned), 
model parameters (optimized vs default), and the extent of occurrence 
data (invaded range vs no invaded range; full native range vs source of 
invasion) on model transferability and extrapolation.

Fig. 3. Forecasted climatic suitability of L. dispar dispar in North America using the “Native + Invaded” occurrence dataset. Four submodels were constructed 
in MaxEnt using this dataset based on thinning of occurrences and regularization multiplier/feature class combinations: (A) unthinned and default settings, (B) 
unthinned and 2.5/linear, (C) 69 km thinning and default settings, and (D) 69 km thinning and 4/linear + quadratic + hinge + product. The partial ellipse delineates 
the space within which the independent validation metric for each model was calculated. Colored regions with no patterned overlay had MESS (Multivariate 
Environmental Similarity Surface) values ≥0 (no extrapolation). Regions with a light gray overlay with dots had MESS values <0 and ≥ −10; light gray with cross-
hatching had MESS values < −10. Maps are depicted using the North America Albers Equal Area Conic projection. Refer to Fig. 1B for records of occurrence in 
North America.
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Effect of Occurrence Extent on Suitability Forecasts 
and Extrapolation
Suitability
Five of the eight models that used occurrence data from the pur-
ported geographic source of the North American infestation, alone 
or with some occurrence records from North America, gave near 
perfect predictions of the validation dataset in North America (CBI 
close to 1), implying that occurrences fell in areas of higher suit-
ability more often than expected by chance alone (Table 2; Supp Fig. 
5 [online only]). The highest performing model by this metric was 
produced with occurrence records from the purported geographic 
source of the North American infestation alone and by spatial thin-
ning and optimizing tuning parameters (Source-D; CBI  =  0.995). 
The remaining three of eight models (Source-A, Source + Invaded-A 
and -B) had slightly lower CBI values, but still showed better than 
random prediction (CBI > 0). Models using the invasion source data, 
whether alone or in combination with a portion of the invaded 
range, tended to forecast high relative suitability (>50) throughout 
the North Central region of the United States and into Canada (Figs. 

4 and 5), which is where most of our validation points were located. 
These models also generally forecasted lower suitability (<26) in the 
south and southeastern United States.

In contrast, half of the eight models that used occurrence 
records throughout the native range gave negative CBI scores, 
which indicates the counter-prediction; a greater proportion of 
occurrences fell in low suitability values than expected by random 
chance (Table 2; Supp Fig. 6 [online only]). One model indicated 
predictions near random (CBI ~0; Native-D), and the remaining 
three models (Native-A and -C, Native + Invaded-C) showed 
better than random predictions in similar proportion to the 
lowest performing Source/Source + Invaded models. These models 
using the broader native range generally showed high suitability 
limited to the east and along the southeast coast of the United 
States (Figs. 2 and 3).

Contrary to previous work (e.g., Beaumont et al. 2009), no clear 
patterns were seen regarding model transferability after including 
a portion of the invaded range in model development. In many 
instances, the addition of invaded space clearly worsened model 

Fig. 4. Forecasted climatic suitability of L. dispar dispar in North America using the “Source” occurrence dataset. Four submodels were constructed in MaxEnt 
using this dataset based on thinning of occurrences and regularization multiplier/feature class combinations: (A) unthinned and default settings, (B) unthinned 
and 6/linear, (C) 32 km thinning and default settings, and (D) 32 km thinning and 4.5/linear +quadratic. The partial ellipse delineates the space within which the 
independent validation metric for each model was calculated. Colored regions with no patterned overlay had MESS (Multivariate Environmental Similarity 
Surface) values ≥0 (no extrapolation). Regions with a light gray overlay with dots had MESS values <0 and ≥ −10; light gray with cross-hatching had MESS values 
< −10. Maps were depicted using the North America Albers Equal Area Conic projection. Refer to Fig. 1B for records of occurrence in North America.
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performance based on CBI (e.g., Native-A vs Native + Invaded-A; 
Source-B vs Source + Invaded-B in Table 2). This result may be be-
cause the North American population is not at equilibrium, so by 
including an early portion of the invasion space, represented by a 
high density of occurrence, we were potentially biasing our model 
to these non-equilibrium conditions. Lack of equilibrium violates 
an underlying assumption of species distribution modeling (Elith 
and Leathwick 2009) but is unavoidable when forecasting invasive 
species. How to contend with this violation is an active area of 
research. Briscoe Runquist et al. (2019) suggest that only the in-
vasion stage within the last 10 years may be useful for forecasting 
present-day distributions for an invasive plant. However, we felt 
this short timeframe would confound the independence of our val-
idation dataset with the development dataset in North America, 
both spatially and temporally. We selected ≥1990 and ≤1960 to de-
fine the temporal boundaries of the datasets in North Americas be-
cause they allowed for temporal separation of occurrence based on 
an approximation for the longevity of a pest risk map as 30 years 
(Venette 2013).

Extrapolation
The occurrence dataset extent also impacted the amount of extrapo-
lation space as measured by the MESS (Table 2). To reduce uncer-
tainty, the ideal forecast would be into space that does not require 
extrapolation (i.e., regions of MESS ≥0) or to space where the degree 
of extrapolation is relatively minimal. The models with the greatest 
amount of unextrapolated space within the area used for external 
validation (i.e., smallest ∆MESS ≥0) were developed using the Native 
dataset, with the Native + Invaded models having the next lowest. 
Interestingly, increasing the geographic coverage of the model by 
including occurrences from the invaded range reduced the amount of 
unextrapolated space. The opposite would be expected if inclusion of 
the invaded range better reflected the broader fundamental niche of 
the species, as was seen with the Source and Source + Invaded models, 
albeit to a modest degree. The reason for the drop in unextrapolated 
space is likely because of the slight difference in environmental vari-
ables selected between the two primary models; the inclusion of the 
invaded range data to the Native dataset changed the correlation ma-
trix such that a sixth variable (BIO7) was added.

Fig. 5. Forecasted climatic suitability of L. dispar dispar in North America using the “Source +Invaded” occurrence dataset. Four submodels were constructed 
in MaxEnt using this dataset based on thinning of occurrences and regularization multiplier/feature class combinations: (A) unthinned and default settings, 
(B) unthinned and 6/linear, (C) 32 km thinning and default settings, and (D) 32 km thinning and 4.5/hinge. The partial ellipse delineates the space within which 
the independent validation metric for each model was calculated. Colored regions with no patterned overlay had MESS (Multivariate Environmental Similarity 
Surface) values ≥0 (no extrapolation). Regions with a light gray overlay with dots had MESS values <0 and ≥ −10; light gray with cross-hatching had MESS values 
< −10. Maps were depicted using the North America Albers Equal Area Conic projection. Refer to Fig. 1B for records of occurrence in North America. 
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Conversely, the models with the least amount of 
unextrapolated space were developed using the Source 
dataset. This dataset  also produced the model with greatest 
amount of “highly extrapolated” space (i.e., biggest ∆MESS 
< −10; Source-A). Appearing somewhat anomalously, Source 
+ Invaded-D was the model with the least amount of highly 
extrapolated space (i.e., ∆MESS < −10  =  0.0). Though ex-
trapolation was still common, this model had a relatively high 
amount of unextrapolated space compared to the other models 
using data from the invasion source. A possible reason for this 
model’s low extrapolation is that MaxEnt found few of the en-
vironmental variables to be influential (i.e., lambda >0: Table 
1), which is what the MESS is based upon. With fewer variables, 
the likelihood of extrapolation would be expected to decrease.

In sum, focusing the representation of the native range to the 
area of purported invasion source appeared to increase greatly 
the transferability of models to North America. However, 
including an early stage of the invaded range in model devel-
opment did not. From an uncertainty standpoint, models using 
occurrences from the full native range yielded the largest area 
for which extrapolation will not threatened model reliability. 
In general, models using occurrences from the invasion source 
showed the greatest extent of uncertainty due to extrapola-
tion. However, two models, Source-B and Source + Invaded-D 
showed the two smallest amounts of highly extrapolated space 
across all models, despite having comparatively low amounts of 
unextrapolated space.

Effect of Spatial Thinning and Model Tuning on 
Suitability Forecasts and Extrapolation
Suitability
Generally, model optimization (comparison of panels A to B and C 
to D in Figs. 2–5 and Supp Figs. 1–4 [online only]) and spatial thin-
ning (comparison of panels A to C and B to D in Figs. 2–5 and Supp 
Figs. 1–4 [online only]) broadened areas forecasted to be climatically 
suitability (index >0) compared to default and unthinned models, 
respectively. These procedures also tended to reduce the amount of 
space forecast within the highest suitability index (76–100; red), 
though in some instances, thinning had the opposite effect (e.g., Figs. 
2A–C and 3B–D).

Thinning tended to decrease performance compared to unthinned 
data within a primary model based on the cross-validation results 
(i.e., increased OR10 and decreased AUC values). However, it resulted 
in consistently less complex models based on relative AICc values 
within a primary model. Thinning is intended to reduce the spatial 
autocorrelation often associated with occurrence record data. An ap-
parent loss in model accuracy is expected when comparing thinned 
to unthinned data due to the tendency of spatial autocorrelation to 
generate overly optimistic model assessments (Veloz 2009).

Few strong patterns of the effects of optimal tuning parameters 
on evaluation metrics were seen when compared to unthinned and/or 
default parameters (Table 2). Within each primary model, optimizing 
parameters lowered the OR10 slightly when compared to default 
models, indicating a decrease in the already low overfitting to the 
training data. Our first criterion for selecting the optimal parameters 

Table 2. Model evaluation metrics for MaxEnt models of L. dispar dispar

Model
Thinning  

distance (km)
Regularization/ 

feature class

Internal validation External validation 
∆MESS area within  

validation space (km2)

OR10
a AUCtrain

b AUCtest
c AICcd CBIe ≥0 < −10

Native A Unthinned Default 0.108 0.869 0.863 20,350.24 0.231 0.00 898,714.80
 B Unthinned 1/L 0.099 0.818 0.816 20,844.16 −0.522 0.00 898,714.80
 C 69 Default 0.128 0.783 0.745 4,943.23 0.633 34,973.55 898,714.84
 D 69 4.5/H 0.107 0.761 0.746 4,924.55 0.028 34,973.55 898,714.84
Native 
+ Invaded

A Unthinned Default 0.101 0.811 0.808 94,175.14 −0.732 67,183.16 885,037.47
B Unthinned 2.5/L 0.101 0.777 0.776 98,426.26 −0.400 67,143.85 885,037.47

 C 69 Default 0.152 0.782 0.752 6,739.94 0.566 67,183.16 885,037.47
 D 69 4/LQHP 0.098 0.756 0.745 6,380.99 −0.404 67,183.16 885,037.47
Source A Unthinned Default 0.127 0.834 0.808 5,146.43 0.592 2,443,736.47 3,622,201.12
 B Unthinned 6/L 0.114 0.692 0.680 5,367.13 0.949 1,715,512.08 592,102.47
 C 32 Default 0.132 0.773 0.734 1,827.74 0.963 2,451,217.63 3,594,126.78
 D 32 4.5/LQ 0.121 0.699 0.690 1,810.73 0.995 2,451,217.63 3,594,126.78
Source
+ Invaded

A Unthinned Default 0.102 0.763 0.756 86,201.78 0.665 1,172,727.10 1,234,470.08
B Unthinned 6/L 0.101 0.734 0.733 84,080.17 0.156 954,443.74 1,172,424.46

 C 32 Default 0.151 0.689 0.632 7,289.13 0.973 1,172,727.10 1,234,470.08
 D 32 4.5/H 0.107 0.629 0.625 7,015.80 0.872 597,592.06 0.00

Internal validation metrics were averaged across five replicates for each model. External validation was conducted on the same independent dataset in North 
America for all models (see Fig. 1B). The change in Multivariate Environmental Similarity Surface space (∆MESS) shows how much a given model increased the 
area of extrapolation within the model validation ellipse, relative to the model with the least amount of extrapolated space. ∆MESS values of zero indicate the 
model with the greatest amount of space with MESS values ≥0 (no extrapolation), or the least amount of space with MESS values < −10.

aOR10: omission rate for the proportion of test locations with suitability values lower than the smallest value after excluding the lowest 10% of training suit-
ability values (10% training omission rate); overfitting is indicated by deviation from the expectation 0.10.

bAUCtrain measures model ability to distinguish presence points used in model training from background points, with 1.0 being perfect discrimination.
cAUCtest measures model ability to distinguish presence points used in model testing from background points, with 1.0 being perfect discrimination.
dAICc: sample corrected Akaike information criteria. Smaller values are considered better at balancing model complexity and goodness-of-fit.
eCBI: continuous Boyce Index, which calculates the frequency of occurrences predicted to those expected across a continuous (moving window) prediction 

gradient. The value provided is the Spearman rank correlation coefficient between the mean suitability and the predicted:expected ratio of occurrences for a given 
suitability bin. Values close to 1 indicate good predictions (i.e., high suitability areas contained the most occurrences), values near 0 indicate predictions no different 
from random, and value near −1 indicate counter-predictions (i.e., low suitability areas contained the most occurrences).

D
ow

nloaded from
 https://academ

ic.oup.com
/aesa/article/113/2/100/5727917 by U

 S D
ept of Agriculture user on 02 O

ctober 2020

http://academic.oup.com/aesa/article-lookup/doi/10.1093/aesa/saz049#supplementary-data
http://academic.oup.com/aesa/article-lookup/doi/10.1093/aesa/saz049#supplementary-data
http://academic.oup.com/aesa/article-lookup/doi/10.1093/aesa/saz049#supplementary-data


110 Annals of the Entomological Society of America, 2020, Vol. 113, No. 2

was the lowest OR10, so this change is expected. Optimization also 
consistently lowered AUC values when compared to default models, 
which indicates a decrease in discriminatory ability. This corrobor-
ates the qualitative patterns of broadened suitability described above, 
and is the ultimate goal of optimization; optimization tends to result 
in “smoother” and simpler functions, thus making the model less 
specific (overfit) to the model development data (Radosavljevic and 
Anderson 2014).

We did not see any general patterns of the effect of thinning and/
or optimal tuning on external validation across models. However, 
among the highest performing models (based on CBI), thinned 
models consistently gave the highest results (Source-C and -D, 
Source + Invaded-C and -D). There, the models using thinned data 
(Figs. 4C and D, and 5C and D) generally showed a greater extent 
of moderate and higher suitability (i.e., >26) across the eastern and 
Great Lakes region than their unthinned counterparts, with portions 
of particularly high relative suitability (76–100; red) in the North 
Central United States. These regions corresponded to the location 
of much of our validation dataset, so higher suitability scores fo-
cused here resulted in better performance. Of note, these thinned 
models would be considered among the lowest performers based on 
the standard evaluation metrics of AUC and OR.

Extrapolation
Thinning had little to no effect on the amount of unextrapolated or 
extrapolated space. This indicates that our method of spatial thinning 
did not appreciably change the boundaries of climatic space within a 
given model. In cases where optimal parameter tuning resulted in a 
different amount of unextrapolated or extrapolated space compared to 
default settings, it was always for the better; a gain in unextrapolated 
space (i.e., smaller ∆MESS ≥0) or loss in highly extrapolated spaced 
(i.e., smaller ∆MESS < −10) (e.g., Source-A to Source-B; Table 2).

In sum, parameter optimization and spatial thinning had variable 
effects on model performance individually (Table 2). Taken together 
(i.e., the “D” submodels), these procedures reduced model com-
plexity (AICc) and increased predictive ability (OR10), but the differ-
ence was generally small compared to other submodels. Importantly, 
there was no clear impact on transferability (CBI) other than that 
ignoring thinning (i.e., the A and B submodels) resulted in the worst 
or second-worst transferable models. Sometimes optimization of 
unthinned models mitigated this effect, as in Source-A to -B, but 
other times not (e.g., Native-A to -B, Source + Invaded-A to -B).

Conclusions
In this study, we offer an example of modeling an invasive spe-
cies using a popular machine-learning approach (MaxEnt) when 
different amounts of information are available. The spatial ex-
tent of the occurrence dataset used in model development seemed 
to matter most in determining the spatial transferability of our 
models. Models constructed with occurrences limited to the pur-
ported European source of invasion for L. dispar dispar in North 
America, either alone (Source) or in conjunction with occurrences 
from a portion of the invaded range (Source + Invaded) performed 
very well on independent data (CBI values near 1.0). Within that, 
the recommended practice of spatial thinning helped to consistently 
predict independent occurrences with high suitability (Table 2; CBI). 
However, the most transferable models had the greatest extents of 
uncertainty as measured by MESS (i.e., smaller values in ∆MESS 
≥0 and/or larger values in ∆MESS < −10). Optimization of param-
eters (i.e., regularization multiplier and features classes) did not con-
sistently impact how well a model would perform in new regions, 

nor did inclusion of a portion of the invaded range. Our results and 
subsequent conclusions here are limited to one species and whether 
patterns hold for others remains to be seen. Additional studies that 
evaluate multiple circumstances of information typically available to 
a risk practitioner, such as those in our study, for many different in-
vasive species may help form broader generalizations to guide model 
selections.

We note that our study did not explicitly address environmental 
variable selection, other than reducing the number used based on 
correlation. We recognize that the choice of variables has been 
shown to have important impact on the model results (e.g., Rödder 
et al. 2009, Braunisch et al. 2013). Though much is known about the 
biology of L. dispar dispar at this point in its invasion, we opted to 
mimic the circumstance of most invasive species distribution models 
and begin with few a priori assumptions about species-specific cli-
matic drivers upon which to limit variable selection. The general 
assumption that variation in temperature and moisture shapes geo-
graphic distributions for polyphagous insects is well accepted. For 
similar reasons, we chose the widely used WorldClim database for 
our climate data. Though there have been some useful expansions 
of this original dataset (e.g., Kriticos et al. 2012, Abatzoglou et al. 
2018, Title and Bemmels 2018), the availability of high-resolution, 
global datasets that include a diversity of recently measured biotic 
and abiotic variables is lacking.

The process of constructing a MaxEnt model requires a number 
of subjective decisions to be made, affecting the uncertainty in final 
forecasts. Each decision could be considered an axis in multidimen-
sional modeling space. The number of potential models that can be 
created within MaxEnt then depends on the number of axes and the 
number of options along each axis. In this case, we focused on four 
axes each with two options. As a result, it is inappropriate to think 
of just one MaxEnt model for a species, and a general description 
of good or bad model performance becomes difficult, if not impos-
sible. Given that applications of any modeling technique to invasive 
species are typically rife with idiosyncratic limitations and caveats, 
it is difficult to imagine a robust set of recommendations that will 
ensure a rigorous and reliable model for all applications. In spite of 
this, we find it impractical and premature to suggest abandoning cor-
relative models such as MaxEnt for forecasting invasive species dis-
tributions. The intent of our current study is not to suggest a “best” 
approach, but rather further illustrate particular sources of uncer-
tainty that may be present when using this tool. When circumstances 
of data limitation do not allow for conformity to current recom-
mendations in methodology (e.g., lack of independent data for val-
idation, too few occurrences to spatially filter, etc.), our study adds 
to the evidence a pest risk practitioner can evaluate in order to make 
more informed decisions regarding the appropriateness of MaxEnt 
for their situation, and the uncertainties and possible consequences 
that need to be communicated if a forecast is produced.

The possibility to improve the transferability of MaxEnt models 
with information from the genetic origin of an invading population 
is an intriguing concept that requires further testing with more spe-
cies. The source population in our study was defined by genetic di-
vergence observed in a survey of L. dispar dispar populations, but 
whether this divergence corresponds to phenotypic differences in 
environmental tolerances has not been shown. The results seen here 
suggest there may be biological relevance to refining species distribu-
tion models with population genetic information, but experimental 
evidence is still needed to establish a robust link.

Perhaps one of the greatest challenges in developing models to 
forecast suitable habitats for invasive species is model validation, 
the formal assessment of model transferability. Rigorous validation 
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is prerequisite to judge model reliability and usefulness (e.g., Bleeker 
et al. 2003). A fundamental assumption of validation of any model 
is independence of the data used for validation from the data used in 
development. Though often acknowledged as the true test of valid-
ation, independent data are often unavailable, so are rarely used to 
validate species distribution models (Araujo et al. 2005). Forms of 
internal validation (e.g., resubstitution) are used, or a subset of oc-
currence records are withheld from model development (e.g., boot-
strapping or data-splitting), but the data used in these approaches 
typically are not spatially independent from the dataset used in de-
velopment. In our study, models that performed the best internally 
failed external validation tests, whereas models that might other-
wise be considered poor by internal performance statistics did well. 
Because the primary models in our study were built with different 
datasets, direct comparisons of internal validation statistics across 
primary models were not appropriate (Lobo et al. 2008). This real-
ization makes it difficult to assign an a priori model selection metric 
to identify the “best” model with which to support or refute with ex-
ternal validation. Using external validation (here, the CBI) to decide 
model selection confounds the role of independent data; the data 
then become involved in model development thus negating their in-
dependence. We suggest that in instances where data limitations pre-
vent proper validation of a habitat suitability model in novel space 
for an invasive species, this limitation should be clearly stated and 
future monitoring efforts for the species should be structured to pro-
vide independent records for evaluating the usefulness of the model.

Supplementary Data
Supplementary data are available at Annals of the Entomological Society of 
America online.
Supplementary Fig. 1. Forecasted climatic suitability of L.  dispar dispar in 
Europe using the “Native” occurrence dataset. Four submodels were constructed 
in MaxEnt using this dataset based on thinning of occurrences and regulariza-
tion multiplier/feature class combinations: (A) unthinned and default settings, (B) 
unthinned and 1/linear, (C) 69 km thinning and default settings, and (D) 69 km 
thinning and 4.5/hinge. The partial ellipse delineates the space within which the 
independent validation metric for each model was calculated. Colored regions with 
no patterned overlay had MESS (Multivariate Environmental Similarity Surface) 
values ≥0 (no extrapolation). Regions with a light gray overlay with dots had 
MESS values <0 and ≥ −10; light gray with cross-hatching had MESS values < −10. 
Maps are depicted using the Europe Albers Equal Area Conic projection.
Supplementary Fig. 2. Forecasted climatic suitability of L.  dispar dispar in 
Europe using the “Native + Invaded” occurrence dataset. Four submodels 
were constructed in MaxEnt using this dataset based on thinning of occur-
rences and regularization multiplier/feature class combinations: (A) unthinned 
and default settings, (B) unthinned and 2.5/linear, (C) 69 km thinning and 
default settings, and (D) 69 km thinning and 4/linear + quadratic + hinge + 
product. The partial ellipse delineates the space within which the independent 
validation metric for each model was calculated. Colored regions with no pat-
terned overlay had MESS (Multivariate Environmental Similarity Surface) 
values ≥0 (no extrapolation). Regions with a light gray overlay with dots had 
MESS values <0 and ≥ −10; light gray with cross-hatching had MESS values < 
−10. Maps are depicted using the Europe Albers Equal Area Conic projection.
Supplementary Fig. 3. Forecasted climatic suitability of L. dispar dispar 
in Europe using the “Source” occurrence dataset. Four submodels were 
constructed in MaxEnt using this dataset based on thinning of occurrences 
and regularization multiplier/feature class combinations: (A) unthinned 
and default settings, (B) unthinned and 6/linear, (C) 32 km thinning and 
default settings, and (D) 32 km thinning and 4.5/linear + quadratic. The 
partial ellipse delineates the space within which the independent valid-
ation metric for each model was calculated. Colored regions with no pat-
terned overlay had MESS (Multivariate Environmental Similarity Surface) 
values ≥0 (no extrapolation). Regions with a light gray overlay with dots 

had MESS values <0 and ≥ −10; light gray with cross-hatching had MESS 
values < −10. Maps are depicted using the Europe Albers Equal Area 
Conic projection.
Supplementary Fig. 4. Forecasted climatic suitability of L.  dispar dispar in 
Europe using the “Source + Invaded” occurrence dataset. Four submodels 
were constructed in MaxEnt using this dataset based on thinning of occur-
rences and regularization multiplier/feature class combinations: (A) unthinned 
and default settings, (B) unthinned and 6/linear, (C) 32 km thinning and de-
fault settings, and (D) 32 km thinning and 4.5/hinge. The partial ellipse de-
lineates the space within which the independent validation metric for each 
model was calculated. Colored regions with no patterned overlay had MESS 
(Multivariate Environmental Similarity Surface) values ≥0 (no extrapolation). 
Regions with a light gray overlay with dots had MESS values <0 and ≥ −10; 
light gray with cross-hatching had MESS values < −10. Maps are depicted 
using the Europe Albers Equal Area Conic projection.
Supplementary Fig. 5. Plots of the predicted-to-expected ratio of occurrences 
used to calculate the continuous Boyce Index (CBI; “ecospat” package) for the 
“Source” and “Source + Invaded” models. Calculations were made within the 
validation space in North America (tan space; main text Fig. 1) and using the 
validation dataset (orange points; main text Fig. 1). See Table 2 in main text 
for CBI values.
Supplementary Fig. 6. Plots of the predicted-to-expected ratio of occurrences 
used to calculate the continuous Boyce Index (CBI; “ecospat” package) for the 
“Native” and “Native + Invaded” models. Calculations were made within the 
validation space in North America (tan space; main text Fig. 1) and using the 
validation dataset (orange points; main text Fig. 1). See Table 2 in main text 
for CBI values.
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