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Abstract

Background: The double sampling method known as “big BAF sampling” has been advocated as a way to reduce
sampling effort while still maintaining a reasonably precise estimate of volume. A well-known method for variance
determination, Bruce’s method, is customarily used because the volume estimator takes the form of a product of
random variables. However, the genesis of Bruce’s method is not known to most foresters who use the method in
practice.

Methods: We establish that the Taylor series approximation known as the Delta method provides a plausible
explanation for the origins of Bruce’s method. Simulations were conducted on two different tree populations to
ascertain the similarities of the Delta method to the exact variance of a product. Additionally, two alternative
estimators for the variance of individual tree volume-basal area ratios, which are part of the estimation process, were
compared within the overall variance estimation procedure.

Results: The simulation results demonstrate that Bruce’s method provides a robust method for estimating the
variance of inventories conducted with the big BAF method. The simulations also demonstrate that the variance of
the mean volume-basal area ratios can be computed using either the usual sample variance of the mean or the ratio
variance estimators with equal accuracy, which had not been shown previously for Big BAF sampling.

Conclusions: A plausible explanation for the origins of Bruce’s method has been set forth both historically and
mathematically in the Delta Method. In most settings, there is evidently no practical difference between applying the
exact variance of a product or the Delta method—either can be used. A caution is articulated concerning the
aggregation of tree-wise attributes into point-wise summaries in order to test the correlation between the two as a
possible indicator of the need for further covariance augmentation.

Keywords: Bitterlich sampling, Delta method, Double sampling, Forest inventory, Horizontal point sampling,
Variance of a product

Background
Introduction
Double sampling is a method employed in forestry that
samples a population in two phases over a set of sample
units. The primary sample includes all sample units and
trees that meet the criterion for selection, on which one
or more measurements related to the main attribute of
interest are recorded to be further assessed on the second
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phase sample. The second phase normally includes more
detailed measurements on a subset of whole sample units
or a subset of individual trees within all primary sam-
ple units (e.g. Bruce 1961; Bell et al. 1983; Odewald and
Jones 1992). For example, in point double sampling, trees
are counted on a large number of sample points using
a relascope to estimate basal area per hectare, but mea-
surements of individual trees needed to compute other
variables (such as volume per hectare) are confined to
a subsample of the points. More details on double sam-
pling in forestry can be found in Gregoire and Valentine
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(2008, p. 262) and de Vries (1986, p. 104). Big BAF sam-
pling (Marshall et al. 2004) is a simple form of double
sampling that can be used in a horizontal point sampling
(HPS) inventory. The target attributes are frequently basal
area and volume, though more measurements could be
taken to estimate the density as well; and recently Chen
et al. (2019) have demonstrated its use for the estimation
of carbon rather than volume. The big BAF method uses
two basal area factors (BAFs) on the same full set of sam-
ple points in a forest inventory: the smaller BAF is used
to select a sample for the estimation of basal area (the
BAFc sample), while the larger BAF is used to select trees
on which to take more detailed measurements for volume
estimation (the BAFv sample). Therefore, the relation to
double sampling comes about not through a second phase
subsample of individual points, but by using the larger
BAF to select a subset of trees from the full set of inventory
points as the second phase sample.
The big BAF method has evidently been suggested

several times prior to its actual adoption as a form of
double sampling. Iles (2012) notes that in the United
States Grosenbaugh (1952, p. 35) may have been the first
to suggest something that resembles big BAF when he
somewhat casually noted, in reference to horizontal point
sampling, that “An obvious adaptation is to use a larger
critical angle to obtain a smaller sample of the average
ratio, while using a smaller critical angle to obtain a larger
sample of average basal area per acre.” Iles (2012) also
notes that Grosenbaugh mentioned the use of two prism
factors in an earlier letter to Wheeler in 1949. The next
published mention of using two prism factors in a double
sampling context was the suggestion by Bell et al. (1983
p. 702), but was not formalized until Marshall et al. (2004)
described the method in detail. Since that time it has also
been included in several texts on forest mensuration and
sampling (e.g., Gregoire and Valentine 2008, p. 268 and
Kershaw et al. 2016, p. 377).
In addition to the aforementioned papers, several other

studies have used big BAF sampling. Corrin (1998),
Crowther (1999) and Desmarais (2002) all give practical
examples of the use of big BAF in operational field inven-
tories in both the eastern and western forest types of the
U.S. and Canada. Brooks (2006) followed with a more
detailed analysis of sampling an even-aged Appalachian
hardwood forest with the big BAF method that used
13 different “big” BAFs paired with 6 different “small”
BAFs, all of which were compared against a fixed-radius
plot inventory. In a more recent study, Rice et al. (2014)
evaluated several different sampling schemes including
fixed-area plots, various BAFs under HPS, big BAF, and
horizontal line sampling. Sampling was conducted in par-
tial harvests in the Acadian mixedwood forest type in
northern Maine. In each case a second phase sample was
chosen with either a fixed number of trees or a second

large BAF. Only the smallest BAF under HPS turned out
to be better than big BAF in terms of standard error.
In a comprehensive study on an Acadian forest in New
Brunswick, Canada, Yang et al. (2017) analyzed how the
interplay between sample size and choice of BAFs affects
the costs of a big BAF sample, and determined optimal
sampling plans under cost-constraints. A follow-up study
by Chen et al. (2019) used a suite of simulations and the
cost models of Yang et al. (2017) to show how big BAF
sampling could be readily applied to the estimation of
carbon.

Big BAF background
Let Fc and Fv (m2·ha−1) be the basal area factors for the
selection of count and volume trees, respectively. Thus,
the BAFc sample of trees are selected with the Fc gauge,
while the BAFv sample uses the Fv gauge to select the
trees for volume. Notably, Fc < Fv, and possibly Fc �
Fv.
The double sampling big BAF estimator begins by form-

ing the volume to basal area ratios (VBAR) for each tree
in the BAFv sample of n points (e.g., Kershaw et al. 2016,
p. 377); i.e., for the ith tree on a given sample point we have

Vi = vi
bi

(1)

where v is some evaluation of tree volume and b is tree
basal area. And averaging over all trees on the BAFv
sample gives (Gregoire and Valentine 2008, p. 258)

V̄ = 1
mv

n∑

s=1

mvs∑

i=1
Vi (2)

Here mvs is the number of BAFv trees measured for vol-
ume on the sth point; it follows that the total number of
trees sampled for volume is thereforemv = ∑n

s=1mvs . It is
important to realize that in (2) the total number of VBAR
trees (those trees on the BAFv sample for which volumes
have been measured) must include replicates for any tree
sampled onmore than one point. The double sum ensures
that the summation over the n sample points will include
multiple counts on the point-wise tallies.
The full set of counts with BAFc on all n points provides

an estimate of the average basal area given by the design-
unbiased (Palley and Horwitz 1961) estimator

B̂c = Fc
n
mc

= m̄cFc (3)

where mc = ∑n
s=1mcs is the number of BAFc “in” trees

on all n sample points, and mcs is the number of BAFc
trees tallied on the sth point. Similarly, the estimator for
the total is simply B̂c = m̄cAFc, where A is the area
of the tract in hectares. Note that B̂c can refer to either
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the total or per unit area estimate according to the con-
text. In particular, the simulations are all in terms of
totals.
The product of the mean VBAR and basal area gives

an estimate of the volume under big BAF leading to the
familiar estimator

V̂B = V̄ × B̂c (4)

Because this estimator is the product of two ran-
dom variables—in this case derived from the above
estimators—its variance is estimated by the variance of a
product. As noted by Iles (2012), the usual double sam-
pling variance can not be applied because of the design of
the big BAF method. That is, the second phase sample is
carried out on all sample points (with the larger BAFv) so
the first and second phase sample sizes are equivalent in
terms of the number of sample points. In addition, Lynch
et al. (2021, in press) point out that the big BAF estima-
tor in (4) is a ratio estimator and thus contains a bias
(see also Palley and Horwitz (1961) for a double sampling
application). These authors derive the bias, which in most
practical cases should be small and can safely be ignored.
The exact variance of a product was popularized by

Goodman (1960), who also presented an unbiased estima-
tor of the variance that is applicable to big BAF sampling
as follows

v̂arG
(
V̄B̂c

)
= V̄

2v̂ar
(
B̂c

)
+ B̂2

cv̂ar
(
V̄

) − v̂ar
(
V̄

)
v̂ar

(
B̂c

)

(5)

where the variance estimators for (2) and (3) are given by
(e.g., Gregoire and Valentine 2008, p. 257–259)

v̂ar
(
V̄

) = 1
mv (mv − 1)

n∑

s=1

mvs∑

i=1

(
Vi − V̄

)2 (6)

and

v̂ar
(
B̂c

)
= Fc

2

n(n − 1)

n∑

s=1

(
mcs − m̄c

)2 (7)

In particular, Palley and Horwitz (1961, Appendix 1)
demonstrated that (7) is design-unbiased. Kershaw et al.
(2016, p. 380) provide equivalent estimators. The asso-
ciated standard error estimators corresponding to (6)
and (7) are given as ŝe

(
V̄

) =
√
v̂ar

(
V̄

)
and ŝe

(
B̂c

)
=

√
v̂ar

(
B̂c

)
, respectively. When B̂c represents the total, (7)

is multiplied by A2.

Historical background
It has been noted (e.g., Marshall et al. 2004; Gregoire and
Valentine 2008, p. 259) that Bell and Alexander (1957)
were the first to employ a version of the product variance
in the calculation of standard error for (4). Their familiar

form for the estimator was written in terms of standard
error as a percent; viz.,

ŝe%
(
V̂B

)
=

√
ŝe%

(
V̄

)2 + ŝe%
(
B̂c

)2
(8)

Somehow, perhaps simply through the Bruce (1961) ref-
erence being better known to foresters (alternatively,
perhaps Bruce had popularized it in unpublished works
that were used by Bell and Alexander (1957)), (8) has
become commonly known in the United States as “Bruce’s
method,” even though the latter was not published until
several years after Bell and Alexander (1957). Additional
attribution for (8) is often shared between Bruce (1961)
and Goodman (1960) in these references as well as others
(e.g., Chen et al. 2019; Iles 2012; Yang et al. 2017), where it
is sometimes also noted that Bruce’s method derives from
the first two terms of (5) (e.g. Marshall et al. 2004).
Of course there is a small problem here, because (8)

was known to foresters (Bell and Alexander 1957) before
the Goodman (1960) paper was ever published. Therefore,
attributing (8) to the first two terms of (5), for example,
while mathematically correct, can not possibly be chrono-
logically true. Clearly the above authors know this; thus,
their statements linking the two derive from this recogni-
tion of the mathematical relationship, and are not meant
to suggest lineage. Where then did Bell and Alexander
(1957) come up with (8)? There are two obvious possibil-
ities that are plausible answers to this question. First, it
turns out that Goodman (1960) was not the first author to
publish the exact variance of a product. In fact, in a refer-
ence that would probably have been rather obscure at the
time, Barnett (1955) published a succinct derivation of the
exact product variance for two independent random vari-
ables. Thus, it is possible that Bell and Alexander (1957)
were aware of this reference and considered the third
term small and extraneous, therefore dropping it. How-
ever, given that the reference appeared in the actuarial
literature, this seems the less likely of the two explana-
tions. A second and perhaps more plausible explanation
lies in the fact that an approximation to the exact variance
of a product had been known in statistics and used in pub-
lished studies for decades prior to the 1950s. This variance
approximation is derived through a Taylor series expan-
sion and is commonly known as the DeltaMethod (see the
“Methods” section and Supplementary Material for more
details).
The motivation for this study then is two-fold. First,

we will demonstrate that the Delta method yields Bruce’s
method when the covariance terms in the first-order Tay-
lor series expansion are truncated, leaving only the vari-
ance terms when independence of (2) and (3) is tenable.
The second objective is to illustrate just how close the
approximation and the exact variances are using a small
simulation study. The close agreement between the two
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has been pointed out before (e.g., Gregoire and Valen-
tine 2008, p. 259; Marshall et al. 2004; Iles 2012), where it
has been noted that the third term in (5) is quite small in
relation to the first two, which dominate. In concert with
these objectives, we demonstrate that the ratio variance
estimator may provide a useful alternative to the normal
sampling variance for the variance of V̄. Much like the
recent paper by Kerr (2014), who cleared up somemiscon-
ceptions in the literature about the historical attribution
of “de Liocourt’s q” distribution, our intent is chiefly to
clarify the possible lineage of Bruce’s method in a histor-
ical context. Again, much like the paper by Kerr (2014)
where it is almost assuredly true that others had recog-
nized the missattibution of q to de Liocourt but never
published the observation, we also acknowledge ‘up front’
that much of this material may be already known and
understood by those who are students of the history of
forest biometrics, but have never written these results up,
perhaps feeling they were ‘universally’ known within the
discipline.

Methods
The variance of a product
A careful reading of Goodman’s 1960 paper presents a
detailed, though somewhat abstruse description of the
derivation of the exact variance of a product of two
random variables. Formulas for the case of independent
random variables and independent estimators (i.e., the
sample mean) are given as well as associated forms when
independence can not be assumed. The notation can be
difficult in places. We present a slightly different deriva-
tion (Supplementary Material Section S.3.1) that may be
somewhat easier to follow. In a companion paper, Good-
man (1962) extended the results to more than two random
variables. This followed with a paper on the exact covari-
ance for products of random variables by Bohrnstedt and
Goldberger (1969). All of the authors mentioned previ-
ously who have used big BAF sampling have assumed
independence either implicitly, or explicitly by citing a
small correlation between V̄ and B̂c. In such cases, the
exact variance of the product estimator given in (5) should
be used; a somewhat more tractable version of the full
variance is presented in Eq. (S.12) of the Supplementary
Material.

The Deltamethod
Goodman (1960, p. 708) refers to “the usual formula” for
the variance of a product as an “approximation” and cites
“Yates (1953, p. 198)” as one source for this formula. This
edition of Yates (1953) is unavailable to the authors, how-
ever, in both Yates (1949, p. 198) and in a later edition
(Yates 1981, p. 189–190) we find what we assume to be the
same approximation referred to by Goodman (1960) along
with an extension when the random variables can not be

assumed independent. The exact same wording is used in
each of these editions; therefore, it is reasonable to assume
that the presentation in the edition cited by Goodman is
identical or nearly so. The genesis of the approximation
is unfortunately not given in the Yates reference either;
however, it is indeed the Delta method.
The Delta method was evidently well known in statis-

tics at the time, though it was not always referred to as
such and sometimes the results were simply stated as
in the Yates (1981) reference. Ver Hoef (2012) presents
an interesting history of the Delta method and traces its
roots back to Dorfman (1938). In a comment on this
paper, Portnoy (2013) suggests that its origins go back
further and found the earliest reference was a paper by
Friedrich W. Bessel (who also gave us the unbiased cor-
rection to the sample variance estimator) published in
1838. In twentieth-century statistics, Portnoy (2013) again
mentions Doob (1935) who notes “There is a well-known
δ-method used in statistics to find limiting variances of
statistics” (p. 167) and goes on to cite two earlier works
that employed it. A perhapsmore popular source that cov-
ered the Delta method and was certainly available in the
1950s was Cramér (1946, p. 353) who also provides a proof
of the Delta method for the mean and variance.
As noted previously, the Delta method is a first-order

approximation to the variance using a Taylor series expan-
sion. The derivation for the sample variance approxima-
tion is given in Supplementary Material (see Section S.2).
The Delta method yields an approximate estimator for
the variance of the mean for big BAF sampling under the
assumption of independence from Eq. (S.7) as

v̂arδ
(
V̄B̂c

)
= v̂ar

(
V̄

)
B̂2
c + v̂ar

(
B̂c

)
V̄
2 (9)

and dividing both sides by B̂2
cV̄

2 gives. . .

v̂arδ
(
V̄B̂c

)

B̂2
cV̄

2
= v̂ar

(
V̄

)
B̂2
c

B̂2
cV̄

2
+

v̂ar
(
B̂c

)
V̄
2

B̂2
cV̄

2

taking the square root of both sides and converting to
percent with v̂arδ

(
V̄B̂c

)
≡ v̂arδ

(
V̂B

)
gives

ŝe%
(
V̂B

)
=

√
ŝe%

(
V̄

)2 + ŝe%
(
B̂c

)2
(10)

Comparing the final result in (10) with that in (8), we see
that Bruce’s method is the Delta method. The full result
given in the Eq. (S.10) includes a covariance term when
the assumption of independence is not tenable.

The ratio variance estimator
There is another method by which the variance of V̄ may
be estimated as an alternative to using the usual sam-
pling variance of the mean presented in (6). Gregoire and
Valentine (2008, p. 259) have suggested that because V̄ is
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actually a ratio estimator, then the ratio variance estimator
would be an appropriate alternative to (6). They note that
this may be worth considering if the actual variance of V̄
is of interest in and of itself. However, a comparison of the
two variance estimators in the context of their use in the
product variance estimator for big BAF sampling may be
of some interest as well if there is reason to favor one over
the other.
It is straightforward to show (Gregoire and Valentine

2008, p. 258) that the big BAF estimator for volume (4) can
be written as

V̂B = B̂c

(
V̂v

B̂v

)
(11)

where the ratio V̂v
B̂v

of volume, V̂v = 1
n

∑n
s=1 V̂vs (with

V̂vs = Fv
∑mvs

i=1 Vi the point-wise estimator for volume),
to basal area, B̂v = Fv

n mv, comes from the big BAF sample
and it is equivalent to V̄ in (2).
The alternative ratio variance estimator for V̄ is (Gre-

goire and Valentine 2008, p. 259). . .

v̂arR
(
V̄

) = v̂ar
(
V̂v

B̂v

)
= 1

B̂2
v

s2r
n

(12)

where

s2r = 1
n − 1

n∑

s=1

(
V̂vs − V̄B̂vs

)2

with B̂vs = Fvmvs the point-wise estimator of basal area
applied to the big BAF sample. The associated ratio stan-
dard error estimate is given by ŝeR

(
V̄

) =
√
v̂arR

(
V̄

)
.

Simulations may be used to explore the differences, if any,
between the two variance estimators for V̄, and poten-
tially provide some insight into whether the use of one is
preferred over the other in the product estimator. Note,
however, that Eq. (12) may be preferred from a theoreti-
cal standpoint because it is based on independent random
samples of points; whereas by contrast individual trees
used in (6) are correlated within points, resulting in the
number of individual volume trees in the sample, mv,
being a random variable.

Simulation experiments
The simulation experiments were conducted on two dif-
ferent small populations of trees. The simulator used was
the sampSurf package (Gove 2012), which was developed
for the R statistical analysis system (R Core Team 2020).
The sampSurf simulator employs the simple model of a
“sampling surface” (Williams 2001a; 2001b) in which a
raster tract with area A is tessellated into square grid cells
of fixed area. Trees are added to the tract, and their inclu-
sion zones are created based on the sampling method—in
this case horizontal point sampling. Each grid cell has a

conceptual sample point at its center, the total for the cell
is accumulated for all trees whose inclusion zone includes
the grid cell center. The surface itself therefore, is the total
attribute value of interest over all grid cells. The tracts
used here are square with a grid cell size of 1 m2 for both
of the simulated populations.
The experimental design employed nine sets of simu-

lations using all combinations of the BAF pairs (Fc,Fv)
with Fc ∈ {3, 4, 5} and Fv ∈ {10, 20, 30} for each popu-
lation. For each simulation, four sampling surfaces were
constructed: one each for total volume and basal area
using each of the two BAF sets. This yielded 36 total
sampling surfaces on each of the two populations. For
each of the 9 simulation sets in each population, random
samples of size n = 10, 25, 50, and 100 were drawn in a
Monte Carlo experiment that was replicated 1,000 times.
For each sample on each sampling surface the requisite
summary statistics for HPS and big BAF sampling were
computed. Thus, because both basal area and volume sur-
faces were created for each pair of big BAF factors (e.g.,
(Fc,Fv) = (3, 10)) various quantities that are not available
in a typical field big BAF inventory, such as individual tree
VBARs for all selected trees on the count sample (from the
BAFc volume sampling surface), were available in the sim-
ulations. This allows, for example, the comparison of the
big BAF results with that of a full HPS inventory where all
trees are measured on the BAFc sample. The simulations
conducted here are modest in extent when compared with
e.g., Chen et al. (2019), but they serve to illustrate the
similarities in variance estimators.

Themixed northern hardwood population
The mixed northern hardwood tree population is a some-
what larger version of the population used in Gove (2017);
it is completely synthetic and is contained on a tract with
a total area A = 3.17 ha (31,684 grid cells). An external
buffer with width 18 m encloses the internal stand with
an area of 2 ha. The internal portion of the tract was pop-
ulated with m = 667 trees having a total basal area of
48.4 m2 (approximately 333 trees · ha−1 with a basal area
of 24.2 m2·ha−1) giving a quadratic mean stand diameter
of D̄q = 30.3 cm. This places the stand in the fully stocked
region of the northern hardwoods stocking guide (Leak
et al. 2014). Tree diameters at breast height were gener-
ated from a three-parameter Weibull distribution (Bailey
and Dell 1973) with location, shape, and scale parame-
ters α = 10 cm, γ = 2, ζ = 20 cm, respectively. The
associated tree heights were generated using a metric ver-
sion of the all species equation for northern hardwoods in
New Hampshire (Fast and Ducey 2011) augmented by an
additive Gaussian perturbation with standard deviation of
2.5 m. The trees were distributed throughout the internal
tract area using a spatial inhibition process with inhibition
distance of 3m (Venables and Ripley 2002, p. 434). Bound-
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ary overlap was corrected by allowing the inclusion zones
to penetrate into the buffer region (Masuyama 1953; Gre-
goire and Valentine 2008, p. 224). Individual point samples
drawn according to the Monte Carlo scheme described
above are allowed to fall anywhere within the entire tract
region A, thus preserving the full inclusion probabilities
for each tree.
The sampSurf simulator requires taper data for each

tree, either from direct measurements or generated from
an appropriate taper function. The following built-in
default taper function (Van Deusen 1990) for diameter at
height 0 ≤ h ≤ H was used in the generation of each tree

d(h) = Du + (Db − Du)

(
H − h
H

) 2
r

(13)

where Db is the butt diameter and Du the top diameter at
height H. The taper is controlled by the parameter r, and
was randomly generated for each tree within the range
r ∈[ 1.5, 3]; with overall stem forms following 0 < r < 2 a
neiloid, r = 2 a cone, and r > 2 a paraboloid. The individ-
ual tree volumes corresponding to each tree’s taper were
generated by the methods given in (Gove 2011b, p. 8).
The correlation between VBAR and BA for the population
is ρ(Vb) = 0.62. Histograms of the resulting DBH and
height distributions are shown in Figure S.2.

The eastern white pine population
The eastern white pine (Pinus strobus L.) population was
created from Barr & Stroud FP-12 dendrometry data
taken over a 20-year period in various pure, even-aged
white pine stands in southern New Hampshire (see Gove
et al. 2000 for more details). The dendrometry measure-
ments were processed using the R Dendrometry package
(Gove 2011a). The population is composed of m = 316
white pine trees, some of which were measured more than
once during this period. This population is set within a
tract of 1 ha in size with an 18 m buffer surrounding it to
fully contain the inclusion zones, yielding a total tract size
of A = 1.85 ha (18,496 grid cells). The total basal area for
the population is 47.2 m2, yielding D̄q = 43.6 cm. This
places the stand well within the range of full stocking on
the eastern white pine stocking guide (Leak and Lamson
1999). The trees, having beenmeasured in multiple stands
without location information, were distributed within the
internal tract area using a spatial inhibition process with
inhibition distance of 3 m, similar to the northern hard-
wood stand. Boundary overlap was again handled using
Masuyama’smethod in the simulations by allowing sample
points to fall in the buffer outside the internal 1 ha tract
area containing the trees. Because the white pine popu-
lation was dendrometered, these measurements provide
the taper data for the sampSurf simulator rather than a
taper equation. Within sampSurf , such data are modeled
using a cubic spline fitted to the raw measurements for

each individual tree (Gove 2011b), though calculation of
volumes is via Smalian’s method (Kershaw et al. 2016,
p. 141). Histograms of the white pine DBH and height
distributions are shown in Figure S.5.

Results
The sampling surface results from the population specifi-
cations given in the previous section are found in Table 1.
Note that the resulting surface estimates of volume and
basal area are quite close to the population values for
each species. An example set of sampling surfaces with
Fc = 3 and Fv = 30 is presented in Figures S.1 and
S.4 for the northern hardwoods and white pine popula-
tions, respectively. The surface results in Table 1 clearly
illustrates the higher stocking of volume and basal area
in the white pine stand than for the hardwoods, which
mimics what would often be found in practice when com-
paring fully-stocked stands of these forest types in New
England. The species histograms also indicate that the
northern hardwoods diameter distribution (Figure S.2) is
more positively skewed than the white pine distribution
(Figure S.5), and the tree heights are shorter in general
for the hardwoods, which, combined with the synthetic
taper equation used for the hardwood volumes accounts
formuch of the difference in total volume between the two
populations. Thus, the white pine, while on a tract half
the size of the hardwood tract, and with half the popula-
tion size, still carry much higher volume per tree than the
hardwoods.
The coefficients of variation in percent (CV%) (see, e.g.,

Freese 1962, p. 13) are given in Table 1 for both volume
and basal area. The results clearly demonstrate that as the
BAF increases, the population variance increases, yield-
ing a larger CV%. This is a natural phenomenon of the
variance that is related to a smoothing of the sampling sur-
face itself as the inclusion zone size (or plot size) expands.
In this case, the related BAFs for both volume and basal
area demonstrate that the larger inclusion zones produce
smaller variance. This phenomenon is a consequence of
the so-called ‘empirical law’ of the variance first recog-
nized by Smith (1938). In forestry it was applied in terms
of the CV (Freese 1961) and extended to the variable plot
method by Wensel and John (1969) (see, e.g., Gove 2017
or Lynch 2017 for recent literature reviews). The CV%
for the northern hardwoods is consistently lower (with
the exception of Fv = 30) for both volume and basal
area, presumably due to the shorter, smaller diameter
trees compared to the white pine population. The sam-
pling efficiency is defined as the percentage of surface grid
cell centers—or sample points—that are covered by one
or more inclusion zones. Of course, this must decrease
with increasing BAF in accord with the process behind the
prior observations on the inclusion zone size in relation to
overall surface variance.
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Table 1 Sampling surface statistics for the northern hardwoods and white pine simulated populations. The northern hardwood
population of 667 trees had a total basal area of B = 48.4 m2, with volume of 418.5 m3. The white pine population of 316 trees had
total B = 47.2 m2 and volume of 619.6 m3

Population BAF Volume CV%a Basal Area CV% Samplingb

(Species) (m2·ha−1) (m3) (m2) Efficiency %

N. Hardwoods 3 418.24 73.36 48.34 73.01 77.32

4 417.95 77.78 48.31 77.07 74.14

5 418.20 81.52 48.34 80.55 72.08

10 417.56 95.68 48.26 93.72 64.91

20 418.27 117.55 48.35 114.29 51.70

30 417.79 137.11 48.27 132.95 41.20

White Pine 3 619.24 80.45 47.13 81.73 81.24

4 619.16 85.58 47.13 86.67 75.70

5 619.55 89.62 47.15 90.59 71.97

10 619.67 103.39 47.17 103.70 62.80

20 619.35 121.25 47.14 120.68 52.97

30 617.94 136.15 47.02 134.92 45.16

aCV%, is the coefficient of variation in percent (see text)
bSampling Efficiency % is the percentage of grid cells in the sampling surface whose centers (sample points) are covered by one or more inclusion zones; values are the same
for each attribute (see text)

Monte Carlo simulations
Observed sample ratios
In theory, the number of count and volume trees sam-
pled on an inventory using the big BAF method should
come close to the ratio of the two BAFs used in sampling.
For example, using Fc = 4 and Fv = 10, the sample
ratio, Fv

Fc
, should be 10

4 = 2.5 count trees sampled for
each volume tree. However, in practice the actual ratio in
an inventory could vary widely purely by chance, and that
variation could influence the distribution of the resulting
estimates, as well as the accuracy of approximate variance
formulæ and the resulting confidence limit coverage. The
results from the Monte Carlo simulations are presented
for each sample size in Tables S.1 and S.3. The popula-
tion ratio in the tables are calculated as above, directly
from the ratio of the respective BAFs. The results for each
sample size are given as a ratio of means estimate, where
the means are over all individual sample ratios from the
Monte Carlo replicates. It can easily be seen that for each
sample size and species the results, on average, match
very closely with the population target ratio. However, as
noted above, the individual sample ratios for each Monte
Carlo replicate can vary quite a bit from these mean val-
ues. Figures S.3 and S.6 display two sets of histograms
for the northern hardwoods and white pine results. The
results clearly demonstrate that at the smaller sample sizes
the distribution of the sample ratios is positively skewed,
with some observed sample ratios several times the mean.
The distributions quickly trend to more Gaussian with
much smaller variance as the sample size increases. This

same trend manifests itself in the other BAF combination
for each population.
Tables S.1 and S.3 illustrate that there are several com-

binations of BAFs that produce similar population sample
ratios. For example, BAF pairs of (Fc,Fv) = (3, 20)
and (5, 30) both yield approximately six count trees per
volume tree. The companion results in Tables S.2 and
S.4 present the standard deviations for individual Monte
Carlo replicate sample ratios by sample size. Note that
the (3, 20) BAF pair tends to have smaller variation in
observed sample ratios than the larger (5, 30) pair over
all sample sizes for both populations. One might argue
that this could be due to the fact that the (3, 20) pair
samples almost one more count tree per volume tree
than the (5, 30) pair. However, this trend seems to hold
for other similar combinations, where the sample inten-
sity is reversed. For example, the (3, 10) and (5, 20) pairs
have sample ratios of three to four count to volume trees,
respectively, and again the smaller pair of BAFs has the
smaller variation in observed sample ratios, even though
the larger pair samples relatively more count trees on
average for both populations. However, this trend is not
universal. It is quickly observed that within a given BAFv
gauge and sample size, n, the variability in sample ratio
decreases with increasing BAFc. Similarly, the variabil-
ity increases with increasing BAFv for a given BAFc. The
increase in this latter case is much larger than for the
former. Evidently a plausible explanation for this phe-
nomenon is that as the BAFs converge, the target sample
ratios also decrease; and in the limit, this decrease sim-
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ply yields a sample taken with one BAF as under tradi-
tional HPS. Thus, it appears that the larger the difference
between the BAFs, the larger the variation in hitting the
target sample ratio. Finally, as expected, the Monte Carlo
sample ratio variability decreases within a given BAF pair
as sample size increases in accord with the convergence to
Gaussian distributions (e.g., Figures S.3 and S.6).

Standard error comparisons
The Delta method and Goodman’s method variance of the
mean estimators in Eqs. (9) and (5) are compared in the
following in terms of the corresponding standard error of
mean equations (i.e., their square roots). Figure 1 presents
the results of the Monte Carlo simulations for the north-
ern hardwoods in terms of the average standard errors
by sample size and (Fc,Fv) pair. Each panel corresponds
to a ‘Smith’ plot (Smith 1938), with the inverse of BAFv
used as a surrogate for average inclusion zone size under
HPS (e.g., Arvanitis and O’Regan 1967; Gove 2017; Yang
et al. 2017). The reference for comparison in terms of

the smallest standard error attainable under the simula-
tions is that for the BAFc HPS variance. The most obvious
and expected trend is that the standard errors decrease
with increasing sample size over all BAF pairs. A second
salient result is that, within a given sample size, the stan-
dard errors increase with increasing BAFc; thus, either
BAF could have been used in the Smith plot abscissa,
though the decrease in variance with inverse BAFc is less
pronounced. For n = 10, the standard errors partition
nicely into two sets: the first corresponding to the use
of ŝe

(
V̄

)
, while the second uses the ratio standard error

estimate, ŝeR
(
V̄

)
. Within each set, the results for Good-

man’s method are uniformly lower than those for the Delta
method. These distinctions quickly disappear as the sam-
ple size gets larger and are indistinguishable at n = 50.
In accordance with Smith’s theory, all standard errors de-
cline as the average inclusion area increases through the
inverse of BAFv, quickly converging towards the reference
HPS standard error at Fv = 10 for all values fof BAFc
(note carefully the standard error scales on each panel to

Fig. 1 The northern hardwoods Monte Carlo standard error simulation results as the average over 1,000 replications for each BAF pair and sample
size with the Delta Method (�) and Goodman’s (+), using the variance of the mean (6) (dashed) and the ratio variance estimator (12) (dotted). The
reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results
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see the magnitude of the difference), though convergence
increases as BAFc increases.
For the white pine population (Figure S.8) the standard

errors have merged to where they are no longer individ-
ually indistinguishable at n = 25 for all combinations
of (Fc,Fv) pairs. There is virtually no discernible differ-
ence between the Delta method and Goodman’s method
at any sample size, except for the slight difference at the
smallest sample size of n = 10, which converges by
Fv = 10. A similar observation applies for the differ-
ence between the two different standard error estimators
for the V̄ component. Lastly, overall convergence to the
HPS reference is muchmore gradual than for the northern
hardwood results in all cases, evidently requiring a smaller
BAFv, approaching BAFc, where the distinction of big BAF
sampling from pure HPS becomes irrelevant.
For completeness, theMonte Carlo results for ŝe

(
V̄

)
and

ŝeR
(
V̄

)
are presented in Figures S.7 and S.9 for the north-

ern hardoods and white pine populations, respectively.
Since these results are unaffected by the choice of BAFc,
only one level of conditioning is shown in the panels.
The results for both populations echo the trends above,
showing ŝe

(
V̄

)
> ŝeR

(
V̄

)
for n ∈ (10, 25), with any dif-

ferences disappearing as the sample size increases. The
results for the two populations differ only in magnitude of
the average estimated standard errors.

Confidence interval capture rates
The confidence interval capture rates for the northern
hardwoods population are found in Fig. 2. The rates are all
nominally 95% and range within the Monte Carlo exper-
iments from 93.5%–95.2%, depending on the sample size
and BAFs used. Each result is the capture rate over all the
1,000 Monte Carlo replicates. Within this range the rates
can vary somewhat based on sample size and the BAFs
used. In general there is nothing remarkable about the
results since this range of capture rates is quite close to
the nominal rate in all cases. The lowest rates occur in the
smallest sample sizes (n = 10, and 25) for Fv = 30, which
is a direct result of the small number of trees selected for
measurement with this BAFv. Beyond that, the capture
rates for the ratio estimator, ŝeR

(
V̄

)
, are slightly lower at

n = 10, Fv = 30 and Fc ∈ (3, 4) than for ŝe
(
V̄

)
, a result

that is in accord with the smaller standard errors realized
for the ratio method at these settings. Of course the con-
fidence interval capture rates depend on the individual
Monte Carlo sample draws; thus, even the HPS capture
rates vary somewhat (94%–95%) from the nominal, which
is to be expected.
The confidence interval capture rates for the white pine

population are found in Figure S.10. The rates are again all
nominally 95% and range within the Monte Carlo experi-
ments from 93.2%–96%. This slightly wider range for cap-
ture results, as compared with the northern hardwoods,

may reflect the marginally higher degree of variability in
individual tree size within the white pine population as
compared to the northern hardwoods. Indeed, even the
HPS intervals vary from 93.2%–95.9%, covering essen-
tially the full range of variability in the big BAF results.
However, none of the capture rate results is unreasonable
for a variable population in comparison to the nom-
inal level. And in general, the degree of concordance
between each of the different variance estimator com-
binations for big BAF sampling is remarkable and more
consistent than in the less variable northern hardwoods
population.

Correlation
The reason for examining the correlations between
VBARs and basal area relates to the question of whether
the simple Delta method or Goodman’s method variance
estimators in Eqs. (9) and (5) are relevant, or whether
more terms are required to account for covariances in the
case where independence is untenable. However, as dis-
cussed in more detail later, the question of how exactly to
calculate the relevant correlations is not a straightforward
one—in fact it is a bit of a conundrum. For now, we present
the results for three approximate estimators for the cor-
relation. In addition, the population correlation, ρ(Vi, bi),
i = 1, . . . ,m, was computed on an individual tree basis
over all trees in each population.
The first estimator is based on those individual trees

that were sampled using the BAFv angle gauge and are
tree-wise correlations ρ̂(Vi, bi) over all trees i = 1, . . . ,mv.
The second is a point-wise estimator ρ̂

(
Vvs ,Bcs

)
, s =

1, . . . , n, between the total VBAR and basal area per point
with

Vvs =
mvs∑

i=1
Vi

Bcs = Fcmcs

Additionally, Vvs = 0 on count points where no big
BAF trees have been selected. Lastly, the third estimator,
ρ̂
(
V̄vs , B̄cs

)
, is also point-wise with V̄vs = Vvs

mvs
and B̄cs =

Bcs
mcs

. Note, of course, that B̄cs is constant at each point or
zero. This will diminish the correlation somewhat.
The results for the northern hardwood population are

shown in Fig. 3. First, the tree-wise correlation sum-
maries, ρ̂(Vi, bi), appear to be fairly constant at all but
the smallest sample size of n = 10, where there is
a slight decline as BAFv increases, regardless of BAFc.
Since ρ̂(Vi, bi) is an estimator of the population corre-
lation, ρ(Vi, bi), it is not surprising that increasing the
sample size shows a convergence toward the population
value. However, while ρ̂(Vi, bi) is an estimator of the pop-
ulation correlation, ρ(Vi, bi), it is not an estimator for
the sample correlation required to make decisions about
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Fig. 2 The northern hardwood Monte Carlo simulation results for confidence interval capture rates as the average over 1,000 replications for each
BAF pair and sample size with the Delta Method (�) and Goodman’s Method (+), using the usual sampling variance of the mean (6) (dashed) and
the ratio variance estimator (12) (dotted). The reference lines (solid, •) are the average Monte Carlo capture rates for the BAFc HPS results

the necessity for handling covariance in the big BAF
sampling variance. Therefore, these results are of lim-
ited interest in addressing the question of whether the
addition of sample covariance is required in variance
estimation.
A somewhat more reasonable approach is to aggregate

the tree-wise component into a point-wise component,
the second and third estimators of correlation, ρ̂

(
Vvs ,Bcs

)

and ρ̂
(
V̄vs , B̄cs

)
, are an attempt at so doing. These cor-

relations uniformly decrease with increasing BAFv over
all sample sizes. Presumably, this is due to fewer trees
being sampled with the larger BAFv gauges. For exam-
ple, Figures S.1b and S.4b both show the high number of
sample points with either one or no sample trees selected,
whereas the companion BAFc figures show large num-
ber of overlap zones for basal area estimation, with few
zero count points. This is only one Monte Carlo realiza-
tion out of 1,000, but serves to illustrate the point that is
well-known in HPS. Because the sample point selection is

completely random, this same trend manifests itself over
all sample sizes.
One might object that since B̄cs is based on the

expanded single-tree basal area, this might correlate well
with individual tree VBARs on points with mvs = 1.
However, that misses the variation in the Vi among
trees, each of which are matched with the same aver-
age value of estimated basal area; this result lowers the
point-wise correlations in such cases. Sampling more
volume trees per point with BAFv must tend to aver-
age out some of the variability resulting in a higher
correlation at smaller values of BAFv. The results for
the white pine population parallel those discussed here
(Figure S.11) with the exception that there is no dis-
cernible convergence of ρ̂(Vi, bi) to the population
value.
These results begin to elucidate the problem of com-

puting a covariance or correlation between point-wise
aggregates such asmean basal area

(
B̄cs

)
andmeanVBARs
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Fig. 3 The northern hardwoods Monte Carlo simulation correlation results as the average over 1,000 replications for each BAF pair and sample size.
The tree-wise correlations, ρ̂(Vi , bi) (dot-dashed, x), and point-wise correlations ρ̂

(
Vvs , Bcs

)
(dash, +) and ρ̂

(
V̄vs , B̄cs

)
(solid, �), are presented. The

reference lines (dotted) show the population correlation of ρ(V, b) = 0.62 over all trees in the population

(
V̄vs

)
: collapsing the latter into an average per point can

yield misleading results that get worse the fewer points
sampled with any measurable BAFv trees tallied. More-
over, using the totals rather than averages per point,
results in similar trends, though raised somewhat higher.
Brooks (2006) evidently used a hybrid of the two, where
the point-wise basal area, Bcs , was paired with V̄vs to
determine the correlations.

Discussion
The Delta method has been suggested here as the poten-
tial antecedent to what foresters call “Bruce’s method.”
In addition, the suggestion has been advanced that the
Delta method was a well-known method for approximat-
ing the variance of a product of two random variables at
the time when Bruce’s method evidently first appeared
in the American literature on forest sampling by Bell
and Alexander (1957). It can be conjectured that their
application was either adopted by Bruce (1961) (though
not cited there), or alternatively that Bruce (1961) may

have known about it independently. However, another
source contemporary to these authors that covers vari-
ous aspects of forest sampling is that of Freese (1962).
It is interesting to note that Freese (1962) evidently also
knew about the Delta method approximation and advo-
cated its use (Goodman’s method was published a couple
years earlier, though Freese may not have been aware
of its existence at the time). In fact, he gives a version
(i.e., Freese 1962, p. 17) of the full first-order expan-
sion that includes the covariance and is equivalent to Eq.
(S.10). Similar to the aforementioned authors, however, he
gives no source for this equation. Again, we are left with
the conjecture that the Delta method was a well-known
method in use in statistics at the time, in fact, so much
so, that it was unnecessary to give citations when it was
used.
As previously noted, there is somewhat of a conun-

drum in regard to calculating either the correlation or
the covariance on which it depends in extended prod-
uct variance estimation. The problem relates to the use
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of either the Delta method in (9) or Goodman’s method
in (5) to determine the overall variance for the inven-
tory. By this point, it should be clear that these estima-
tors have two components based on v̂ar

(
V̄

)
in (6) and

v̂ar
(
B̂c

)
in (7). To reiterate, v̂ar

(
V̄

)
is calculated tree-wise

over all mv tally trees, but v̂ar
(
B̂c

)
is calculated point-

wise over all sample points, n, in the inventory. The two
variances thus have different sample support, one is trees,
the other points. The problem then lies in the fact that
to compute a valid covariance between two random vari-
ables, they must share the same sample support: either
trees or points, not both. The ρ̂

(
V̄vs , B̄cs

)
correlations pre-

sented previously, for example, attempt to circumvent the
inherent support of each variable by combining the two
in a way that allows an approximation to the covariance
(which could be quite poor in reality) to be computed over
the sample points. However, this is obviously not what is
required. Any such approximation that aggregates one or
the other random variable to a different sample support
can be thought of as a transformation from one sample
space to another. The consequences of such a transforma-
tion are unknown. The use of ρ̂

(
V̄vs , B̄cs

)
was presented

as an example to illustrate the aforementioned problem.
In addition, it was noted that there are other ways to
aggregate the tree-wise measurements into point-wise
summaries (and each of these produces different estimates
of the correlation), but none of these is what is required
to calculate a valid correlation and no one approximation
can be preferred over the others since the true value is not
calculable.
The ramifications of the previous discussion are that if a

correlation is computed based on aggregation, it is bound
to be misleading at best. In addition, the covariance on
which it is based, and which is the real basis for the prob-
lem because of its need for commensurate support, will
also be incorrect no matter how the tree-wise VBARs are
aggregated. Thus, there seems to be little possibility of
using either the Delta method or Goodman’s method in
the extended case (i.e., either Eqs. (S.10) or (S.12)) where
there may be correlation since neither the indicator of
such, ρ̂, nor the covariance itself can be properly formu-
lated. This seems to be a peculiarity in the application of
either the Delta method or Goodman’s method to big BAF
sampling (via Bruce’s method) that does notmanifest itself
in other applications of these methods. This is because in
general applications the sample support will normally be
the same for both components of these composite vari-
ances. There appears to be no immediate solution to this
dilemma with the problem as traditionally formulated. It
is suggested that the only reasonable application of (9) or
(5) is where no aggregation procedure is used to approx-
imate the correlation or covariance in big BAF sampling.
Fortunately, as noted in the simulation results, both meth-

ods appear to work well as judged by confidence interval
capture rates in the big BAF setting.
In the simulations, we compared the results of using

two different methods for calculating the standard error
of tree VBARs, the normal theory (6) and ratio (12)
estimators. In general, the results were indistinguish-
able between the two estimators, with the exception of
the combination of the smallest sample size and largest
BAFvs. In such cases, there was a small but operationally
insignificant difference between the two. Thus, we can not
recommend one over the other in general, other than to
use the one that is most appealing. However, there is one
interesting (but hopefully unnecessary in practice) case
where the ratio variance is clearly superior. In the case
where only one tree (mv = 1) is sampled with BAFv over
all points, the standard estimator (6) fails because of the
sample size of one. The ratio estimator, however, is based
on the number of sample points; therefore, the only time
it can not be used to estimate a variance for VBAR trees
is when no trees at all are sampled (or n = 1). Again, this
is simply pointed out here as a curiosity and we caution
against using this little observation in practice for obvious
reasons.
There are other variance estimators that can be applied

to big BAF sampling. Two nonparametric approaches
are the jackknife and bootstrap estimators. Some simu-
lations were run using these estimators, but there was
no apparent advantage to their use in terms of standard
error or confidence interval coverage rate. In addition,
the usual HPS estimator for variance in volume was cal-
culated in the simulations for the BAFv sample, similar
to that presented here for the BAFc sample (the target
variance estimate in the simulation results). However, pre-
dictably, the results of these estimates were much higher
than those reported in the standard error comparisons. In
addition, the confidence interval capture rates were also
consistently higher than the nominal level, on the order
of 95.3%–99.9%, with the rates increasing with increasing
BAFv.

Conclusions
The origins of Bruce’s method as a variance estimator
in double sampling designs, and specifically the big BAF
method, appears to be unknown as it was used in early
publications with no citation given. A plausible expla-
nation for Bruce’s method has been given through the
derivation of the Delta method, which was known and
used in the statistics literature and popular texts prior to
the use of Bruce’s method. The relationship of the Delta
method approximation to Goodman’s method is quite
well-known and was mentioned by Goodman (1960),
who post-dates the original use of Bruce’s method in
forestry. The simulation results show that there is no prac-
tically important difference between the approximate and
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exact methods, as would be expected based on the small
variance cross-product difference between the two. Fur-
thermore, our results have demonstrated that one has a
choice between two different methods for calculating the
variance of the tree VBARs, again with no discernible dif-
ference in practice, except when very few trees are chosen
with the BAFv gauge in the second phase sample. We
caution that there does not seem to be an exact method
for the determination of the covariance or correlation
between tree VBARs and basal area point counts because
of the disparity in sample support under the usual inter-
pretation of (4) used here; however, there is an alternative
interpretation under development that will accommodate
a true point-wise covariance and correlation interpre-
tation (Lynch et al. 2021, in press). This suggests that
using an approximate correlation from aggregation to
determine whether the corresponding covariance approx-
imation term is required should not be recommended.
The simple Bruce’s method (Delta method) appears to be
robust enough based on the capture statistics that it is
probably a good approximation in most cases.
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S.1 Introduction14

This document contains the supporting material for the main manuscript for those that might be15

interested in a few more details. Other related information is available from the authors by request.16

S.2 The Delta Method for Approximating Variances17

The Delta method is often used for variance estimation in the case where we are looking at a function18

of one or more random variables. There are both scalar and multivariate (matrix) versions. Both19

arise from a first-order truncated Taylor series expansion. A terse, yet good source is Seber (1982,20

p. 7–9), whose notation we adopt here. Other sources include Cramér (1946, p. 353), Lehmann21
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(1983, p. 106), Wolter (1985, Chapter 6), and Oehlert (1992). Ver Hoef (2012) presents some22

history of the Delta Method and traces it back to Dorfman (1938) though a comment from Portnoy23

(2013) suggests that its origins go back to the 19th century. The method evidently derives its name24

from the use of δ in the original presentation (Ver Hoef, 2012). The method is derived in what25

follows.26

Let xi, i = 1, . . . , n be the random variables of interest with mean θi, then x = (x1, x2, . . . , xn) with27

associated means θ = (θ1, θ2, . . . , θn). Then the Taylor series about θ is. . .28

g(x) = g(θ) +
n∑
i=1

(xi − θi)
∂g

∂xi
+

n∑
i=1

n∑
j=1

(xi − θi)(xj − θj)
2!

∂2g

∂xi∂xj
+ · · · (S.1 )

where the partial derivatives ∂g
∂xi

and ∂g
∂xixj

are evaluated at x = θ and the higher order terms, · · · ,29

have not been shown.30

The above sources include expansions for the mean and the variance. Our primary concern is with31

the variance, but for completeness the mean is also presented. Commonly, moments of g(x) are32

approximated by truncating higher order terms, · · · , in (S.1 ), as demonstrated in the sequel.33

S.2.1 The mean of g(x)34

The mean is approximated by taking the expectation of the above through the second term (Seber,35

1982, p. 7). Hence,36

E[g(x)] = g(θ) + E

 n∑
i=1

(xi − θi)
∂g

∂xi
+

n∑
i=1

n∑
j=1

(xi − θi)(xj − θj)
2!

∂2g

∂xi∂xj

37

= g(θ) +

n∑
i=1

E[(xi − θi)]
∂g

∂xi
+ E

 n∑
i=1

n∑
j=1

(xi − θi)(xj − θj)
2!

∂2g

∂xi∂xj

38

= g(θ) +
n∑
i=1

(E[xi]− θi)
∂g

∂xi
+ B39

= g(θ) + B40
41

where B is termed the bias by Seber; and, of course, the last line follows since E[xi] = θi. The bias42

is composed of the second-order terms and can be re-expressed as. . .43

B = E

 n∑
i=1

n∑
j=1

(xi − θi)(xj − θj)
2!

∂2g

∂xi∂xj

44
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=
1

2
E

[
n∑
i=1

(xi − θi)2
]
∂2g

∂x2i
+ E

2
∑∑
i<j

(xi − θi)(xj − θj)
2!

∂2g

∂xi∂xj

45

=
1

2

n∑
i=1

E
[
(xi − θi)2

] ∂2g
∂x2i

+
∑∑
i<j

E[(xi − θi)(xj − θj)]
∂2g

∂xi∂xj
46

=
1

2

n∑
i=1

var(xi)
∂2g

∂x2i
+
∑∑
i<j

cov(xi, xj)
∂2g

∂xi∂xj
47

=
1

2

n∑
i=1

n∑
j=1

cov(xi, xj)
∂2g

∂xi∂xj
48

49
50

S.2.2 The variance of g(x)51

The variance can be approximated from (S.1 ) by dropping second- and higher-order terms, yielding52

a first-order approximation. As Seber (1982, p. 8) notes “ignore the bias B and neglect quadratic53

terms in the above Taylor expansion,” where ignoring the bias means that E[g(x)] ≡ g(θ) for the54

mean, and the quadratic terms to be neglected are those associated with the second-order ∂2g
∂xi∂xj

55

terms.56

Rearranging the first-order approximation from (S.1 ) we have57

g(x)− g(θ) =
n∑
i=1

(xi − θi)
∂g

∂xi
58

59

squaring, and taking the expectation, the variance (LHS) is60

var(g(x)) ≈ E
[(
g(x)− g(θ)

)2]
(S.2 )61

62

and letting g′i(θ) = ∂g(x)
∂xi

∣∣
x=θ

, the RHS becomes. . .63

= E

[( n∑
i=1

(xi − θi) g′i(θ)
)2]

64

65
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then completing the square on random variable pairs. . .66

= E

 n∑
i=1

(xi − θi)g′i(θ)
n∑
j=1

(xj − θj)g′j(θ)

67

= E

 n∑
i=1

n∑
j=1

(xi − θi)(xj − θj)g′i(θ) g′j(θ)

68

=

n∑
i=1

E
[
(xi − θi)2

]
g′i(θ)2 + 2

∑∑
i<j

E[(xi − θi)(xj − θj)] g′i(θ) g′j(θ)69

=
n∑
i=1

var(xi) g
′
i(θ)2 + 2

∑∑
i<j

cov(xi, xj) g
′
i(θ) g′j(θ) (S.3 )70

71

The expression in (S.3 ) is the approximate variance that should be used in the case where the72

random variables are not independent.73

Equation (S.3 ) simplifies substantially when the random variables are assumed to be independent.74

In this case we have. . .75

var(g(x)) ≈
n∑
i=1

var(xi) g
′
i(θ)2 (S.4 )76

Now, since the population parameters are generally unknown, the unbiased estimators, θ̂ = (θ̂1, θ̂2, . . . , θ̂n)77

are substituted such that equations (S.3 ) and (S.4 ) are evaluated at θ̂; viz.,78

var(g(x)) ≈
n∑
i=1

var(xi) g
′
i

(
θ̂
)2

+ 2
∑∑
i<j

cov(xi, xj) g
′
i

(
θ̂
)
g′j

(
θ̂
)

(S.5 )79

80

or, assuming independence. . .81

≈
n∑
i=1

var(xi) g
′
i

(
θ̂
)2

(S.6 )82

83

S.2.3 The approximate big BAF sampling variance84

The volume estimator given in (4) is the product estimator V̂B = V̄× B̂c. Therefore, in this case,85

our function is g(x1x2), where x1 = θ̂1 = V̄ and x2 = θ̂2 = B̂c since the xi and the θ̂i are both86
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the estimated means. Thus, using (S.6 ) with g′
(
θ̂i

)
≡ g′i(θ) the first-order variance approximation87

assuming independence is. . .88

v̂arδ

(
V̂B

)
= v̂ar

(
V̄
)
g′
(
V̄
)2

+ v̂ar
(
B̂c

)
g′
(
B̂c

)2
89

= v̂ar
(
V̄
)
B̂2

c + v̂ar
(
B̂c

)
V̄2 (S.7 )90

91

since. . .92

g′
(
V̄
)

= B̂c (S.8 )93

g′
(
B̂c

)
= V̄ (S.9 )94

95

where the two estimated variance terms for the mean VBAR and basal area are computed using96

the formulas presented in the main manuscript, where it also shown that (S.6 ), and thus (S.7 ),97

form the basis for Bruce’s method.98

When the assumption of independence is not tenable, including the covariance term in (S.3 ) will99

give a first-order approximation to the variance for big BAF as. . .100

v̂arδ

(
V̂B

)
= v̂ar

(
V̄
)
B̂2

c + v̂ar
(
B̂c

)
V̄2 + 2 ĉov

(
V̄, B̂c

)
· V̄ · B̂c (S.10 )101

S.3 The Exact Variance of a Product102

This section concerns the work of Goodman (1960), who derived the exact variance for a product103

of random variables for both independent (2)1 and non-independent cases (18).2 Goodman’s paper104

is interesting for that alone, but it is also interesting for the methods he used for the derivations, as105

they are succinct and elegant. However, it may be that a more traditional approach as described106

below can be of some help in understanding his results.107

S.3.1 An alternative derivation108

A straighforward derivation of the exact variance that differs from Goodman follows. We will not109

use Goodman’s notation in order to perhaps provide more clarity here. The following leads to110

Goodman’s equation (2).111

1Goodman’s equations numbers are in red.
2Goodman also provides the approximation in (19), which corresponds to (S.10 ) in § S.2.3.
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Given random variables x and y, and the product z = xy, we know that the variance of z is given112

by. . .113

Var(z) = E
[
(z − E[z])2

]
(S.11 )114

= E
[
z2
]
− E[z]2115

116

as usual, and by analogy we have117

Var(xy) = E
[
(xy)2

]
− E[xy]2118

= E
[
x2y2

]
− E[xy]2119

120

but we have in general that Cov(x, y) = E[xy]− E[x] E[y] so that. . .121

E[xy]2 = (Cov(x, y) + E[x] E[y])2122
123

then similarly, Cov
(
x2, y2

)
= E

[
x2y2

]
− E

[
x2
]

E
[
y2
]
. . .124

E
[
x2y2

]
= Cov

(
x2, y2

)
+ E

[
x2
]

E
[
y2
]

125
126

and upon substitution. . .127

Var(xy) = Cov
(
x2, y2

)
+ E

[
x2
]

E
[
y2
]
− (Cov(x, y) + E[x] E[y])2128

129

and now we can substitute E
[
x2
]

= Var(x) + E[x]2. . .130

= Cov
(
x2, y2

)
+
(

Var(x) + E[x]2
)
·
(

Var(y) + E[y]2
)

︸ ︷︷ ︸
ψ

− (Cov(x, y) + E[x] E[y])2131

132

where, by completing the square, we have133

ψ = Var(x) Var(y) + E[x]2 E[y]2 + Var(y) E[x]2 + Var(x) E[y]2134
135

and substituting back136

Var(xy) = Var(y) E[x]2 + Var(x) E[y]2 + Var(x) Var(y) +137
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Cov
(
x2, y2

)
+ E[x]2 E[y]2 − (Cov(x, y) + E[x] E[y])2 (S.12 )138

139

When x and y are independent, all covariance terms are zero; thus,140

= E[x]2 Var(y) + E[y]2 Var(x) + Var(x) Var(y) + E[x]2 E[y]2 − E[x]2 E[y]2141

= E[x]2 Var(y) + E[y]2 Var(x) + Var(x) Var(y) (S.13 )142
143

Otherwise, when x and y are not independent, the exact variance is given by (S.12 ). Equation144

(S.12 ) can be compared against the Delta Method approximation (S.3 ) for the extra terms included145

in the exact form. The above is certainly no simpler than what Goodman proposed, but it is146

arguably presented in more familiar manner.3147

S.3.2 Goodman’s variance estimator148

Goodman also presented an “unbiased estimate [sic] of the variance” Var(xy). Although he ne-149

glected to demonstrate its unbiasedness, it is straightforward to show that it is indeed an unbiased150

estimator by taking its expectation. The estimator is his (5) for random variables x and y and is151

given as. . .152

v̂ar(xy) = x2v̂ar(y) + y2v̂ar(x)− v̂ar(x) v̂ar(y)153

Goodman also presents equations (6) and (9) for means, where the latter is. . .154

v̂ar(x̄ȳ) = x̄2v̂ar(ȳ) + ȳ2v̂ar(x̄)− v̂ar(x̄) v̂ar(ȳ)155

This equation, (9), is what is used in the sampSurf simulations in the main document.156

S.4 Simulated Tree Population Summaries157

The results in this section are based on the simulations described in the main document. As noted158

there, these simulations use the sampSurf package (Gove, 2012), which was developed for the R159

statistical analysis system (R Core Team, 2019), and which is readily available online. However, the160

base sampSurf packages has no support for double sampling in general or for big BAF sampling in161

particular. In order to keep the sampSurf package manageable, a second package was developed as162

an extension of the base sampSurf package employing a class structure applicable to general double163

sampling designs that builds on the original sampSurf class structure. The big BAF method, being164

a form of double sampling, was added to this structure and is found in the supporting ssExtra (i.e.,165

sampSurf extra) package. The simulation results in the following, therefore, were created using the166

sampSurf ssExtra package.4167

3One can find a sketch of the above at https://en.wikipedia.org/wiki/Variance.
4The ssExtra package is available from the authors on request.
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S.4.1 Northern hardwoods168
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(S.1a) Basal area: Fc = 3
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Figure S.1: The northern hardwoods tree (‘+’) population sampling surfaces for (a) total BAFc

basal area and (b) total BAFv volume. One Monte Carlo realization of a sample size of n = 100
random sample points is also shown (red, ‘x’).
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Figure S.2: The distribution of tree diameters (left) and heights (right) for the northern hardwoods
population. A Weibull distribution from which the tree diameters were drawn is also shown (red).

S.4.1.1 Monte Carlo sample ratios169

The average sample ratios realized from the Monte Carlo simulations for northern hardwoods by170

sample size are presented in Table S.1. The population (theoretical) sample ratio is the ratio of171

the respective BAFs given in the first two columns; i.e., Fv/Fc. For each sample size and BAF pair,172

the result is a ratio of means estimate computed as the ratio of the mean BAFv and mean BAFc173

tallies over all Monte Carlo replicates.174

Figure S.3 presents a set of histograms for one pair of big BAF basal area factors illustrating the175

convergence of the individual observed Monte Carlo sample ratios to a Gaussian distribution as176

sample size increases. The mean-of-ratios estimate shown for this set (red-tick) can be compared177

against the ratio-of-means estimate in Table S.1; the two are close in general.178

Table S.2 presents the Monte Carlo results for the standard deviations over all the individual ratio179

replicates associated with the averages in Table S.1.180
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Table S.1: Sampling surface Monte Carlo mean sample ratios for the north-
ern hardwoods population.

Fc Fv Count:Volume Ratio
(m2 ha−1) (m2 ha−1) Population n = 10 n = 25 n = 50 n = 100

3 10 3.33 3.33 3.34 3.32 3.34
4 10 2.50 2.50 2.51 2.49 2.50
5 10 2.00 2.00 2.01 2.00 2.00

3 20 6.67 6.74 6.68 6.66 6.63
4 20 5.00 5.06 5.01 5.00 4.98
5 20 4.00 4.05 4.01 4.00 3.98

3 30 10.00 10.05 10.08 10.00 9.95
4 30 7.50 7.54 7.56 7.50 7.46
5 30 6.00 6.04 6.05 6.00 5.97
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Figure S.3: The observed Monte Carlo sample ratios for the northern hardwood population with
Fc = 5 and Fv = 30. The blue and red tick marks represent the population and mean-of-ratios
estimates, respectively.
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Table S.2: Sampling surface Monte Carlo sample ratio standard deviations
for the northern hardwoods population.

Fc Fv Population Standard Deviation
(m2 ha−1) (m2 ha−1) ratio (Fv/Fc) n = 10 n = 25 n = 50 n = 100

3 10 3.33 0.82 0.42 0.28 0.20
4 10 2.50 0.56 0.30 0.20 0.15
5 10 2.00 0.40 0.22 0.15 0.11

3 20 6.67 2.91 1.32 0.88 0.60
4 20 5.00 2.10 0.97 0.65 0.45
5 20 4.00 1.63 0.75 0.51 0.35

3 30 10.00 7.15 2.83 1.79 1.20
4 30 7.50 5.21 2.07 1.33 0.89
5 30 6.00 4.14 1.61 1.04 0.71

S.4.2 White pine181
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Figure S.4: The eastern white pine tree (‘+’) population sampling surfaces for (a) total BAFc basal
area and (b) total BAFv volume. One Monte Carlo realization of a sample size of n = 100 random
sample points is also shown (red, ‘x’).
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Figure S.5: The distribution of tree diameters (left) and heights (right) for the white pine popula-
tion.

S.4.2.1 Monte Carlo sample ratios182

The average sample ratios realized from the Monte Carlo simulations for white pine by sample size183

are presented in Table S.3. The population (theoretical) sample ratio is the ratio of the respective184

BAFs given in the first two columns; i.e., Fv/Fc. For each sample size and BAF pair, the result is a185

ratio of means estimate computed as the ratio of the mean BAFv and mean BAFc tallies over all186

Monte Carlo replicates.187

Figure S.6 presents a set of histograms for one pair of big BAF basal area factors illustrating the188

convergence of the individual observed Monte Carlo sample ratios to a Gaussian distribution as189

sample size increases. The mean-of-ratios estimate shown for this set (red-tick) can be compared190

against the ratio-of-means estimate in Table S.3; the two are close in general.191

Table S.4 shows the Monte Carlo results for the standard deviations over all the individual ratio192

replicates associated with the averages in Table S.3.193
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Table S.3: Sampling surface Monte Carlo mean sample ratios for the white
pine simulated population.

Fc Fv Count:Volume Ratio
(m2 ha−1) (m2 ha−1) Population n = 10 n = 25 n = 50 n = 100

3 10 3.33 3.32 3.33 3.33 3.33
4 10 2.50 2.49 2.50 2.50 2.50
5 10 2.00 1.98 2.00 2.00 2.00

3 20 6.67 6.70 6.70 6.68 6.65
4 20 5.00 5.02 5.03 5.01 4.98
5 20 4.00 4.00 4.02 4.01 3.99

3 30 10.00 10.05 10.09 10.06 10.00
4 30 7.50 7.52 7.58 7.55 7.49
5 30 6.00 6.00 6.06 6.04 6.00
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Figure S.6: The observed Monte Carlo sample ratios for the white pine population with Fc = 5
and Fv = 30. The blue and red tick marks represent the population and mean-of-ratios estimates,
respectively.
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Table S.4: Sampling surface Monte Carlo sample ratio standard deviations
for the white pine simulated population.

Fc Fv Population Standard Deviation
(m2 ha−1) (m2 ha−1) ratio (Fv/Fc) n = 10 n = 25 n = 50 n = 100

3 10 3.33 0.76 0.39 0.25 0.18
4 10 2.50 0.47 0.26 0.17 0.12
5 10 2.00 0.33 0.19 0.13 0.09

3 20 6.67 2.43 1.17 0.76 0.52
4 20 5.00 1.67 0.85 0.54 0.38
5 20 4.00 1.27 0.65 0.43 0.29

3 30 10.00 5.54 2.34 1.47 1.01
4 30 7.50 3.92 1.71 1.07 0.74
5 30 6.00 2.97 1.32 0.85 0.57

S.5 Monte Carlo Results194

S.5.1 Northern hardwoods195

S.5.1.1 Standard errors196

The overall standard error results are presented in the main manuscript.197
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Figure S.7: The northern hardwood Monte Carlo tree VBAR standard error simulation results as
the average over 1, 000 replications for each BAF and sample size with the ŝe

(
V̄
)

(solid, �) and
ŝeR
(
V̄
)

(dashed, +).

S.5.1.2 Confidence interval capture rates198

The confidence interval capture rates for the northern hardoods population are found in Figure 2.199

S.5.1.3 Correlation200

The correlation results for the northern hardoods population are found in Figure 3.201

S.5.2 White pine202

S.5.2.1 Standard errors203

The results of the Monte Carlo simulations in Figure S.8 are presented in the form of a ‘Smith’ plot204

(Smith, 1938) with the inverse of BAFv as a surrogate for plot size (e.g., Arvanitis and O’Regan,205

1967).206
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Figure S.8: The white pine Monte Carlo standard error simulation results as the average over 1, 000
replications for each BAF pair and sample size with the Delta Method (�) and Goodman’s (+),
using the variance of the mean (6) (dashed) and the ratio variance estimator (12) (dotted). The
reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results.
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Figure S.9: The white pine Monte Carlo tree VBAR standard error simulation results as the average
over 1, 000 replications for each BAF and sample size with the ŝe

(
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)
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(
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)

(dashed,
+).

S.5.2.2 Confidence interval capture rates207

The confidence interval capture rates for the white pine population are found in Figure S.10.208

The rates are all nominally 95% and range within the Monte Carlo experiments from 93.2–96%,209

depending on the sample size and BAFs used.210
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Figure S.10: The white pine Monte Carlo simulation results for confidence interval capture rates as
the average over 1, 000 replications for each BAF pair and sample size with the Delta Method (�)
and Goodman’s Method (+), using the usual sampling variance of the mean (6) (dashed) and the
ratio variance estimator (12) (dotted). The reference lines (solid, •) are the average Monte Carlo
capture rates for the BAFc HPS results.
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S.5.2.3 Correlation211
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Figure S.11: The white pine Monte Carlo simulation correlation results as the average over 1, 000
replications for each BAF pair and sample size. The tree-wise correlations, ρ̂(Vi, bi) (dot-dashed,
x), and point-wise correlations ρ̂(Vvs , Bcs) (dash, +) and ρ̂

(
V̄vs , B̄cs

)
(solid, �), are presented. The

reference lines (dotted) show the population correlation of ρ(V, b) = 0.37 over all trees in the
population.
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