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Abstract 
The USDA Forest Service uses satellite imagery, along with a 
sample of national forest inventory field plots, to monitor and 
predict changes in forest conditions over time t hroughout 
the United States. We specifically focus on a 230, 400 hectare 

region in north-central Wisconsin between 2003 - 2012 . The 

auxiliary data from the satellite imagery of this region are 
relatively dense in space and time, and can be used to learn 
how forest conditions changed over that decade. However, 
these records have a significant proportion of missing values 
due to weather conditions and system failures that we fill in first 
using a spatiotemporal model. Subsequently, we use the 
complete imagery as functional predictors in a two-component 
mixture model to capture the spatial variation in yearly average 
live tree basal area, an attribute of interest measured on field 

Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1860769&domain=pdf


plots. We further modify the regression equation to 
accommodate a biophysical constraint on how plot-level live 
tree basal area can change from one year to the next. Findings 
from our analysis, represented with a series of maps, match 
known spatial patterns across the landscape. Supplementary 
materials for this article, including a standardized description of 
the materials available for reproducing the work, are available 
as an online supplement. 

Keywords: Binary regression, Functional predictors, Landsat time series, Live 

tree basal area, Spatiotemporal model 

1 Introduction 

The national forest inventory (NFI) of the United States, conducted under the 

Forest Inventory and Analysis (FIA) program of the USDA Forest Service, is 

designed to provide consistent and unbiased strategic-level information about the 

status and trends of the Nation’s forest resources (Bechtold and 

Patterson, 2005). Given the geographic size and wide distribution of this 

population, the inventory is conducted annually using a probability sample with a 

base sampling intensity of one field plot per 2,400 hectares. An active area of 

forestry research involves the use of auxiliary data that can be collected quickly 

and inexpensively, such as from satellite imagery, to model the relationship 

between these auxiliary data and the field plot data in an effort to improve the 

precision of population estimates, particularly for smaller domains within the 

larger population. 

Since satellite-based optical sensors, such as Landsat 7’s ETM+ instrument, 

detect reflectance from the Earth’s surface, these data are expected to be closely 

correlated with land cover. Kauth and Thomas (1976) developed a linear 

transformation of the original Landsat Multispectral Scanner bands, named the 

tasseled cap (TC) transformation. Comparable transformations have since been 

developed for the Landsat Thematic Mapper (Crist and Cicone, 1984), Enhanced 

Thematic Mapper Plus, and Operational Land Imager sensors. The TC features 
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are related to growing vegetation, soil moisture, and overall surface brightness, 

and are correlated with the phases of vegetation development over time. With the 

advent of the data policy of 2008, granting unrestricted access to the entire 

USGS archive of Landsat, dense time series of TC features can now be used 

readily and economically to model forest dynamics. Numerous studies have 

shown TC features derived from Landsat imagery to be useful for mapping land 

cover (Yuan et al., 2005), as well as several forest characteristics such as 

growing stock volume (Zheng et al., 2014) and biomass (Karlson et al., 2015). In 

the current work, live tree basal area, measured in square meters per hectare (

2 /m ha ), is the forest characteristics of interest. It is a simple measure of tree 

size and represents the cross-sectional area of the stem based on the diameter 

of the tree at a certain height, see Section 2 for details of FIA requirement for 

measuring basal area. It is closely correlated with other measures of tree size, 

such as volume and biomass, but does not require additional measurements like 

tree form, height, or wood density. While extracting the data for basal area from 

FIA database, filters are used within the SQL query to limit the data retrieval to 

measurements of live trees alone, excluding basal area of standing dead trees. 

We note that, in the rest of the article, any mention of basal area actually implies 

live tree basal area, even if not explicitly stated. 

The goal of this article is to build a novel and flexible hierarchical model 

leveraging the relationship between the TC features, for which we have observed 

values for the majority of the population units at regular time intervals, and the 

basal area data, for which we have relatively few observed values only from the 

FIA sample of field plots at certain years, in order to make annual predictions of 

the latter for every population unit. Our dataset comes from Landsat 7 ETM+ 

imagery, collected during the decade 2003 - 2012, from a 230, 400 hectares 

square-shaped region in north central Wisconsin. We also use a relatively small 

dataset of 146 pairs of basal area measurements from the same period, 

consisting of two 5-year FIA measurement cycles 2003-2007 and 2008-2012. 

This region is particularly interesting from a modeling perspective because, 
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around middle of that decade, a tornado touched down near the eastern edge of 

the region, causing extensive damage to forest within a long, narrow swath, an 

example of natural canopy disturbance common within this region (Stueve 

et al., 2011). So, it is important to see if the proposed methodology can 

successfully reproduce the dynamic pattern along a tornado trajectory - 

undisturbed forest during the initial years, removal of live tree basal area due to 

the tornado and its gradual regeneration in the following years, as well as for 

more common anthropogenic disturbance like harvest. 

We turn to highlighting the original contributions of this article. A motivating 

earlier work on hierarchical spatial predictive model for NFI data can be found in 

Finley et al. (2011). The current work differs significantly from that in terms of the 

scope and objective of modeling as well as structure of the data. Emphasis of 

Finley et al. (2011) lies in building a low-rank multivariate spatial process that is 

computationally efficient for predicting forest variables over a large landscape. 

On the contrary, we consider a univariate response, live tree basal area, over a 

relatively smaller region and focus on two key ideas. First, unlike the majority of 

studies that use remote sensing imagery either at a single point in time or as a 

composite of images over the study duration, we use the entire time series of 

monthly images over the decade of the study period. The temporal patterns of 

the TC features derived from this imagery, being correlated with land cover, are 

shown to be informative in distinguishing deciduous from evergreen forests, 

different tree species from one another, as well as predicting tree biomass 

(Wilson et al., 2012, 2018). Hence, in the regression equation for basal area, we 

propose to use the TC features as functional predictors (Ramsay and 

Dalzell, 1991; Morris, 2015). The resultant predictive model is used to depict the 

variation in live tree basal area across the region as well as to infer about 

changes between successive years during the period. To account for zero basal 

area measurements, we use, in the same vein as Finley et al. (2011), a two-

component mixture of a log-Gaussian functional regression model and a point 
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mass at zero, with the mixture weights determined by a probit functional 

regression. 

Our second key idea is to tweak this functional regression setting to 

accommodate an important biophysical constraint on the development of basal 

area; over two consecutive time intervals, a substantial decrease in live tree 

basal area is far more likely than a substantial increase. As explained later, this 

characteristic is not necessarily shared by the TC covariates, so the model needs 

to incorporate a correction factor. For this purpose, we introduce latent indicators 

that identify situations where such correction becomes necessary and 

encourages the model stochastically to adapt in the proper direction. A Markov 

chain Monte Carlo (MCMC) scheme is developed for this setting and, by use of 

likelihood-based and predictive diagnostics, we demonstrate the benefit of 

incorporating the constraint inside the hierarchy. 

Importantly, in our case, the stack of monthly TC feature imagery over the study 

period has many missing values both in space and time, due either to the failure 

of the scan line corrector or the presence of cloud cover. This issue does not 

arise in most other studies, since it is common practice to use either a single 

image with minimal cloud cover or a composite image constructed over a longer 

time period to fill in any gaps in the data record. Hence, before proceeding with 

the functional predictor regression mentioned above, first we have to fill in the 

missing parts of these images using a spatiotemporal regression. 

The rest of the article is organized as follows. Section 2 describes the study area 

as well as the datasets of satellite imagery and NFI field plots. A constrained 

functional regression framework is developed in Section 3, for predicting variation 

in basal area using the series of TC feature imagery as covariates. In Section 4, 

the models developed in preceding section are implemented in R (R Core 

Team, 2019) and we present outputs from the data analysis including results 
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from model comparison and validation. Finally, Section 5 discusses some 

important aspects of our work and outlines the scope of possible extensions. 

2 Data Description 

Our region of interest lies in the southeastern part of the Web-Enabled Landsat 

Data (WELD) tile H20V05 (Roy et al., 2010), located near Langlade, Shawano, 

and Menominee counties in north-central Wisconsin, USA. Figure 1 shows its 

position within the tile and the state in the left panel. The right panel shows a 

variety of land covers and uses, such as agricultural fields (orange pixels), 

deciduous (purple) and evergreen (green) forests, developed land (gray), as well 

as scattered water bodies (white) and wetlands (pink). The study area falls within 

the Laurentian Mixed Forest Province of the USDA Forest Service National 

Hierarchical Framework of Ecological Units (Cleland et al., 2007; McNab 

et al., 2007) with the town of Antigo located in the northwest. The province 

experiences a continental climate, with some maritime influence from nearby 

Great Lakes (Superior and Michigan). This leads to moderately long winters and 

warm summers, when most of the precipitation occurs. This landscape was 

shaped by past glaciation with a mix of boreal and broadleaf deciduous forests, 

lakes and wetlands, along with grasslands that have since been converted to 

agricultural fields. The eastern half of the study area is predominantly forested. 

On June 7, 2007, a tornado, with estimated winds of 225 to 255 kilometers per 

hour, touched down and followed a 65 kilometers long and 0.75 kilometer-wide 

northeasterly path through parts of Menominee, Langlade, and Oconto counties. 

The auxiliary data used in the study were dense Landsat time series images from 

the WELD project. WELD imagery are composites of high fidelity data, 

determined on a pixel-by-pixel basis, from all Landsat 7 ETM+ scenes collected 

over the compositing period. These composite images have been processed for 

the contiguous United States and Alaska over the decade of 2003-2012. The 

composite scenes have been ortho-rectified, transformed to top-of atmosphere 

reflectance and mosaicked into 5000 × 5000 pixel tiles at the native 30-meter 
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pixel resolution using the Albers Equal Area projection with origin at 23N and 

96W. Our study area, a part of tile H20V05, consists of 1600 × 1600 pixels. The 

WELD monthly composites for the entire decade of 2003-2012 from this area 

were used for the study. For each monthly composite, the reflectance values 

from ETM+ were transformed to the first three TC components: brightness (TC1), 

greenness (TC2) and wetness (TC3) (Huang et al., 2002). The monthly TC 

features were then compiled into individual stacks. To control the size of the 

dataset, we aggregated every 16 × 16 adjacent pixels into a single gridcell of 

area 23.04 hectares by taking the average of the pixels with available data. At 

this scale, our study area consists of 10, 000 gridcells, an area 230, 400 hectares 

in size, Easting between 532, 330 and 579, 750 meters, and Northing between 2, 

452, 240 and 2, 499, 760 meters. However, each TC component has a high 

frequency of missing values ( ~ 23%) with 100% missing data for six months 

(April 2004, June 2003, November 2011, and December in 2006, 2011 and 

2012), due either to completely missing records in the WELD archive or to pixels 

that were masked out because of the presence of clouds, snow, or artifacts of 

sensor failure. Figure 2 represents the temporal and spatial patterns of 

missingness, in panels (a) and (b), respectively. The latter exhibits a strong linear 

boundary, with larger values in the east and smaller values in the west, due to 

the flight track of the descending polar orbit of the Landsat satellites. Areas to the 

west of the image are in the zone of overlap (sidelap) between neighboring 

Landsat scenes, while areas to the east have no overlap. Therefore, there are 

fewer pixel observations in the eastern portion of the image, meaning that it is 

more likely that data will be missing. Hence, to make the imagery complete, we 

need to perform a model-based filling-in of missing TC observations. 

NFI data from the FIA program were collected on 146 field plots inside the study 

area during 2003-2012. An FIA field plot is a cluster of 4 circular sub-plots, each 

with a radius of 7.32 meters, with the centers of three sub-plots located 36.58 

meters from the center of a central sub-plot, with one sub-plot due north of the 

central sub-plot, and the other two arranged by equal angles of 120 degrees. All 
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trees on the sub-plot having a diameter of 12.7 cm or larger at 1.3716 meters 

above ground are measured. Additionally, each sub-plot contains a circular 

micro-plot with a radius of 2.07264 meters. All trees with a diameter between 

2.54 cm and 12.7 cm at 1.3716 meters above ground, which are defined as 

saplings, are measured on a micro-plot. For the purposes of this study, all trees 

measured on the micro-plot or sub-plot were used to compute the live tree basal 

area per hectare value for the plot. The plots are spatially distributed, each 

randomly located within a hexagonal tessellation of the landscape, with each 

hexagon being 2,400 hectares in size. In the case of Wisconsin, these hexagons 

were further subdivided in two, resulting in polygons 1,200 hectares in size. Each 

of these field plots was measured and then re-measured during that decade, 

spanning two 5-year FIA measurement cycles 2003-2007 and 2008-2012. 

Overall, in the dataset, positive live tree basal area measurements were recorded 

in 206 plots and a basal area measurement of zero was recorded in the 

remaining 86 plots indicating no basal area, according to FIA criterion, was found 

in those plots. These plot-level measurements were calculated by multiplying 

each condition’s plot proportion by its corresponding basal area per hectare 

value, then summing across all conditions. The basal area measurements and 

TC features are linked spatially by matching the geographic coordinates of the 

centers of the field plots with the gridcells. 

3 Model for FIA study 

Our objective is to use the TC feature imagery to predict the spatiotemporal 

variation in forest inventory measurements of live tree basal area during the 

decade. Live tree basal area is a nonnegative random variable; it takes positive 

values when live trees, large enough to meet the FIA’s diameter threshold, are 

present on forested land, and is zero otherwise. Similar to Finley et al. (2011), we 

propose a two-level hierarchical model, where the first level separates the 

occurrence of zeros and next level estimates the variation within nonzero 

measurements. 
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We begin with notations. The spatial domain of the study is denoted by  and is 

partitioned into disjoint areal units (or gridcells) 1 2, ,..., SW W W  such that the feature 

imagery are available at the resolution of these areal units. Let  be the 

temporal domain and ( )sX   represents the value of a feature variable at any 

gridcell Ws at time   . The dataset for each of these features consists of 

composite values over disjoint time intervals within , so we partition 
1

T

t

t

D


 . 

For the current application, TC features were reported monthly, so 
1 2, ,..., TD D D  

represent consecutive months spanning . Define ( )

t

st s

D

X X d


 


   as the 

summary feature over Ws during Dt. As Section 2 indicates, some of these Xst 

values are missing and how to fill in those missing values is discussed in 

Appendix A.1 in the supplementary materials. 

To link the TC feature values to basal area measurements at any gridcell, we 

construct a partition of  that has a coarser resolution than the partition 

{ : 1,2,..., }tD t T . This can be achieved by collapsing every d adjacent time 

intervals of the former partition in a single unit. The level of aggregation d is 

determined by the user. The data analysis in this article uses d = 12, implying 

annual aggregation. It is adequate to model basal area at that time scale since 

reporting on forest resources is typically done on an annual basis, if not longer, 

because uncertainty can exceed annual change estimates. Consequently, we 

can write 
1

yT

k

k

   where /yT T d  is the number of units in the coarsened 

partition 1 2{ , ,..., }
yT   . 

Let Bsk be the average basal area over time window Δk at gridcell Ws for 1 yk T   

and 1 s S  . For the convenience of model development, we introduce a pair 

(1) (2)( , )sk sky y  corresponding to Bsk. 
(1)

sky  is a latent continuous variable whose 

negative values corresponds to the absence of basal area, implying Bsk = 0. 

When (1)

sky  is positive, Bsk is positive and is equal to (2)exp( )sky . It is adequate to 
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propose models for ( ) , 1,2r

sky r  , as Bsk can be written as a deterministic function 

of the pair as follows: 

(1) (2)1( 0)exp ,( )sk sk skB y y   (3.1) 

where, for any event A, 1( )A  represents the binary indicator that becomes 1 only 

when A occurs. Below, in Section 3.1, we discuss modeling of (1)

sky  and (2)

sky  using 

functional regression. Section 3.2 discusses incorporation of a stochastic 

constraint in the model for (2)

sky  to better resemble how basal area can change 

temporally. Derivation of posterior distributions, estimation using MCMC and 

inference using posterior predictive distributions are described in Section 3.3. 

3.1 Functional Predictor Regression for Basal Area 

Functional predictor regression involves regression of a scalar response on a set 

of functional covariates. This framework, discussed in Morris (2015), is adopted 

below for modeling of ( )r

sky  for {1,2}r  . For simplicity of notation, we omit the 

superscript r for now and reintroduce it when necessary. Hence, ysk is the 

continuous response at gridcell Ws at time window Δk that we want to model 

using the functional auxiliary data { ( ) : }s kX     of the TC features over the 

same time window. The functional regression model can be written as: 

0 ( ) ( ) ,

k

sk s sky X d


    


    (3.2) 

where 0  is the intercept and ( )   is the functional regression coefficient. The 

error term ϵsk has a zero-mean normal distribution, is uncorrelated in space and 

time, and, accounts for two sources of noise: (i) the pure error of the functional 

regression and (ii) the approximation error due to using the FIA measurement 

from a given month of a year as representative of the average value for that 

entire year. 
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Since each Δk consists of d adjacent units from { : 1,2,..., }tD t T , we can replace 

the indexing variable t for the finer partition with a unique pair (k, l) such that 

1

d

k kl

l

D


  . As an example, if d = 12, for any month Dt in the finer partition, k 

represents the year it belongs to and l represents position of that month within 

that year. With this notation, we can rewrite (3.2) as: 

0

1

( ) ( ) .

kl

d

sk s sk

l D

y X d


    
 

     

Now, we let ( ) l    if klD  . This amounts to two assumptions. First, the 

coefficients do not change within a single unit of the finer partition Dkl. This is 

reasonable as X-data are available at that resolution only. Second, the 

coefficients vary only based on l, the position of Dkl within Δk, and are 

independent of k. This is equivalent to assuming that the functional linear model 

does not have dynamic coefficients. If d is chosen as 12, these two assumptions 

together imply that coefficients are constant within a month and have an annual 

periodicity, i.e., the weight of TC features from a specific month, in predicting the 

average basal area for that year, does not change from one year to the next. 

Consequently, we can simplify the model for ysk as: 

0 0

1 1

( ) ,

kl

d d

sk l s sk skl l sk

l lD

y X d X


     
 

        (3.3) 

where Xskl corresponds to the definition of Xst with t replaced by the equivalent (k, 

l) pair as mentioned above. 

Since we want to use all TC covariates in the model for ysk, we extend (3.3) as 

3
( ) ( )

0

1 1

.
d

TC TC

sk skl l sk

TC l

y X 
 

    (3.4) 

Using matrix notation, we can simplify the expression in the right hand side of 

(3.4) as T

skX   where skX  and β are two column vectors that concatenate Xskl 
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values and βl parameters, respectively, for all TC covariates and for 1,2,...,l d . 

Now, we apply (3.4) separately to ( )r

sky  for {1,2}r   to hierarchically extend (3.1) 

as: 

(1) (2) ( ) ( ) ( ) ( )

0

(1) (2) 2

1( 0)exp , , 1,2,

~ (0,1), ~ (0, ),

( ) r r T r r

sk sk sk sk sk sk

sk sk

B y y y X r 



     
 (3.5) 

where the variance of (1)

sk
 is fixed at 1 for identifiability and  stands for 

univariate normal distribution. It is easy to see that marginalizing ( )r

sky  for r = 1, 2 

would result in a two-component mixture model for Bsk with the components 

being a point mass at zero and a lognormal regression; their weights are 

determined by a probit model. To handle the sparse data size relative to number 

of covariates in (3.5), we use a shrinkage prior for covariate effects, the 

horseshoe (HS) prior from Carvalho et al. (2009). The advantages of this prior 

are that it has (i) a heavy tail suitable to retain significant covariate effects and (ii) 

a spike to infinity at the origin that shrinks the insignificant covariate effects. 

Since we assign this prior separately on β coefficients of (1)

sky  and (2)

sky  models, for 

notational simplicity, we again omit superscript r in the description of the prior 

and reintroduce it in the discussion of posterior distributions. The usual 

hierarchical specification of the HS prior is as follows: if βj is the effect of j-th 

component of Xsk, then 

2 2~ (0, ); ~ (0,1); ~ (0,1) for 1,2,..., ,j j j j p        

where   denotes the standard Cauchy distribution truncated to  , λj is called 

the local shrinkage parameter (specific to βj), ζ is called the global shrinkage 

parameter (common to all components of β) and p is the number of entries in Xsk. 

For conjugacy of posterior distributions, we set the prior distributions as 

0 0

2 2

0 0 0~ ( , ), ~ IG( , )a b     , with fixed values of hyperparameters, where IG 

denotes the Inverse-Gamma distribution. 

3.2 Incorporating a Biophysical Constraint on Temporal Change 
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Live tree basal area is related to the presence of tree cover. A forested 

landscape would be expected to accrue live tree basal area slowly, over a period 

of many years, without any sudden increases. This landscape might similarly 

experience a slow decrease in basal area as trees age, become unproductive, 

and die. However, a rapid decrease is also possible due to harvest, storm 

damage or other agents of forest change. Hence, in our setting, (2)

sky  can abruptly 

decrease from one time window to the next in a gridcell, but the opposite is far 

more unlikely. 

Variation in the time series of satellite imagery, on the other hand, would be 

subject to a different set of constraints. Fluctuations in seasonal weather patterns 

would be expected to result in greater variability in both TC brightness and 

wetness due to snow and rain. TC greenness is highly correlated with tree 

foliage, not directly with the basal area of the stem, which is expected to be more 

variable both seasonally and annually. Since the models in the current study are 

dynamic, constraints must be placed on how these models transition from one 

time step to the next in order to follow known biophysical patterns. Hence, we are 

proposing to rectify the model for (2)

sky  in (3.5) such that it discourages sudden 

increase in the mean response at any gridcell compared to the previous year. 

However, no such adjustment is deemed necessary in the model for (1)

sky , binary 

indicator for presence/absence of basal area, because a sudden year-over-year 

change from zero to non-zero is possible when trees meet the FIA’s diameter 

threshold for measuring basal area. 

Below, we present the modified equation for (2)

sky  along with a discussion of how it 

achieves the above-mentioned purpose: 

(2) 2

(2) (2)

0 ( 1)

(2) (2)

1 ( 1) 0

~ ( , ),1 ,1 ,

( ) (1 ) ,

1, ~ Ber ( ) , 2 ,( )

sk sk y

T

sk sk sk sk s k

T

s sk s k sk y

y s S k T

z X z

z z X k T

 

   

  





   

   
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where   and Ber denote the standard normal cumulative distribution function 

and the Bernoulli probability distribution, respectively. At the initial time window 

1 , the mean response depends solely on the TC imagery from the same 

window as no information is available from past. For the second time window 

onwards, we introduce a binary parameter zsk to select from two different choices 

for the mean structure: one evaluated only from the explanatory variables at the 

current time window and the other being the mean response from the previous 

time window. Moreover, the probability of selecting an option increases as it gets 

smaller compared to the other choice and vice-versa. Hence, if the covariates 

suggest a large increase in μsk relative to the preceding interval, zsk = 1 becomes 

unlikely implying μsk stays at 
( 1)s k 

. On the other hand, if the covariates suggest 

a decrease or a small increase, that is relatively more likely to be accepted. 

Thus, (1 )skz  acts as a stochastic inhibitor of a sudden increase in the (2)

sky . The 

unconstrained specification of (3.5) can be viewed as a special case of (3.6) with 

zsk = 1 for 1 yk T  . 

3.3 Posterior Estimation and Inference 

Using the observed Bsk values, we first draw the model parameters a posteriori 

and then sample from the posterior predictive distributions for unobserved Bsk 

values. The MCMC steps for unconstrained regression model of (3.5) is 

discussed first. Subsequently, we present a detailed derivation of the posterior 

distributions from the constrained model of (3.6). 

3.3.1 Unconstrained Model 

The posterior distributions for 
0 ,{ : 1,2,..., }j j p    and 2  are standard, due to 

conjugacy of their prior distributions. For the hyperparameters within the HS 

prior, we use the data augmentation technique of Makalic and Schmidt (2016) to 

rewrite them as follows: 

2 2| ~ IG(0.5,1/ ), ~ IG(0.5,1), | ~ IG(0.5,1/ ), ~ IG(0.5,1), 1,2,..., .j j j j j p          
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Inverse-Gamma being a conjugate prior for variance parameters, sampling the 

posterior distributions becomes standard. The form of the posterior distributions 

are mentioned in Appendix A.2 in the supplementary materials. 

3.3.2 Constrained Model 

We expand the expression for μsk in (3.6) as follows: 

(2) (2)

0 ( 1)

(2) (2) (2) (2)

0 ( 1) 0 ( 1) ( 1) ( 2)

(2) (2) (2) (2)

0 0

11 1
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T T
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z z X G X

   

    

   



   

  

   

       

      

 (3.7) 

where 

1

(1 ) , 1 ,[ ]
k

skj si sj

i j

G z z j k
 

     (3.8) 

with the convention that the empty product 
1

(1 ) 1
k

si

i k

z
 

  . As zsk can be either 0 

or 1, Gskj is also binary. Below, we prove that 

Result 1. For fixed s and k, exactly one member of the binary sequence 1{ }k

skj jG   

is 1. 

Proof. We can rewrite, 

1
(1 max )  for 1,2, , ( 1),

 for .

si sj
j i k

skj

sk

z z j k
G

z j k

  
   

 


 

Suppose max{ : 1}sjj j z  . ( j  exists since 1 1sz  .) Now, the possible cases 

are: 

 For j j , Gskj = 0 because Gskj is a multiple of zsj. 
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 For j j , Gskj = 0 because 
1

max 1si
j i k

z
  

 . 

 For j j , Gskj = 1 because if , 1skj k z   and if 
1

, max 0si
j i k

j k z
  

  . 

□ 

Therefore, (3.7) can be rewritten as: 

(2) (2)

0 , argmax{ } .
skj

j k

T

sk s GX  


   (3.9) 

Now, we discuss the posterior sampling of zs. Let 
1 2( , , , )

y

T

s s s sTz z z z   with 
1 1sz   

for 1 s S  . Accounting for two possible states for each of the remaining ( 1)yT   

binary zsk variables, the vector zs can be any one of the 
1

2 yT 
 combinations. For 

the current dataset, Ty = 10 implies 512 possible binary sequences. Suppose sz  

denotes one such candidate combination for zs. Given s sz z , we use (3.8) and 

(3.9) to construct the candidate mean response 
1 2( , , , )

y

T

s s s sT     . Let us 

define { :  such that 0}sks k B   , the subset of indices corresponding to areal 

units with at least one nonzero basal area observation. It follows that we can 

update zs for s  using a multinomial distribution with the probability given by 

1(2) 2

{ : 0} 2

( ) ( | , ) (1 ) ,[ ] [ ]
y

sk sk

sk

T

z z

s s sk sk sk sk

k B k

P z z y p p   

 

      

where (2) (2)

( 1) 0( )T

sk s k skp X       and   denotes the normal density function. 

Once we update zs, we can also update arg max{ }skj
j k

G


 for 1 yk T  . Readily, (2)

0  

and 2  can be updated from standard distributions similarly as in the 

unconstrained setting of Section 3.3.1. However, the updating step for (2)  is 

unlike the usual regression since (2)  appears in two places within the hierarchy: 

(i) in the expression of μsk and (ii) in the probit regression of zsk for 2 yk T  . 

Using the data augmentation approach of Albert and Chib (1993) for zsk, 
(2)  can 

also be simulated from a multivariate Gaussian distribution. The simulation of 

hyperparameters of the HS prior follows exactly as in Section 3.3.1. Further 
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details of posterior distributions are included in Appendix A.3 in the 

supplementary materials. 

For s , zs vector is sampled during each MCMC iteration that we use in (3.9) 

to determine μsk and subsequently generate missing (2)

sky  measurements from 

their posterior predictive distribution. On the other hand, for s , zsk does not 

appear in the likelihood for any k, so we follow the structure of (3.6) to 

sequentially generate (2) (2) (2)

1 2, ,...,
ys s sTy y y  using the parameter values from the current 

MCMC draw. Additionally, using the parameter draws from the unconstrained 

functional regression for (1)

sky , we generate binary indicators for nonzero status of 

Bsk. Posterior samples of Bsk values at unobserved (s, k) combinations are set 

either at 0 or an exponential of corresponding samples of (2)

sky  depending on the 

indicators being 0 or 1, respectively. 

4 Analysis of Basal Area Data 

We begin our analysis by filling in the missing parts of TC imagery in Section 4.1. 

These complete images are then used as functional covariates for predicting 

basal area. In Section 4.2, we do likelihood-based as well as cross validation 

analyses to explore whether use of the constrained approach from Section 3.2 

leads to improved predictive performance. In Section 4.3, we compare the 

proposed method against some of the commonly used nonparametric 

approaches from FIA literature. Finally, in Section 4.4, we present maps related 

to spatiotemporal prediction of basal area from the proposed model. 

4.1 Filling in Missing Landsat Imagery 

We model TC features in logarithmic scale. In the original dataset, TC1 has 

strictly positive values whereas both TC2 and TC3 can be positive as well as 

negative. Prior to applying the logarithmic transformation, we first translate and 

rescale the measurements of TC2 and TC3 to the same range as that of TC1. 

Hence, in case of brightness, Xst in Section 3 represents natural logarithm of 
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original values and, for greenness and wetness, it represents logarithm of linear 

transformations of original values. Some more technical material pertaining to 

model selection for Xst has been collected in the Appendix in the supplementary 

materials. Specifically, the interested reader will find mention of different 

candidate models for Xst in Appendix A.1.1; the details about the MCMC sampler 

in Appendix A.1.2; the graphical and numerical summaries used for model 

comparison and selection in Appendix A.1.3. Once we identify the best 

performing model, we use that to fill in the missing TC values. For every such 

missing value, we plug-in the empirical median of the corresponding posterior 

predictive distribution and measure the uncertainty of prediction by empirical 

width of the corresponding 90% highest posterior density (HPD) interval. In 

Figure 3, we present 10-year averaged monthly maps of the complete TC 

imagery in the original scale of these measurements. 

Both the spatial and monthly variation seen in the panels of Figure 3 can be 

explained by differences in land cover across the study area, as well as 

seasonality in vegetation and weather. TC1 is related to overall surface albedo. 

Snow-covered fields have larger albedo values than forests. This pattern is most 

obvious for the TC1 panels during the winter months, with the western portion of 

the image being brighter than the eastern portion. The contrast in brightness 

between forests and agricultural fields is much smaller during the summer 

months, in the absence of snow. TC2 is related the amount of photosynthetically 

active vegetation on the land surface. During the winter months, agricultural 

fields have been previously harvested and are dormant. Similarly, deciduous 

trees have shed their leaves, while evergreen trees retain their needles. During 

the spring, fields are planted and crops begin to grow and deciduous trees leaf-

out. Conversely in autumn, crops are harvested and deciduous trees begin to 

drop their leaves. These patterns are visible in the TC2 panels, with an overall 

increase in greenness during the spring and summer months. Also, the larger 

greenness values of evergreen trees stand out in the southeast potion of the 

image during the winter months. Finally, TC3 is related to soil moisture, as well 
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as the presence of water and snow. As with brightness, wetness values are 

larger during the winter months. However, TC3 shows less contrast between 

forests and agricultural fields during the growing season for the study area, 

approximately April through October. Overall, these diagrams indicate that it is 

certainly possible for different land cover types to exhibit nearly identical values 

of TC brightness, greenness, or wetness at a specific month of an year, such as 

an agricultural field might be mistaken for a young stand of trees at the peak of 

the growing season. That reinforces the proposed approach in Section 3.1 for 

considering the TC features as functional covariates because if we consider the 

series of monthly TC values over an year, it is much less likely that two different 

land covers have nearly identical series of those values over the course of an 

entire year. For example, late in the autumn, the harvested agricultural field 

devoid of green vegetation will have a much different TC profile than a young 

stand of evergreen trees, or even a young stand of deciduous trees that exhibit a 

different rate of change in TC metrics across months. 

It is also of interest to explore how percentages of missing data in a month 

influence predictive uncertainty of TC values at those missing locations. Figure 4 

shows bar plots of the predictive uncertainty for all TC features. Here, we 

distribute the months in seven different groups (as shown in the diagram) based 

on the missing proportion of monthly TC data and then compute the average of 

90% HPD interval width over missing cells across all months within each group. 

Figure 4 indicates that, as expected, for all TC variables the uncertainty goes up 

with the increase in the percentage of monthly missing data and, cells with no 

available data in a month exhibit the highest uncertainty. Moreover, among these 

features, TC1 shows relatively larger predictive uncertainty than the rest. This is 

due to the fact that, in the transformed scale, the TC1 values are more evenly 

distributed across the range than TC2 and TC3 values, which are mostly 

concentrated within the upper half of the range. It should also be noted that this 

comparison of predictive uncertainty was carried out using the log-transformed 
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TC values (the scale they were modeled at) instead of the original TC values. 

This was necessary because an exponential transformation, to take them back to 

the original scale, would make the uncertainty dependent on the mean, 

confounding the effect of extent of missingness with high and low values of these 

features. 

4.2 Comparison of Constrained and Unconstrained Models 

We start with a comparative evaluation of the two models for (2)

sky  with and 

without the constraint. The comparison is based on the 206 available nonzero 

basal area measurements. The MCMC is run for 60,000 iterations, discarding the 

first 10,000 iterations and thinning the rest at every 10th draw. Predictive 

performance under each model is examined using two different criteria. First, we 

calculate log likelihood and Bayesian predictive information criterion (BPIC, 

Ando, 2007; Li et al., 2017). The model with the lowest BPIC is considered to be 

the best. Additionally, cross-validation is performed using the holdout method by 

repeatedly splitting the data into training sets and test sets, training the model on 

the former, and evaluating the predictive accuracy of the model on the latter. 

Every time we move 10 randomly chosen nonzero basal area observations to the 

test set and repeat the procedure 36 times such that all available observations 

are considered in the test set at least once and at most twice. We use three 

measures for assessment: (i) absolute bias, computed as the difference between 

the hidden test observations and their corresponding posterior medians; (ii) 

uncertainty, measured as the width of 90% highest posterior density (HPD) 

interval and (iii) empirical coverage, calculated as the proportion of test 

observations that are within the corresponding 90% HPD interval. These 

measures are averaged across replications. The model that attains the desired 

coverage level with minimum bias and uncertainty is deemed to be the best. The 

summary output is presented in Table 1 below. 

Both the likelihood-based criterion as well as cross validation show significant 

gains in the predictive performance for the constrained model over the 
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unconstrained model. The former has a remarkably lower BPIC than the latter. 

Figure 5 represents posterior median likelihood values for each available (2)

sky  

observation using both unconstrained and constrained models. It should be 

noted that, for the convenience of visualizing their difference, the observations 

are ordered according to increasing likelihood estimates from the unconstrained 

model. The figure clearly indicates an increase in likelihood for most observations 

following incorporation of the constraint. Furthermore, although the mean 

predictive uncertainty is lower in the unconstrained model (due to absence of the 

spatiotemporal sequence of indicator variables zsk), only about 83%  data lie 

inside the respective 90% HPD intervals. In contrast, the constrained model 

attains the desirable coverage with similar absolute bias, implying wider 

predictive intervals have actually been beneficial in this case. 

Since the comparison measures show the constrained model as the superior one 

for modeling (2)

sky , we use it inside the hierarchical framework of (3.5). We also 

investigate the predictive accuracy of the model for (1)

sky  in identifying the zero 

and nonzero values of Bsk by computing area under the ROC curve (AUROC). 

We do this by running a cross-validation with a test set of 15 observations 

randomly chosen from all (zero and nonzero) basal area observations and 

replicating the procedure 36 times such that all available observations are 

considered in the test set at least once and at most twice. The AUROC turns out 

to be 0.868 indicating satisfactory detection accuracy of zero and non-zero basal 

area plots. We utilize the above-mentioned test sets to simultaneously perform a 

predictive assessment for the combined hierarchical model for Bsk, consisting of 

unconstrained and constrained functional regression equations for (1)

sky  and (2)

sky , 

respectively. The predictive performance for the combined model is reported 

using three previously defined measures, averaged across replications: an 

empirical coverage rate of 93% for the 90% credible interval along with an 

average absolute bias of 27.787 /m ha  and average uncertainty of 237.104 /m ha . 

Note that these numbers correspond to validation analysis of the combined 

hierarchical model for all zero and nonzero Bsk measurements whereas the 
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numbers shown in Table 1 corresponds to the model for (2)

sky  applied on the 

subset of nonzero measurements only. 

4.3 Comparison against Existing Nonparametric Approaches 

In the literature, there exist several non-parametric approaches that have been 

used for predictive mapping of forest attributes. These include random forests 

(Baccini et al., 2008), stochastic gradient boosting (Moisen et al., 2006), artificial 

neural network (Foody et al., 2003), generalized additive models (Frescino 

et al., 2001), nearest neighbors algorithm (Eskelson et al., 2009) and support 

vector regression (Chen and Hay, 2011). Recently, convolutional neural 

networks, a deep learning method, have been used with high resolution imagery 

for forest classification and prediction of continuous forest variables (Chang 

et al., 2019). Shataee et al. (2012) gives a detailed comparison between some of 

these approaches in imputing several forest attributes such as tree volume, basal 

area, and number of stems using thermal and reflective bands of multispectral 

imagery. Moisen et al. (2006) also present a comparative analysis for predictive 

mapping of basal area. 

Below, we evaluate the proposed model’s predictive performance relative to 

three competing approaches: support vector machine (SVM), stochastic gradient 

boosting (SGB) and generalized additive model (GAM), implemented in R using 

e1071 (Meyer et al., 2019), gbm (Greenwell et al., 2019) and gam (Hastie, 2019) 

packages, respectively. In all of these methods, first the data on nonzero vs zero 

basal area are modeled using a binary regression and then, the data on 

logarithm of nonzero basal area measurements are fitted using a continuous 

regression. In GAM, the predictors are included in the model after smoothing with 

default parameters. While implementing these algorithms from above-mentioned 

packages, we retained their default settings as much as possible, see the files 

Nonparametric_Models_for_y1_cv.R and Nonparametric_Models_for_y2_cv.R in 

the supplementary materials for details. 
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To compare these models using cross validation, we generated the test sets 

exactly as mentioned in Section 4.2. For classification of zero and nonzero test 

observations, we computed AUROC using probabilities predicted under each 

model. For nonzero basal area measurements, we compared the test response 

values against their point predictions. For SVM, SGB and GAM, these predicted 

values were obtained using functions from above-mentioned packages. For the 

proposed Bayesian approach, empirical medians from respective posterior 

predictive distributions were used as predicted response values. We used them 

to calculate (i) relative mean square prediction error (relative MSPE), measured 

as the ratio of MSPE (average of squared differences between true and predicted 

basal area values) obtained using the model and MSPE obtained by naively 

using the mean of training data for prediction, and (ii) correlation coefficient 

between test responses and their predicted values. A smaller relative MSPE 

value (less than one) and a larger positive correlation coefficient are indicative of 

a better model fit. Table 2 displays those statistics, computed using true and 

predicted response values pooled from 36 replications of test set. 

Table 2 shows that, across all criteria, the proposed model uniformly provides the 

highest predictive accuracy. SVM achieves the second best accuracy followed by 

SGB, and GAM is vastly outperformed in all cases. Moreover, none of these 

competing algorithms can easily be amended if one wants to incorporate the 

constraint on temporal change of basal area from Section 3.2. An added benefit 

of the proposed approach is that, for every point prediction, its reliability can 

readily be estimated using posterior predictive uncertainty, to be presented in the 

following section. 

4.4 Posterior Predictive Analyses of Basal Area 

Now that we have completed a detailed validation and comparison analyses for 

the proposed model, we move to the spatiotemporal prediction of basal area. As 

mentioned in the end of Section 3.3.2, we collect posterior samples of Bsk values 

for all location-year combinations barring the ones with available basal area 
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values. For the latter, we retained the original measurements. Figure 6 shows 

gridcell-wise posterior median of yearly average basal area values across the 

study area. The spatial and temporal patterns observed therein correspond well 

to known land cover and disturbances. The linear boundaries of Menominee 

County are quite visible in the southeastern portion of the image. This heavily 

forested county, with corresponding large basal area values throughout the 

years, is the least populous in Wisconsin and corresponds to the extent of the 

Menominee Indian Reservation. The land and forest management practices of 

the Menominee Tribe differ dramatically from those of neighboring communities. 

There are large tracks of undisturbed forest, with few and relatively small 

harvested areas. As mentioned before, the dynamic pattern of the model 

predictions along the tornado trajectory is of particular interest. The time series of 

basal area maps depicts a relatively stable landscape up to 2006. Since the 

tornado occurred around the middle of 2007, the yearly average basal area panel 

for 2007 shows its path with a lighter shade, reflecting an average of the dense 

forest and near-complete removal of live tree basal area before and after the 

event, respectively. The panels for 2008 to 2012 exhibit a period of gradual 

recovery along the tornado swath. We note that, at the chosen scale of 

aggregation (16 × 16 pixels), the exact tornado path is less than 2 gridcells wide, 

on an average, with a significant fraction of the swath partially encompassing the 

pixels along its edges. 

Also of interest is the reliability of model prediction, quantified using the posterior 

uncertainty, the width of the 90% HPD interval. We present 10-year averaged 

uncertainty maps using absolute and relative scales in panels (a) and (b), 

respectively, in Figure 7. For the 146 gridcells that have two recorded basal area 

measurements each, uncertainty averages were calculated based on the 

posterior predictions for the remaining eight years. The relative uncertainty is 

computed using the ratio of uncertainty to the median basal area. Since very 

small values of median basal area will lead to overly inflated values of relative 

uncertainty, we mitigate the inflation using a linear approximation of the ratio only 
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for observations below a threshold of 0.001-th quantile of the nonzero median 

basal area values. Panel (a) clearly shows heteroscedasticity in the uncertainty 

of the model predictions, with higher uncertainty associated with the dense 

forests of the Menominee Indian Reservation. This is a characteristic of the log-

Gaussian distribution whose uncertainty increases proportionally with median. 

That is why, in relative terms in panel (b), the uncertainty appears to be 

essentially constant across those forested areas. The greatest relative 

uncertainty is associated with the town of Antigo, near the left edge of the figure, 

about two-thirds of the way from the bottom to top edge. This uncertainty is likely 

due to the pattern of tightly interspersed streets, lawns, and trees associated with 

urban and suburban settlements, which is exaggerated by the scale of 

aggregation (16 × 16 pixels), with resulting cells being predominately mixed due 

to the relatively smaller size of features in these land uses. 

Now, we focus on exploring between-year variation in the posterior estimates of 

yearly average basal area during 2003-2012. Figure 8(a) depicts the change (can 

be positive or negative) in five-year average basal area during the re-

measurement period of 2008-2012 relative to the its value during initial 

measurement period of 2003-2007. The impact of the tornado is readily apparent 

in the image, with the initially large basal area values being reduced to zero 

directly along the tornado’s path. The image also suggests a smaller reduction in 

basal area near the path, possibly due to damage from high winds. There are 

also some smaller areas to the southeast of the path that correspond with known 

harvest activity or regrowth from previous harvests, during the re-measurement 

period, that appear as brown/yellow and blue/green pixels, respectively. 

Standard deviation of 10 yearly average basal area values from each gridcell is 

plotted in Figure 8(b). As expected, the largest between-year variability is 

observed along the tornado trajectory that experiences near-complete removal of 

the live tree basal area around the middle of the study period and gradual 

regeneration in the following years. This variability is also due to the presence of 

gridcells along the edge of the tornado swath with mixed land covers. Agricultural 

Acc
ep

te
d 

M
an

us
cr

ipt



fields around the town of Antigo mostly show no year-to-year variation, due to 

near-complete absence of any live tree basal area at those gridcells, as 

corroborated by Figure 6. 

5 Conclusion 

We have developed a hierarchical approach for utilizing time series of satellite 

imagery for dynamic prediction of live tree basal area. Through use of functional 

predictor regression, we have established that the seasonal variation in these 

measurements provides significant information about live tree basal area 

distribution and can be used to complement the relatively sparse (in space and 

time) data collected from FIA plots. This represents a significant addition to the 

FIA modeling literature that has so far mostly considered remote sensing 

measurements for a single point in time or summarized as a composite image 

over a period of time. Augmenting one more level in the hierarchy, we adjust the 

regression equation to address the biased nature of temporal variation in basal 

area. The model fit is shown to improve significantly after this modification. It 

should be noted that, unlike the model for TC features, we did not use spatial 

and/or temporal random effects in the regression equation for basal area. That is 

due to the scarcity of available basal area measurements. At any given year, we 

have measurements for around 0.3% of the gridcells, that are significantly distant 

from each other (due to sampling design) across the study area. Temporally, for 

any gridcell, we have data for at most two of the ten years, separated by a period 

of around five years (the time difference between measurement and re-

measurement in the same plot). In case of datasets that are significantly denser 

across spatial and temporal scales, inclusion of spatial as well as temporal 

random effects and associated gain in model fit can be explored. 

The hierarchical structure developed for TC features (Appendix A.1 in the 

supplementary materials) as well as for basal area (Section 3) can be 

generalized to any region of interest with any spatial or temporal scale, even if 

different from ours. For example, if one wants to summarize the TC features 
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seasonally or model the variation in basal area distribution at a multi-year scale 

instead of a year-to-year basis, that can easily be accommodated in the present 

setting. The work of Wilson et al. (2012), using only a vegetation index from 

Moderate Resolution Imaging Spectroradiometer sensor, efficiently modeled 

forest conditions across a range of climatic and topographic conditions, as well 

as forest types. Given that the Landsat ETM+ sensor was used in the current 

study, we have not only a similar measure of the seasonality of growing 

vegetation (i.e. TC2 greenness), but also seasonal information related to surface 

albedo (TC1 brightness) and ground moisture (TC3 wetness). All of these TC 

components would be sensitive to the presence of trees, regardless of their 

environment. 

It should be noted that the annual average basal area maps, presented in Figure 

6, are based entirely on prediction from TC features, without using any 

information on regional distribution of forested and non-forest land. There is a 

fundamental limitation in determining forest land use (i.e., FIA plots with 

conditions defined as forest, where basal area measurements were taken) using 

remote sensing imagery alone, which reflects land cover. However, if one is 

interested in basal area prediction over forested land only, this can be obtained 

by limiting our posterior predictive analysis to gridcells on forested land, provided 

a binary forest land-use map is already available for the entire region. 

There are certain practical sources of bias in this analysis that need to be 

discussed. As trees mature, the greenness is expected to increase. However, 

forests with closed canopy, after a certain level of growth, do not look very 

different from above even as they keep maturing, potentially causing the 

greenness to change minimally. We argue that the proposed model is robust to 

this source of bias since it allows each month’s greenness to have its own effect 

parameter on the yearly average basal area. As the growth and maturity of 

forests are linked to the time of the year, these effect parameters can also 

change accordingly. Another source of bias arises from the fact that FIA reports 
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basal area from trees meeting a certain diameter threshold on forested land. As 

discussed in Section 2, the threshold varies between the sub-plots and the micro-

plots within them, the latter being more accurate with a lower diameter threshold 

covering the saplings. Consequently, basal area from the young trees below that 

threshold or from trees outside the FIA’s definition of forested land, if any, is not 

taken into consideration. Hence, in the data, (i) any plot with a reported basal 

area value of zero can potentially have some basal area from unaccounted trees 

and, (ii) a nonzero basal area measurement recorded in any plot may be lower 

than its actual value, due to presence of such unaccounted trees. Since TC 

values should be correlated with the basal area seen in a cell by the ETM+ 

sensor, inference based on this data can potentially underestimate the probability 

to have a nonzero basal area and the amount of basal area present, in a gridcell. 

Notably, in some instances, bias may also occur in the opposite direction when 

young trees get overtopped by the canopies of larger trees and are not detected 

by the ETM+ sensor. Furthermore, in this analysis, we ignore the uncertainty of 

the GPS measurement of the location of the FIA field plot as well as any 

georeferencing errors in the satellite imagery. As common with most of the 

existing literature on FIA modeling, we assume that these sources of error have 

negligible influence on the final inference. Accounting for them in the model 

requires making additional assumptions or using external information, and there 

exists scope of further research in this direction. 

Now that we have established the feasibility of the proposed approach based on 

the association between basal area and TC features, its natural extension would 

be to scale up the analysis to the entire H20V05 WELD tile, about ten times as 

large as our study area. This will necessitate focussing on the computational 

aspects of the model. More specifically, the best candidate Model to fill in the 

missing values in the TC feature imagery involves spatiotemporal random 

effects, and, based on its runtime reported in Table A.1.1 of Appendix A.1.3 in 

the supplementary materials for the current study area, use of low-rank 

approximations need to be explored to control its computational cost in case of 
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the entire tile. Finally, in addition to the TC features, auxiliary data on other 

factors that determine site productivity for trees, such as climate, landscape 

position and soil characteristics (Wilson et al., 2012) can be utilized within this 

functional covariate setting to search for the most efficient and comprehensive 

predictive model for forest inventory. 

Supplementary Materials 

Appendix: Additional details on modeling and data analysis (.pdf file). 

Codes: All R Codes (along with instructions) to run the models from this article 

and the appendices to generate included tables and figures (.zip file). 

Data: The TC dataset (.Rdata file) can be downloaded from the link included in 

the ACC form. The actual basal area dataset cannot be shared due to the USDA 

Forest Service policy on data confidentiality. So, a simulated dataset of 

hypothetical basal area measurements (.csv file) is provided along with the code 

used to generate it. 
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Fig. 1 (left) In the map of Wisconsin, the study area (the smaller square) is 

shown in the southeastern part of the WELD tile H20V05 (the larger square). 

(right) Spatial variability of the land cover within the study area. 
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Fig. 2 Proportion of missing TC observations within the study area during 2003-

2012: (a) temporally, for each month and (b) spatially, for each gridcell 
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Fig. 3 Monthly Map of 10-year average TC features after filling in the missing 

values: (top left) TC1 Brightness, (top right) TC2 Greenness and (bottom) TC3 

Wetness 
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Fig. 4 Averaged predictive uncertainty (90% HPD interval width) of missing TC 

values grouped by monthly percentage of missing data, in log-transformed scale 
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Fig. 5 Observation-wise posterior median likelihood for (2)y  with and w/o 

constraint 
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Fig. 6 Posterior median of yearly average live tree basal area during 2003-2012 

(in 2 /m ha ). Panels are to be read year-wise left to right in the top row, then right 

to left in the bottom row. 
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Fig. 7 Maps of posterior uncertainty in absolute and relative scales: 10-year 

averaged (a) 90% HPD interval width (in 2 /m ha ) and (b) ratio of 90% HPD 

interval width and median for yearly average live tree basal area. 
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Fig. 8 Maps of yearly variations (in 2 /m ha ) in posterior estimates: (a) Change 

in estimated live tree basal area averaged over 2008-2012 compared to its 

average from the period 2003-2007 and (b) Standard deviation of yearly average 

live tree basal area estimates. 
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Table 1 Influence of the constraint on the model for (2)y  

Comparison Statistic  Unconstrained model Constrained model 

Likelihood-based Model Comparison  

LL †  BPIC  –3.969 38.304  39.093 –107.254  

   

Cross Validation  

Absolute Bias ††  8.620  8.389  

   

Uncertainty ††   31.529  45.184  

Empirical Coverage  0.828  0.917  

†  LL refers to posterior median of log-likelihood; 

††  bias and uncertainty are measured in 2 /m ha . 
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Table 2 Model comparison against nonparametric methods 

Criterion  Proposed Model SVM SGB GAM 

AUROC  0.868  0.854 0.845 0.796 

Relative MSPE 0.794  0.812 0.894 1.679 

Correlation  0.497  0.435 0.410 0.306 
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