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ABSTRACT
Aerial discrete return LiDAR (Light Detection And Ranging) technol-
ogy (ALS – Aerial Laser Scanner) is now widely used for forest
characterization due to its high accuracy in measuring vertical and
horizontal forest structure. Random and systematic errors can still
occur and these affect the native point cloud, ultimately degrading
ALS data accuracy, especially when adopting datasets that were not
natively designed for forest applications. A detailed understanding
of how uncertainty of ALS data could affect the accuracy of deri-
vable forest metrics (e.g. tree height, stem diameter, basal area) is
required, looking for eventual error biases that can be possibly
modelled to improve final accuracy. In this work a low-density
ALS dataset, originally acquired by the State of Minnesota (USA)
for non-forestry related purposes (i.e. topographic mapping), was
processed attempting to characterize forest inventory parameters
for the Cutfoot Sioux Experimental Forest (north-central Minnesota,
USA). Since accuracy of estimates strictly depends on the applied
species-specific dendrometric models a first required step was to
map tree species over the forest. A rough classification, aiming at
separating conifers from broadleaf, was achieved by processing
a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest
metrics initially greatly overestimated those measured at the
ground in 230 plots. Conversely, ALS-derived tree density was
greatly underestimated. To reduce ALS uncertainty, trees belonging
to the dominated plane were removed from the ground dataset,
assuming that they could not properly be detected by low-density
ALS measures. Consequently, MAE (Mean Absolute Error) values
significantly decreased to 4.0 m for tree height and to 0.19 cm for
diameter estimates. Remaining discrepancies were related to a bias
affecting the native ALS point cloud, which was modelled and
removed. Final MAE values were 1.32 m for tree height, 0.08 m for
diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean
diameter. Specifically focusing on tree height and diameter esti-
mates, the significance of differences between ground and ALS
estimates was tested relative to the expected ‘best accuracy’.
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Results showed that after correction: 94.35% of tree height differ-
ences were lower than the corresponding reference value (2.86 m);
70% of tree diameter differences were lower than the correspond-
ing reference value (4.5 cm for conifers and 6.8 cm for broadleaf).
Finally, forest parameters were computed for the whole Cutfoot
Sioux Experimental Forest. Main findings include: 1) all forest esti-
mates based on a low-density ALS point cloud can be derived at
plot level and not at a tree level; 2) tree height estimates obtained
by low-density ALS point clouds at the plot level are highly reason-
ably accurate only after testing and modelling eventual error
bias; 3) diameter, basal area, and quadratic mean diameter esti-
mates have large uncertainties, suggesting the need for a higher
point density and, probably, a better mapping of tree species (if
possible) than achieved with a remote sensing-based approach.

1. Introduction

Discrete return LiDAR (Light Detection And Ranging) technology from aircraft (ALS – Aerial
Laser Scanner) is a proven tool for many forest applications. Due to its high accuracy in
measuring vertical and horizontal forest structure, use of ALS for forest characterization has
increased considerably over the last few decades. It has been successfully applied in support
of operational forest inventories by deriving accurate, high resolution estimates of many
forest structural properties including tree height (Morsdorf et al. 2004; Andersen, Reutebuch,
and McGaughey 2006; Hopkinson et al. 2004; Edson and Wing 2011; Saremi et al. 2014;
Falkowski et al. 2006, 2008), diameter (Popescu 2007; Saremi et al. 2014), canopy size (Means
et al. 2000; Popescu and Zhao 2008), volume (Hinsley et al. 2002; Riaño et al. 2004; Latifi et al.
2015) and vertical distribution of tree canopy (Dubayah and Drake 2000). In traditional forest
inventories, tree attributes are collected in discrete ground sample plots, which are assumed
to be representative of the whole forest. Conversely, ALS data can provide information across
large spatial extents, ranging from tree to landscape scales (McRoberts, Tomppo, and Næsset
2010). ALS-derived tree heights can be used to estimate forest structural parameters such as
tree diameter and basal area via numerical model estimation, both for single species or
mixed-species forests (e.g. tree diameter; VanderSchaaf 2012). Given this wide and increasing
use, a detailed understanding of how uncertainty in the LiDAR dataset affects the uncertainty
of derived forest inventory metrics, i.e. tree height, stem diameter, and basal area, is required.

A specific need is to understand if low-density LiDAR acquisitions or ALS datasets
acquired for other purposes can be used in forestry applications. Many agencies have
publically available low-density LiDAR acquisitions often acquired for topographic map-
ping. These freely available datasets may cover large geographic areas; their use in forest-
related research and management is an opportunity increasingly explored. For instance,
low-density LiDAR dataset have been used to estimate forest aboveground biomass in
northern Italy (Montagnoli et al. 2015) and for testing tree species identification (e.g.
Suratno, Seielstad, and Queen 2009).

In this work, we used a free low-density ALS dataset, acquired by the State of Minnesota
(USA), together with Landsat 8 OLI (Operational Land Imager) data, to characterize forest
structure of the Cutfoot Sioux Experimental Forest (CEF) located in north-central Minnesota
(USA). The joint use of ALS data with multispectral satellite data was used since ALS measures
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alone cannot be efficiently used to separate tree species, while multispectral satellite data, in
spite of its reduced geometric resolution, can be used to map main vegetation classes (e.g.
broadleaved trees versus coniferous trees) based on their spectral signatures. Determining
tree species class is of paramount importance when using tree height as a predictor of other
tree parameters via numerical dendrometric models.

Specifically, we investigated structural properties of forest at both tree and plot scales. At
the tree-scale, we examined tree height (m) and diameter (m). At the plot-scale, we examined
tree density, mean height (m), mean diameter (m), mean basal area (BA, m2 ha−1), and
quadratic mean diameter (QMD, cm).

We hypothesized that 1) low-density LiDAR-derived forest estimates could be given at tree
level and/or at plot level, and, 2) low-density LiDAR-derived estimates were comparable to the
same measures obtained from ground-based data collection. To test these hypotheses,
estimates were derived from both ground and ALS data and their consistency tested at both
tree- and plot-scales. A rather weak consistency was initially found. Authors hypothesized that
this not favourable situation could be due to two factors; first, a limitation of the system, as it is
a ‘low-density’ acquisition system, and, second, a possible error bias affecting the native point
cloud. In fact, it is known that LiDAR raw data can be affected bymany randomand systematic
errors introduced during data acquisition (depending from flight acquisition geometry)
(Coveney 2013) data processing, and depending on the nature of the surface hit by the laser
pulse (e.g. land cover categories, vegetation classes, slope) (Hyyppä et al. 2005). Consequently,
a further investigationwas achieved and some actions, included error biasmodelling, adopted
to correct ALS estimates, at both tree and plot scale. We finally computed forest inventory
parameters for the whole study area at the plot-scale. Measures distribution was summarized
computing correspondent Empirical Cumulative Distribution Functions (ECDF).

2. Materials and methods

2.1. Study area

The study area is a portion of the Cutfoot Experimental Forest (CEF, 507 ha) located within
the Chippewa National Forest in north-central Minnesota (Itasca county, USA) at 47°40´ N,
94°5´ W (Figure 1). CEF is dominated by red pine (Pinus resinosa Ait.) that originated after
fires that occurred between 1864 and 1918 (Adams, Loughry, and Plaugher 2004).
Additional tree species include jack pine (Pinus banksiana Lamb.) and eastern white
pine (Pinus strobus L.), paper birch (Betula papyrifera Marsh.) and quaking Aspen
(Populus tremuloides Michx.).

CEF study area was divided between 273 ha of managed forest, including commercial
timber harvests and numerous silvicultural experiments (Buckman 1964; Adams, Loughry,
and Plaugher 2004; Bradford and Palik 2009; D’Amato, Palik, and Kern 2010), and 234 ha of
unmanaged, largely old-growth forest in the Sunken Lake Natural Area (Aakala et al. 2012;
Fraver and Palik 2012).

2.2. Ground data

Ground data were collected as part of a forest-wide survey between May and August 2013
within 230 permanent forest inventory plots: 130 plots were located in the managed area
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and 100 were located in the Sunken Lake Natural Area. There were 9851 surveyed trees,
averaging about 43 trees per plot. Sampling plots had a nested design comprised three
circular plots: in the outer plot, which had a radius of 16 m, tree species were identified
and diameters measured for all trees ≥ 19.3-cm diameter at breast height (DBH). The
central plot, which had a radius of 11.3 m, was used to tally trees ≥ 8.9 cm and < 19.3 cm
DBH. Lastly, the innermost plot, which had a radius of 3.5 m, was used to tally trees with
DBH < 8.9 cm and height > 0.30 m. This field sampling design is a standard approach for
forest vegetation measurements in the study area. We used these ground data in our
study because it was freely available and because it was collected near in time to the
LiDAR data (see next section).

For the ground data, tree diameters were directly measured but other forest para-
meters were derived by computation using appropriate species-specific regression mod-
els calibrated from the USDA Forest Service Forest Inventory and Analysis database for
northern Minnesota, USA. Single tree measures and estimations were then averaged at
the plot-level to derive mean height, mean diameter, mean basal area (BA) and quadratic
mean diameter (QMD) for each plot.

During ground data collection, the position of each plot centre was georeferenced by
GNSS (Global Navigation Satellite System) using a GPSMAP® 60CSx, providing a position
accuracy of about 10 m. Individual tree positions were measured as distance (m) and
azimuth (degrees) from the plot centre. During data processing, tree positions within the
plot were recovered by moving from plot centre according to distance and azimuth values.

Figure 1. Map of CEF showing the distribution of surveyed plots. One hundred and thirty plots are
located in the managed area (dark grey), 100 in the Sunken Lake natural area (light grey).
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2.3. Remotely sensed data

ALS raw data were freely obtained from the Minnesota Geospatial Information Office
website (MnGeo, http://www.mngeo.state.mn.us) for the Central Lakes Region of MN. The
dataset was collected over Itasca County, MN in April 2012. The data were provided in the
UTM NAD83 Zone 15°N coordinate system. Vertical and horizontal accuracy values were
0.5 m and 1.15 m, respectively, at a 95% confidence level, and flight lines side overlap was
25%. ALS60, ALS70 and Optech ALTM Gemini systems were used for data acquisition.
General specifications of acquisition conditions included the following: AGL (Above
Ground Level) average flying height ranged between 2072.6 m and 2377.4 m; MSL
(Mean Sea Level) average flying height ranged between 2712.7 m and 2766.0 m;
Average Ground Speed was about 277 km h−1; Field of View (FOV) was 40 degrees;
LiDAR pulse rate ranged between 99 kHz and 115.3 kHz and the scan rate between 25.1
Hz and 38 Hz. Multiple returns were recorded up to five returns; intensity values were
recorded @8-bit quantization. Pulse returns density was of 0.78 pulses m−2. The raw point
cloud was processed via LASTools (Rapidlasso GmbH) to generate gridded digital surface
model (DSM) and digital terrain model (DTM) with a 1 m cell size. A canopy height model
(CHM) was generated by differencing the DSM and DTM and a local maxima algorithm
was run to map potential trees from the correspondent CHM using SAGA GIS 7.2.

A Level 2 Landsat 8 OLI multispectral image, acquired on 11 November 2013, was
downloaded from the EarthExplorer distribution system (http://www.earthexplorer.usgs.
gov). It was supplied already calibrated in at-the-ground reflectance. A Landsat-8 OLI
image was adopted because its geometric resolution of 30 m is consistent with ground
plots size (16 m radius). In this way, we assumed that each forest plot corresponded to
a Landsat pixel for comparison. Moreover, since the image was multispectral, we were
able to use spectral signatures of conifers and broadleaf to classify the forest.

A caveat regarding the LiDAR and ground truth data is that they were collected more
than 1 year apart. However, the ground data is specifically based on measurements of
trees; short of changes caused by catastrophic events (or which there were none in the
study area during the period of record), there would be virtually no detectable differences
in measurements taken in the spring 2012 versus summer 2013. Any difference in diameter,
height, or basal area would be within the range of measurement error. Moreover, ground
data were used only to directly provide diameters and trees location, and consequently the
effect of the season (LiDAR: April 2012 vs Ground data: summer 2013) is inconsequential.
Moreover, LiDAR acquisition for the study was collected in April, which is the beginning of
a leaf-on season in the study area and the forest is conifer dominated, so the influence of
differences in time of acquisition between ground and LiDAR data was minimized.

2.4. Data analysis

ALS-derived and ground measures follow opposite pathways to generate tree-level forest
inventory measures. Specifically, traditional forest inventory approaches use tree dia-
meter measurements to model tree height and other parameters, whereas ALS-based
approaches use tree heights to derive diameter and other parameters. Both approaches
operate through numerical models that relate diameter and height. In consistency tests of
tree diameters, the LiDAR values are ‘indirectly’ derived by numerical modelling from
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heights; when testing consistency of heights, the ground-based measures are generated
by numerical approaches. Therefore, we have to preventively define some reference
values (the ‘best reachable accuracy’) to compare uncertainty with. These can be defined
while calibrating local numerical model relating diameters and height (or vice versa) by an
Ordinary Least Squares (OLS) approach. A flowchart showing overall phases of analysis is
available in the Supplemental material (Figure S-1).

2.4.1. Ground data processing
Using ground sampled tree diameters, we estimated by OLS the coefficients of the
following numerical dendrometric model relating tree height to its diameter (Perala and
Alban 1993).

Hs ¼ asDbs þ εs (1)

where Hs is the estimated height for a specific species, D the ground sampled diameter, as
and bs are species-specific coefficients and εs the estimated model uncertainty.

The model was calibrated using the dataset from the USDA Forest Service Forest
Inventory and Analysis database for Minnesota, downloaded from the FIA website (ver-
sion 4.0, Woudenberg et al. 2010). Only the most frequently occurring species in CEF plots
were considered. For the conifer class (hereinafter called ‘C’): balsam fir, eastern white
pine, jack pine, and red pine were included; for the broadleaf class (hereinafter called ‘B’):
paper birch, quaking aspen and northern red oak were included. Calibrated models were
then used to compute tree heights within the surveyed plots.

The FIA data for Minnesota were chosen because the calibration of the regression
models required a large amount of (freely available) reliable inventory data and, more-
over, it needed to be specific for the species present in the study area, which was not
obtainable from any other source.

To ensure that all diameter classes were equally represented during model calibration,
OLS estimation related mean diameter and height values of predefined classes. These
were defined by splitting the diameter range of variation into class widths of 2.5 cm and
looking for the corresponding height values. Class diameter and height values were
averaged and model parameters estimated accordingly. Standard deviation of heights
belonging to the class was computed as well. The mean value of all class standard
deviations (σHm) was assumed to be the reference ‘best’ uncertainty to compare with ALS-
derived heights. In other words, height estimations from the model were assumed to
represent a class of heights having an internal variability equal to σHm. All computations
for model calibration were run through in-house appositely developed IDL (Interactive
Data Language) routines.

Tree basal area gið Þ was computed according to Equation (2):

gi¼
π

4
� d2i ðm2

�
(2)

where di is the diameter of the i-th tree.
Estimated single tree measures were then averaged to the plot level. For each plot,

mean diameter (DG
µ) and mean height (HG

µ) were computed. Plots total basal area (BAG)
was considered and computed by Equation (3), including all species in a plot:
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BAG ¼
Pn

i¼1 gi
Ap

ðm2ha�1
�

(3)

where gi is basal area, n is the number of surveyed trees in each plot and Ap the area (ha)
of the plot.

Moreover, plot mean tree density (TGpha) and plot quadratic mean diameter (QMDG)
were computed, respectively, according to Equations (4) and (5).

TGpha ¼ n:tree
Ap

ðtrees ha�1
�

(4)

QMDG ¼ BA=Tpha
0:00007854

ðcmÞ (5)

To summarize data at plot level single tree diameters and heights were averaged within
the plot.

2.4.2. Mapping tree species by satellite imagery
To map tree species, the accuracy of estimates depends on being able to apply the
appropriate dendrometric model to the proper tree species. Since no a-priori knowledge
of vegetation type was available, a preliminary step was needed to classify tree species
before models could be applied. From an operational point of view, a species level
classification of forest (tree by tree) was not possible. Nevertheless, a rough classification,
aiming to separate conifers from broadleaf trees, was achieved using multispectral
imagery.

For image classification, the main tree species of study area (Table 1) were analysed at
the plot level; depending on the proportion of conifers and broadleaf trees, plots were
labelled as ‘C’ if they were ≥70% coniferous species or ‘B’ if they were ≥70% broadleaf
species. Mixed plots were excluded from the analysis. Fifty-four plots were labelled as B, 97
as C, and 79 were not considered for classification training, as they were mixed. It is worth
to highlight that geometric resolution of Landsat OLI images (30 m) is consistent with plot
size (16 m radius). Consequently, one can assume that each forest plot corresponds to
a Landsat pixel. To collect an adequate number of training pixels each plot was used as
starting point to define the corresponding Region of Interest (ROI), that was obtained by

Table 1. Dendrometric model parameters (as and bs in Equation (1)) estimated by OLS for the
considered tree species with reference to the US FIA database. MAEH defines the accuracy of the
estimated tree height. r is the computed Pearson’s coefficient for estimated and observed measures.
σHspecies defines the intra-species variability of tree height estimates. In the first column it is reported,
for the considered species, the macro class it was assigned to (B = Broadleaf; C = Conifers). H = tree
height.

Assigned class No. trees Species as bs
MAEH

(m) r σHspecies (m)

C 457 Balsam fir (Abies balsamea) 44.926 0.758 1.19 0.99 2.38
C 792 Eastern white pine (Pinus strobus) 39.528 0.683 2.03 0.99 3.49
C 903 Jack pine (Pinus banksiana) 44.925 0.730 1.48 0.98 2.84
B 411 Northern red oak (Quercus rubra) 30.815 0.496 1.38 0.97 3.41
B 1830 Paper birch (Betula papyrifera) 31.658 0.504 1.54 0.94 3.09
B 380 Quaking aspen (Populus tremuloides) 36.966 0.530 1.42 0.97 3.12
C 4584 Red pine (Pinus resinosa) 40.005 0.737 2.05 0.98 3.27
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region growing looking for similar pixels around the selected one. Any eventual relative
positioning error between ground and ALS measures with respect to Landsat imagery can
be ignored, as it was lower if compared with Landsat pixel size. A supervised classification
(Minimum Distance algorithm; Richards 1999) was, therefore, run to generate the corre-
sponding classification map, which was validated using a confusion matrix.

2.4.3. ALS data processing
The LiDAR point cloud was processed using LASTools libraries. The following operations
were performed: a) point returns presenting a scanning angle greater than 15 degrees
were filtered out (accuracy reduces when scanning angles are higher than 12–14 degrees
over dense forest stands; Gatziolis and Andersen 2008); b) points were classified into
‘ground’ and ‘not-ground’ by LASTools “lasground“ library (natural context parameters); c)
regularization of points cloud was achieved by las2dem tool obtaining the correspondent
DTM and DSM with a pixel size of 1 m.

A CHM of the area was generated by differencing of DSM and DTM. A specifically
designed local maxima filter was run over CHM, to detect pixels which likely represented
the top of trees.

Tree heights from ALS were extracted from CHM at the locations of the detected
local maxima. Tree diameter was estimated by Equation (6). Model type was specifi-
cally selected and used by authors with no concern about pre-existing references
from literature, but in consequence of appositely performed test involving available
data.

Dt ¼ eat � Hbt þ εt (6)

where at and bt are tree-species dependent coefficients and εt is the estimated model
uncertainty for Dt. Differently from ground measures, ALS estimates of Dt were computed
by Equation (6), differently calibrated in respect of ‘C’ and ‘B’ macro-classes. This was
obtained including associated tree species according to Table 1.

To ensure that all height values were equally represented during model calibration,
OLS estimation related height and diameter mean values of predefined aggregated
classes from the native measures. Height classes were defined with a width of 25 cm;
included measures, together with the correspondent diametric ones, were averaged
at class level. The dendrometric model of Equation (6) was therefore calibrated with
respect to the averaged diameter and height class values. Standard deviation of each
diameter class was computed. Unlike direct dendrometric models (Equation 1), the
mean of the standard deviations of class diameter was lower than the correspondent
MAED (Mean Absolute Error, Willmott & Matsuura, 2005). MAED was therefore assumed
to be the reference ‘best’ accuracy in diameter estimation from ALS data.

The forest class map from Landsat 8 imagery (FCM) was used to assign the appropriate
tree class to each ALS detected tree, allowing application, at tree level, of the right
dendrometric model (Equation 6).

Once height and diameter were estimated for each detected tree, TLpha, D
L
µ, H

L
µ, BA

L,
and QMDL were computed for each plot by averaging.
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Using the FCM (‘C’ and ‘B’ classes), forest parameters were computed for the whole CEF
study area at plot level, generating the corresponding raster maps (cell size = 30 m) of the
estimates of forest parameters.

2.4.4. Ground vs ALS: testing consistency of measures
To compare measures, we first tested the consistency of tree positions as detected from
ALS by the Local Maxima algorithm with the field surveyed positions. This comparison
showed a significant displacement in positions. Consequently, a tree-to-tree comparison
was unreasonable, so comparisons were made at plot level. Therefore, estimates from ALS
were computed at-tree level, but comparisons with ground data were based on aggre-
gate measures. An initial comparison of all detected trees with respect to the surveyed
trees was done by computing ECDFs of Tpha, Hµ, Dµ, BA, and QMD for both ground and ALS
measures/estimates.

Because of the importance of height measures in many forest parameter computa-
tions, and because of the trend of using ALS data for determination, a comparison was
done with reference to plot average tree height values (HG

µ and HL
µ). Uncertainty of T

L
pha,

DL
µ, H

L
µ, BA

L, and QMDL, was measured as MAE (Equation 7).

MAE ¼ 1
n

Xn

i¼1
fi � yij j (7)

where fi is the predicted (ALS) value, yi is the ground correspondent value and n the
number of observations (n plots).

Initially, we considered that large differences could be related to the underestimation
of trees number by ALS, if vegetation under the main canopy is not completely described
(Reitberger et al. 2009). This in particular affected aggregated forest parameters (BA, QMD,
Tpha) that depended on tree number. To test this hypothesis we sorted, for each plot,
ground surveyed trees according to their height, selecting the tallest ones in numbers
equal to those detected by ALS. We assumed that this operation removed from analysis
the trees of the dominant layers that were not recorded by LiDAR, making observation
distributions more similar. New ground tree height values were then calculated and
compared with the ALS-derived ones. Since this comparison still showed dissimilarities,
we tested if a bias could affect the native point cloud. For this, we compared ALS
estimates with the ‘filtered/reduced’ ground surveyed ones. Bias was tested only for
tree heights. We related ΔHµ = HL

µ – HG
µ with HL

µ by scatterplot, finding a strong
correlation, which was modelled to correct ALS measured tree heights both at plot and
tree level. This operation proved to reduce the uncertainty of estimates.

After quantification of tree height accuracy (MAE was computed at plot level) affecting
‘corrected’ ALS-derived estimates, significance of both ΔHµ and ΔDµ= DL

µ – DG
µ was

tested. Only |ΔHµ| and |ΔDµ| higher than expected ‘best’ accuracy (σHm, MAED respectively
for tree height and diameter estimates) were assumed significant. To test this condition,
the ECDFs of ΔHµ and ΔDµ from LIDAR from both ‘biased’ and ‘unbiased’ measures were
computed for the whole CEF study area. These were compared to ground estimates,
demonstrating that a few field surveyed measures can represent much of the forest where
they were sampled.

Finally, a comprehensive description of the CEF study area using all forest para-
meters was developed and interpreted. A flowchart for error quantification and
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modelling, and for the ECDF comparison analysis, is available in the Supplemental
material (Figure S-2).

3. Results and discussions

Obtained results underlined the possibilities and limits of forest parameter estimation
using low-density LiDAR point clouds in conjunction with medium resolution satellite
data.

3.1. Ground data processing

The dendrometric model of Equation (1) was calibrated by OLS for the main tree species
surveyed in CEF. Table 1 reports estimated coefficients and the following statistics: model
MAE (tree height estimate accuracy); r, Pearson’s correlation coefficient between observa-
tions and estimates; σHspecies, mean standard deviation of height class for each considered
tree species.

Values of Table 1 were averaged over all the species making it possible to synthesize
mean accuracy expectations. The mean values were found to be 1.39 m and 2.86 m,
respectively, for MAEH and σHm. Since the latter was the highest, it was assumed as ‘best
expectable accuracy’ for tree height measurements. In other words, no tree height
estimates from other sources are expected to be more accurate than the average intra-
species variability, represented by σHm.

Calibrated dendrometric models were applied to all ground surveyed trees to derive
height estimates. Single trees height and diameter were then averaged over the plot and
corresponding BA and QMD calculated. Moreover, at the plot-level computed forest
parameters were averaged over the previously defined macro-classes (‘B’ = Broadleaf
and ‘C’ = Conifers). At-class-level, average forest parameters are hereinafter indicated as:
DG

µ, H
G
µ, BA

G, TGpha, and QMDG (Table 2).

3.2. ALS-based estimates

Since dendrometric models were species-specific, we proceeded to map forest vegetation
by classifying a L8 OLI multispectral image. We looked for two classes: broadleaf trees and
conifers. More detailed species mapping was not reliable. The training set for the
Minimum Distance supervised classifier was generated by region growing (similarity
threshold equal to 0.9) starting from the position of the surveyed 151 plot centres.
A total of 591 pixels were finally selected (322 for broadleaf and 269 for conifers).
Classification accuracy was 90.2%. Table 3 reports main statistics concerning Minimum
Distance classification performance: Producer’s and User’s Class accuracy, Class
Commission and Class Omission.

Once conifers and broadleaf forest areas were mapped, the inverse dendrometric
models (Equation 6) specifically calibrated for both conifers ‘C’ and broadleaf ‘B’ were
applied. Model parameters and MAE are reported (Table 4).

Models were applied at the single tree level (as detected by local maxima algorithm
from CHM). This made it possible to compare ECDF of the forest estimates.
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Mean descriptive statistics for DL
µ, H

L
µ, BA

L, TLpha, and QMDL for ‘C’ and ‘B’ classes were
computed (Table 5).

3.3. Ground vs ALS: testing consistency of measures

The first result from the ALS dataset was tree detection and positioning. First, we tested
tree positions from LiDAR with the positions from ground survey. Consistency proved to
be very poor (example available in Supplemental material–Figure S-3); this was likely
related to the low accuracy GNSS receiver used during plot surveys. Additionally, only plot
centres were surveyed by GNSS, while tree positions inside the plots were measured using
distance (m) and azimuth (degrees) from the plot centre. These processes may have
degraded the reliability of positioning. Moreover, since plot centre position was surveyed
by a simple ‘pseudo-range’ approach (C/A code measurement), the reference point
(centre of plot) is known to have an accuracy of 5–10 m, making final tree positioning
at the ground potentially unreliable.

Consequently, only the analysis of plot-level aggregated measures was possible.
Considering all trees falling in the sampled plots, the Tpha ECDFs from ground and from
ALS were computed and compared (Figure 2).

Table 4. Dendrometric model parameters (for LiDAR-derived measures, from height
measures to diameter estimates) separately estimated by OLS for broadleaves and
conifers. MAED, r and σDspecies diameter estimates statistics are reported too (D =
diameter). MAED defines the accuracy of the estimated tree diameter from LiDAR. r is
the Pearson’s coefficient for estimated and observed measures. σDspecies defines the intra-
species variability of tree diameter estimates.
Class as bs MAED (m) r σDspecies (m)

‘C’ −5.156 1.388 0.045 0.985 0.006
‘B’ −6.957 1.983 0.068 0.960 0.006

Table 2. Mean values of forest parameters at macro-class level (‘B’ = Broadleaf and ‘C’ = Conifers).
σH; σD; σBA; σQMD are the average values of standard deviations of plots for each computed parameter
defining its intra-class average variation. TGpha =plots mean tree density; HGµ=plot average tree
height; DGµ=plot average tree diameter; BAG = Plot total basal area; QMDG = plot quadratic mean
diameter. G = ground; L = LiDAR.

HGµ (m) DGµ (m) BAG (m2 ha−1) QMDG (cm)

Class No. of plots
TGpha

(tree ha−1) Mean σH Mean σD Mean σBA Mean σQMD

‘C’ 97 590.73 17.0 4.34 0.30 0.11 49.35 11.71 33.34 4.27
‘B’ 54 414.56 16.71 4.02 0.29 0.10 34.82 10.71 33.36 4.48

Table 3. Accuracy values of classification obtained from the available Landsat 8 OLI multispectral
image.
Accuracy types Conifer Broadleaf

Producer’s class accuracy (%) 89.5 91.4
User’s class accuracy (%) 99.4 100.0
Class commission (%) 0.6 0.0
Class omission (%) 10.5 7.7
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Underestimation of trees number from ALS is likely related to the low density of the
native point cloud, where only trees belonging to the dominant layer of forest could be
detected. To better evaluate a possible effect of this phenomenon, we also computed and
compared ECDFs of Dµ and Hµ (at-plot-level aggregated measures) from both ground data
and LiDAR (Figure 3).

ALS proved to overestimate Hµ, with the majority of plot mean heights lower than
27 m; conversely, mean heights from ground-surveyed plots were mostly lower than
17 m. Since Dµ estimation from ALS strictly depends on measured tree heights, ECDF of Dµ

was largely different for LiDAR and ground data, showing, again, a general overestimation
by ALS. ECDFs of BA and QMD from ground surveys and LiDAR were also compared. Since
computations directly involve diameter values and tree numbers within plots, both BA
and QMD from LiDAR were overestimated (Figure 4). BA in particular shows that LiDAR is
limited when recording the smallest trees (i.e. smaller diameter values) in a plot.

Table 5. Mean values of forest parameters at macro-class level (‘B’ = Broadleaf and ‘C’ = Conifers) as
resulting from LiDAR data. σH; σD; σBA; σQMD are the average values of standard deviations of plots for
each computed parameter defining its intra-class average variation. TLpha = plots mean tree density; HL

µ=plot average tree height; D
L
µ=plot average tree diameter; BAL = Plot total basal area; QMDL = plot

quadratic mean diameter.

Area

TLpha (tree ha
−1) HLµ (m) DLµ (m) BAL (m2 ha−1) QMDL (cm)

Mean σH Mean σD Mean σBA Mean σQMD

‘C’ 246.89 24.73 2.20 0.51 0.06 53.22 19.76 52.0 6.58
‘B’ 216.47 22.13 2.98 0.47 0.12 43.82 24.45 48.97 10.78

Figure 2. ECDF of ground- (solid line) and LiDAR-derived (dotted line) Tpha, built considering values for
all assessed plot (151).
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Overestimation of BA occurs only for larger values (i.e. of diameter) which, given the
above-mentioned limitations of ALS, should be carefully considered.

Focusing on plot-level mean tree height, the difference ΔHµ = HL
µ – H

G
µwas computed,

testing its value against the expected ‘best’ accuracy for tree height measures, i.e. intra-
plot average variation of tree heights as computed from ground observations (σHm =
2.86 m). We found that in 89.1% of plots, ΔHµ exceeded σHm. Complete statistics con-
cerning all forest parameter estimations by ALS with respect to ground measures are
reported in Table 6.

Measures at the plot level contain some apparent paradoxes, in particular, the relation-
ship between ALS underestimation of tree number (Tpha) and overestimation of BA (for
higher diameter values) and QMD. The interpretation key, in author’s opinion, is specifi-
cally resident in the only direct measure which is expected by LiDAR, i.e. tree height. The
data confirm that most of the inconsistency in estimates is related to this native error,
which in our study resulted in overestimates of heights. This should alert users of low-
density ALS datasets to the importance of having an appropriate number of ground
observations to avoid highly distorted measures. If ground observations (surveyed plots)
were available, users should use them to model biases, with special attention given to tree
height measures from ALS.

Figure 3. ECDFs. (left) plot mean tree diameter and (right) plot mean tree height from ground (solid
line) and LiDAR (dotted line).

Figure 4. ECDFs. (left) BA and (right) QMD from ground (solid line) and from LiDAR (dotted line).
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Observed discrepancies between LiDAR and ground measures could be related to tree
density underestimation by LAS, which inevitably conditions forest parameter computa-
tions, and possible biases affecting native LiDAR point cloud.

We first explored tree density underestimation as a possible reason of inconsistency. To
test this assumption, we forced ground plot tree density to be equal to the LiDAR derived one
(according to the strategy described in Materials and Method – 3.4 Ground vs ALS: testing
consistency of measures). This resulted in new values of HG

µ and DG
µ (ĤG

μand D̂G
μ ). Analysis was

accomplished only for heights and diameters.
After reduction of ground detected trees, new MAE values were computed; 4.0 m for

heights and 0.19 m for diameters.
These results proved that tree density is a factor conditioning consistency between

LiDAR and ground tree parameters estimation. Once removed, residual differences sug-
gested that some further biases could affect native ALS measures. Bias analysis compared
ΔHµ with HL

µ by scatterplot. This had a coefficient of determination (R2) of 0.65 (R = 0.80),
supporting the hypothesis that a systematic error could affect original ALS data.
A logarithmic regression (Equation 8) was used to model the existing bias (Figure 5).

ε ¼ ΔHμ ¼ 15:37� lnðHL
μÞ � 44:98 (8)

where ε is the correction to apply to HL
µ to minimize bias.

The tree height bias model was applied at the tree level. The heights of all LAS-
detected trees (HL

t Þ in the CEF study area were corrected (Equation 9) and new plot height

mean values ĤL
μ

� �
computed and compared with the ground surveyed ones (after tree

number reduction).

cHL
t ¼ HL

t � ε (9)

New height differences Δ̂Hμ ¼ ĤL
μ � ĤG

μ

� �
were computed together with corresponding

MAE. Statistics showed that 94.35% of heights differences, after correction, were brought
within ‘best accuracy’ (σHm). MAE was reduced to 1.32 m. Similarly, statistics for new

diameter differences, Δ̂Dμ ¼ ðD̂L
μ � D̂G

μ ), were calculated, showing that 70.0% of diameter

differences, after correction, were brought within ‘best accuracy’ (MAED). Diameter MAE
was reduced from 0.19 m down to 0.08 m, greatly improving the ‘best expected accuracy’
from dendrometric models.

After removing bias from ALS measures at the tree level, the study area was divided
using a 30 m grid size graticule, computing, for each squared element, the correspondent

Table 6. Percentages of plots over/under-estimating Hµ, Dµ, BA, Tpha and QMD from
LiDAR in respect of the ground surveyed ones.

Overestimation
by LiDAR

Underestimation
by LiDAR

Plots (%) MAE

Tpha (no. trees) 3.1 96.9 294.73
Hµ (m) 96.5 3.5 7.22
Dµ (m) 97.0 3.0 0.21
BA (m2 ha−1) 54.7 45.2 14.26
QMD (cm) 95.6 4.75 0.22
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height mean value (bH0L
μÞ and tree diameter mean value ( bD0L

μ) obtained by considering all
trees included in the element as detected by the Local Maxima algorithm.

ECFDs of ground- and LAS-derived (de-biased) measures were computed to test: a) if
consistency ALS-derived tree heights and diameters were improved at the plot level; and
b) if plot statistics from the ground sampling represented the entire study area. ECFDs are
reported in Figure 6.

The comparison demonstrated that, after bias removal and tree density correction,
ECDFs of ground- and ALS-derived measures were more consistent. Specifically focusing
on diameter values, residual inconsistency was probably due to limitation of the applied
inverse dendrometric model that was calibrated without separating all tree species
(calibration was at ‘B’/”C” class level). Given the strong improvement of LiDAR estimates
of tree diameters and heights at plot level after correction, new values of dBAL and dQMDL

were recomputed from unbiased ĤL
t and D̂L

t for all the cells of the graticule covering the
whole study area. Figure 7 shows ECDFs of the new estimated parameters.

Figure 7 demonstrates that BA and QMD estimates from ALS derived unbiased height
tree measurements are more consistent with the ground surveyed data. Residual differ-
ences (MAE) for both BA and QMD estimates were 8.5 m2 ha−1 and 6.0 cm, respectively.

4. Conclusions

This work presents a simple and fast method to test ALS-derived forest measures and
proposes a statistically based approach to remove/minimize error bias that potentially
affects native LiDAR point clouds. A low-density ALS point cloud and a freely available

Figure 5. Bias trend modelling. The relationship linking (height difference between ground- and
LiDAR-derived measures) and HLµ (plot average tree height from LiDAR) was approximated by
a logarithmic regression.
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Landsat 8 OLI image were used to accomplish this task. Low density/resolution datasets
are an important resource in many fields since they are often available for free and,
generally, cover large geographic areas. In this work, Landsat imagery was used to classify
forest cover in the Cutfoot Experimental Forest (CEF, Minnesota USA); consequently,
conifers and broadleaf species were detected and mapped. This, in turn, made it possible
to calibrate and apply more appropriate dendrometric models to estimate tree diameter
from height when deriving forest metrics from LiDAR. Validation of estimates at tree level
proved to be problematic mainly due to the great uncertainty affecting plot position from

Figure 6. (left) ECDF of ĤG
μ (black solid line, ground-derived at-plot level tree height estimates after

reduction), HL
μ (grey line, LiDAR-derived at-plot level tree height estimates before bias removal) and

bH0L
μÞ (dotted black line, LiDAR-derived at-plot level tree height estimates after bias removal); (right)

ECDF of D̂G
μ (black solid line, ground-derived at-plot level tree diameter estimates after reduction), DL

μ

(grey line, LiDAR-derived at-plot level tree diameter estimates before bias removal) and bD0L
μ (dotted

black line, LiDAR-derived at-plot level tree diameter estimates after bias removal). G = ground; L =
LiDAR.

Figure 7. (left) ECDF of ground derived BAG (black solid line), LiDAR-derived BAL before (grey line) andcBAL after (dotted black line) correction; (right) ECDF of field QMDG (black solid line), LiDAR-derived

QMDL before (grey line) and dQMDL after (dotted black line) correction. Note that ECDFs from ground
estimates refer just to the plot, while ECDFs from LiDAR estimates concern all CEF (calculated at plot
level considering a 30 × 30 grid cell). G = ground, L = LiDAR.
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ground measures. All comparisons were, therefore, operated at plot level (230 plots) by
aggregation. Initially, uncertainty (MAE) of forest metrics estimates resulted surprisingly
high and tree density was significantly underestimated by LiDAR. The joint interpretation
of these two facts led authors to remove trees belonging to the dominated layers from the
ground dataset, admitting that low-density ALS point cloud is not able to detect trees of
the dominate layers. A significant improvement was obtained, but it was still not satisfac-
tory. Residual errors, assumed to be related to a bias affecting the native LiDAR point
cloud, were further minimized by statistical modelling finally reaching MAE values of
1.32 m, 0.08 m, 8.5 m2 ha−1, and 0.06.0 m for Hµ, Dµ, BA, and QMD, respectively.
Significance of diameter and height errors was tested against the expected reference
accuracies showing that 5.65% and 30% of errors in tree height and diameter estimates
were significant (therefore measurable). The lower accuracy of diameter estimates is
probably related to the adopted procedure, that applies generic dendrometric models,
calibrated for wide forest classes (conifers and broadleaf) with no regard for the actual
tree species. We can, therefore, conclude that low-density LiDAR point clouds can be
successfully used to get tree height estimates at plot level; but this has to be done only
after testing and modelling eventual error bias affecting native data. Conversely, dia-
meter, basal area and QMD estimates suffer from significant uncertainty. Better estimates
could result from the adoption of higher density point clouds and with a better knowl-
edge of local tree species. At the moment, a tree-level approach is not reliable while
working with low-density LiDAR point clouds, that, despite these conditions, can give
a reasonable quantification of the standard forest metrics over wide areas.
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