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Building on the last “new” thing: exploring the compatibility of
ecological and adaptation silviculture1

AnthonyW. D’Amato and Brian J. Palik

Abstract: Sustaining the structure, function, and services provided by forest ecosystems in the face of changing climate
and disturbance regimes represents a grand challenge for forest managers and policy makers. To address this challenge, a
range of adaptation approaches have been proposed centered on conferring ecosystem resilience and adaptive capacity;
however, considerable uncertainty exists regarding how to translate these broad and often theoretical adaptation frame-
works to on-the-ground practice. Complicating this issue has been movement away, in some cases, from other recent advan-
ces in forest management, namely ecological silviculture strategies that often focus on restoration. In this paper, we
highlight the areas of compatibility and conflict between these two frameworks by reviewing the four principles of ecologi-
cal silviculture (continuity, complexity and diversity, timing, and context) from the perspective of global change adapta-
tion. We conclude that given many commonalities between the outcomes of ecological silviculture and conditions
conferring adaptive capacity, the four principles remain a relevant starting point for guiding operationalization of often
theoretical adaptation strategies.

Key words: variable retention, biological legacies, variable density thinning, ecosystem complexity, emulation of natural
disturbance regimes.

Résumé : Face aux changements climatiques et aux régimes de perturbations, le maintien de la structure, des fonctions et
des services fournis par les écosystèmes forestiers représente un défi majeur pour les aménagistes forestiers et les responsa-
bles politiques. Plusieurs approches adaptatives ont été proposées pour relever ce défi, mais elles sont toutes axées sur le
renforcement de la résilience et de la capacité d’adaptation des écosystèmes. Cependant, il existe une incertitude considér-
able quant à la manière de mettre en pratique ces larges cadres d’adaptation qui sont souvent théoriques. Pour compliquer
ce problème, on s’est parfois éloigné d’avancées récentes en matière d’aménagement forestier, comme les stratégies de syl-
viculture écologique qui se concentrent souvent sur la restauration. Dans cet article, nous mettons en évidence les zones de
compatibilité et de conflit entre ces deux cadres d’adaptation en passant en revue les quatre principes de la sylviculture éco-
logique (continuité, complexité et diversité, moment d’intervention, et contexte) dans une optique d’adaptation aux
changements globaux. Nous concluons qu’étant donné les nombreux points communs entre les résultats de la sylviculture
écologique et les conditions qui confèrent une capacité d’adaptation, les quatre principes demeurent un point de départ
pertinent pour guider la mise en œuvre de stratégies d’adaptation qui sont souvent théoriques. [Traduit par la Rédaction]

Mots-clés : rétention variable, legs biologiques, éclaircie à densité variable, complexité de l’écosystème, émulation des
régimes de perturbations naturelles.

Introduction
Recent and anticipated changes in climate and disturbance

regimes have magnified the challenges facing the long-term sus-
tainability of forest habitats and ecosystem services (McDowell
et al. 2020). The novelty and uncertainty of these changes, includ-
ing an increasing frequency of extreme droughts and precipita-
tion events and the proliferation of nonnative insects and
diseases, have resulted in greater focus on recalibrating and, in
some cases, abandoning the silvicultural strategies used histori-
cally to manage forests, primarily for timber resources, in many
regions globally (Messier et al. 2015). Associated with this shift
has been an increased emphasis on the development of adaptation
strategies that create compositional and structural conditions that

may be less vulnerable and (or) more able to adaptively respond to
future changes in climate and disturbance regimes (Nagel et al.
2017). The movement towards silviculture for adaptation is cer-
tainly justified by observed and projected shifts in forest condi-
tions; however, questions remain regarding what compatibility,
if any, these strategies might have with current management
approaches designed to restore and sustain ecological characteris-
tics of natural forest ecosystems.
Prior to the more recent advent of adaptation silviculture, a

major shift in management paradigms occurred in the late 20th
century, as greater awareness of ecosystem ecology, natural for-
est dynamics, and conservation of biodiversity led to develop-
ment of ecological silviculture as an alternative to strategies
focused primarily on commodity production (Franklin et al. 1986;
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Hunter 1999). Although components of ecological silviculture
were described and espoused by foresters and scientists as early
as the late 19th and early 20th centuries (D’Amato et al. 2017), the
more recent emphasis included widespread formalization of sil-
vicultural systems that drew heavily upon natural forest develop-
ment models to inform severity and frequency of regeneration
harvests and associated levels of biological legacy retention
(Franklin et al. 2007; Long 2009; Seymour and Hunter 1999).
Central to these methods is the emulation of the historical

range of variability in natural disturbance patterns, with outcomes
often targeted towards restoring and maintaining structural and
compositional conditions documented for natural forest systems
in a given region (Bauhus et al. 2009; Beller et al. 2020; Fassnacht
et al. 2015; Fries et al. 1997; Stockdale et al. 2016). The reliance of
these approaches on historical analogs and benchmarks has led
to criticism regarding their utility in addressing forest manage-
ment objectives in an era of global change, with associated nov-
elty and uncertainty in forest conditions (Seastedt et al. 2008).
Nonetheless, the general outcomes of ecological silvicultural
strategies, including high levels of heterogeneity in structural
and compositional conditions at stand and landscape scales, align
with many recommendations for increasing forest adaptive capacity
(D’Amato et al. 2011; Puettmann 2011), suggesting that there may
be more compatibility between ecological and adaptation approaches
than a cursory examinationmight suggest.
The goal of this paper is to examine the guiding principles of

ecological silviculture in the context of emerging objectives asso-
ciated with forest adaptation to global change. Specifically, we
(i) outline the foundational principles of ecological silviculture in
relation to original motivating objectives and contemporary ad-
aptation strategies and (ii) illustrate the utility of silviculture
based on natural developmental models in designing forest adap-
tation strategies. Our intent is to contribute to a path forward for
adaptation silviculture that scaffolds on ecological silviculture
principles to maximize integration, where appropriate, between
these management regimes and frameworks. Through this inte-
gration, our ultimate goal is to increase levels of adaptation prac-
ticed by forest managers by demonstrating the utility of existing,
on-the-ground practices and principles to address global change
impacts.

Principles of ecological silviculture
The outcomes of ecological silviculture in the context of a wide

range of taxa and objectives have been covered extensively in
articles in the Canadian Journal of Forest Research and elsewhere
over the past several decades (e.g., Carter et al. 2017; Franklin
et al. 2019; Kuuluvainen and Grenfell 2012; Lõhmus and Kull 2011;
Sullivan et al. 2017). Nevertheless, guiding principles for its appli-
cation in silvicultural prescriptions have only recently been for-
malized (Palik et al. 2020), building on elements first introduced
in the 1990s (Franklin et al. 1997; Seymour and Hunter 1999). The
four foundational principles now recognized in the application
of ecological silviculture are (i) continuity, (ii) complexity and di-
versity, (iii) timing, and (iv) context (Palik et al. 2020). Although
the general intent of each principle historically has centered on
restoration and sustainability of habitat, biodiversity, and natu-
ral processes, their relevance to silviculture for adaptation is
summarized in the following sections.

(i) Continuity
The principle of continuity emphasizes deliberate manage-

ment actions that provide for continuity in forest structure, func-
tion, and biota between pre- and postharvest ecosystems during
regeneration harvests (Palik et al. 2020). Although intended to
ensure continuity through retention and protection of a broad
suite of biological legacies (sensu Franklin et al. 2000), including
deadwood and advance regeneration, this principle has largely
manifested in the selective retention of mature canopy trees as

scattered individuals or groups during regeneration harvests, so
called variable retention harvest (Franklin et al. 2019; Gustafsson
et al. 2012; Urgenson et al. 2013). As such, retention harvests have
often become synonymous with the practice of ecological silvi-
culture, even though the full suite of principles associated with
this management paradigm (as described in the following sec-
tions) is not being followed (Palik and D’Amato 2017).
Managing for continuity was originally conceived as a strategy

to lifeboat species and processes from the preharvest community
into regenerating areas in ways that emulated the outcomes of
natural disturbance (Franklin et al. 1997); however, many objec-
tives associated with adaptation are also achieved through these
practices (Table 1). This congruity between ecological and adap-
tion approaches largely stems from the recognized importance
of disturbance legacies, like surviving individuals or physical
structures, in affecting patterns of response following disturban-
ces and hence overall levels of ecosystem resilience (Johnstone
et al. 2016). Recent discussions of adaptation strategies and asso-
ciated resilience mechanisms now often refer to biological lega-
cies as components of ecological memory (Puettmann et al. 2009);
however, in practice, ecological silvicultural strategies such as
variable retention harvesting systems remain the practical man-
agement tool to confer these mechanisms (e.g., J.A.C. Bergeron
et al. 2017). Given the importance of legacies in affecting ecosys-
tem reassembly and resilience, we expect managing for continu-
ity to remain a critical element of forest adaptation strategies,
regardless of the novelty of the ecosystem.

(ii) Complexity and diversity
The principle of complexity and diversity emphasizes the

application of silvicultural treatments to create and maintain
heterogeneity in structural and compositional conditions across
multiple spatial scales (Palik et al. 2020). This principle was con-
ceived in recognition of the variety of niches provided by forest
ecosystems exhibiting a diversity of structures and canopy tree
species, particularly evident in old-growth forests (Carey et al.
1999; Spies and Franklin 1996). Silvicultural systems developed to
reflect this principle generally represent modifications of existing
multi-age regeneration methods, such as selection and irregular
shelterwood methods, to emulate aspects of prevailing natural dis-
turbance regimes, including structural outcomes (Bauhus et al.
2009) and disturbance severities and frequencies (Seymour 2005).
For regions dominated by relatively homogeneous forest condi-
tions (e.g., plantations and second-growth ecosystems), variable
density thinning, which combines thinning and regeneration
methods to introduce spatial complexity in structure and compo-
sition (Carey 2003), has been a widely popularized approach
reflecting this principle (Dodson et al. 2012; Donoso et al. 2020;
Pukkala et al. 2011).
Of the principles associated with ecological silviculture, the

principle of complexity and diversity has the greatest congruity
with silvicultural strategies for adaptation to global change
(Table 1). Beyond the previouslymentioned linkages between bio-
logical legacies and ecosystem resilience, the recognized differ-
ential susceptibility of different species and tree size classes to
disturbances and environmental stressors has resulted in adapta-
tion strategies for developing mixed-species forests with com-
plex structures (D’Amato et al. 2011; Puettmann 2011). A key
difference between ecological and adaption silviculture in appli-
cation of this principle resides in the long-termmanagement out-
comes associated with complexity; adaptation strategies focus
more on sustaining ecosystem services and functions, whereas
ecological silviculture strategies focus more on habitat and
native biodiversity associated with “natural” ecosystems (Millar
et al. 2007).
In practice, many of the ecological silviculture approaches devel-

oped to address the principle of complexity and diversity have
direct translation to adaptation. For example, the heterogeneity in
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Table 1. Example outcomes of application of four principles of ecological silviculture to biodiversity conservation and adaptation to global
change.

Original intent (e.g., biodiversity
conservation) Global change adaptation Ecological silviculture practice

Continuity
� Lifeboating of species requiring mature

forest conditions (Franklin et al. 1997)
� Greater diversity of food or energy sources

from canopy species (Fedrowitz et al. 2014)
� Large snags or deadwood for saproxylic

and cavity nesting species (Lindenmayer
et al. 2012)

� Maintain options for regeneration in face
of uncertainty (Swanston et al. 2016)

� Amelioration of harsh environmental
conditions (Park et al. 2014)
* Regeneration safe sites (shaded

understory, decomposed wood)
� Conservation of genetic diversity (Buchert

et al. 1997)
� Maintain ecological memory (Johnstone

et al. 2016)

� Variable retention harvest systems
(Gustafsson et al. 2012) that retain
* scattered individuals and groups of

mature trees
* diversity of canopy species and forms
* large dead trees

� Protection of advance regeneration during
harvests (Bergeron and Harvey 1997)

� Protection of deadwood legacies through
strategic deployment of leave-tree islands
or aggregates (Rudolphi et al. 2014)

� Deliberate retention and protection of
disturbance-generated structures (e.g.,
charred and windthrown trees) during
salvage logging (Thorn et al. 2020)

Complexity and diversity
� Diversity of habitat and functional niches

(Carey 2003)
* Tree size classes
* Deadwood decay classes
* Live-tree spatial conditions

(heterogeneity)
* Tree, shrub, understory species

� Reduced vulnerability to disturbance
(Churchill et al. 2013)
* Spatial variability in fuels
* Heterogeneity in wind risk (diverse

heights)
* Heterogeneity in potential host species

(insects, disease)
* Heterogeneity of tree sizes (host

preferences, stress tolerance)
� Multiple recovery and developmental

pathways (Boisvert-Marsh et al. 2020)
* Diversity of seed sources
* Advance regeneration

� Increased functional redundancy to offset
impacts of species loss (Messier et al. 2019)

� High levels of on-site mitigation potential
(carbon storage) relative to intensive
silviculture practices (Ford and Keeton 2017)

� Variable density thinning to create and
maintain stand-scale mosaic of differing
levels of canopy cover and resource
availability (Roberts and Harrington 2008)

� “Morticulture” (sensu Harmon 2001) to
actively recruit large deadwood over time

� Inclusion of large canopy gaps with legacy
retention in selection and irregular
shelterwood systems to balance structural
retention with resource requirements of
less-tolerant canopy species (Raymond
et al. 2009)

Timing
� Opportunity for multiple life cycles for

species with slower development (Bartels
et al. 2018)

� Habitats for large tree specialists (live and
dead trees) (Roberge et al. 2018)

� Long-termmaintenance of options for
adaptation from current overstory species
(Depardieu et al. 2020)

� Long-term amelioration of extremes in
understory conditions (Martínez Pastur
et al. 2019)

� Reduced likelihood for compounding
influence of harvesting with other
stressors or disturbance (Paine et al. 1998)

� Accumulation of large on-site carbon
stores (D’Amato et al. 2011)

� Use of extended rotation periods that
extend well beyondmaximummean
annual increment (Curtis 1997)

� Increase canopy residence time of long-
lived species through extended cutting
cycles and permanent legacy retention in
stands managed with selection-based
methods (Shields et al. 2008)

Context
� Connectivity across landscapes and habitat

gradients (e.g., riparian to upland, travel
corridors) (Montigny andMacLean 2006)

� Refugia at multiple scales (Hunter 2005)
� Diversity of structures and composition at

landscape scale (Kuuluvainen and Grenfell
2012)

� Reduced risk from landscape-scale
stressors (drought) and disturbance
(insects, fire, wind) (Seidl et al. 2018)

� Greater options for adaptation potential at
broad scales (Park et al. 2014)

� Greater range of regeneration conditions
for new species due to localized and
landscape-scale heterogeneity in structure
(Messier et al. 2015)

� Strategic zonation of silvicultural intensities
across large ownerships and regions, using
for example the TRIADmodel (Seymour and
Hunter 1992), to include
* unmanaged ecological reserves

representing a range of biophysical
settings

* intensively managed areas proximate
tomills and othermarket opportunities
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structural and compositional conditions created by variable den-
sity thinning and retention systems provide a range of stand-level
adaptation pathways and functional conditions consistent with ad-
aptation goals (e.g., Churchill et al. 2013; Fig. 1). These often include
(i) unharvested reserve patches to serve as potential refugia for spe-
cies of concern; (ii) canopy openings to provide opportunities for
reorganization and functional enrichment via natural and artificial
regeneration processes; and (iii) low-density, thinned areas that
allow for tree-level selection of resilient forms and species (cf. Nolet
et al. 2014) and within-stand patches of reduced vulnerability to
crown fire and drought stress (Bottero et al. 2017). Given the recog-
nized importance of complex,multiscale interactions across condi-
tions such as these in conferring adaptation and resilience
mechanisms (Messier et al. 2013), adaptation strategies building
from these ecological silviculture approaches will remain relevant
into the future.

(iii) Timing
The principle of timing recognizes the importance of basing

silvicultural interventions, especially harvesting, on ecologically
relevant time intervals, as opposed to traditional metrics associ-
ated with maximizing net present value or biological production

of commercial species and products (Palik et al. 2020). In general,
this principle reflects the long recovery and developmental peri-
ods needed to develop structural features associated with later
stand developmental stages, such as large living and dead trees
and multiple canopy layers (Gerzon et al. 2011), as well as the nat-
ural variation in return intervals for disturbances in a given
region (Seymour and Hunter 1999). The management of forests
using extended rotations is one approach used to incorporate the
principle of timing into practice; this has proven effective at
restoring late-seral structure and composition even when it
incorporates periodic thinning (Bailey and Tappeiner 1998; Curtis
1995; D’Amato et al. 2010), while also sustaining high levels of wood
production and carbon benefits (Mathieu et al. 2012). Moreover,
varying rotation ages and cutting cycles across landscapes and
within stands to reflect historical, natural variation in disturbance
return intervals has been suggested as a strategy to sustain old for-
est habitat conditions in managed landscapes (Harvey et al. 2002;
Kern et al. 2017), including in the context of future increases in
disturbance frequency (Y. Bergeron et al. 2017).
However, this principle’s focus on extended rotations and lon-

ger harvest intervals is contrary to the recommendation, for ad-
aptation, to shorten these periods so as to rapidly adapt species

Fig. 1. Aerial view of variable retention harvest and variable density thinning (inset in lower left corner) with associated (a) unharvested
reserve patches, (b) dispersed mature legacy trees, and (c) canopy openings. Although originally conceived to increase the complexity
of species niches in homogenous managed forest ecosystems, such as the second-growth Pinus resinosa Aiton forests pictured, these
strategies also generate features conferring ecosystem resilience, including (a) within-stand refugia, (b) areas of reduced fire and drought
risk, and (c) areas for community reassembly via natural and artificial regeneration. Adapted from Palik et al. (2020). [Color online.]

Table 1 (concluded).

Original intent (e.g., biodiversity
conservation) Global change adaptation Ecological silviculture practice

� Creation of functional networks through
strategic maintenance and introduction of
future-adapted species across landscape
(Messier et al. 2019)

* extensively managed areas applying
the abovementioned ecological
silviculture principles to emulate
aspects of landscape and regional
patterns of natural disturbance

Note: Examples of silviculture practices used to address each ecological silviculture principle are included. Adapted from Palik et al. (2020).
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composition ormanagement objectives to climate or disturbance
impacts (Brang et al. 2014; Puettmann 2011), particularly for
highly vulnerable forest types or stand conditions. In reality,
climate and disturbance impacts are expected to display high
spatial variability within a given region (Meddens et al. 2018;
Stralberg et al. 2020), including nonuniformity in host loss to
invasive species (e.g., Robinett and McCullough 2019) and within-
species variation in climate sensitivity depending on underlying
site conditions and landscape position (Case and Peterson 2005;
Johnstone et al. 2010). As such, the appropriateness of the princi-
ple of timing in the context of adaptation may require refine-
ment in its application, for example, restricting its use to lower
vulnerability sites, so called climate refugia. These areas will be
critical for sustaining mature forest conditions for sensitive taxa
and may provide key functional feedbacks (sensu Messier et al.
2019) with younger portions of the landscape over time. Depend-
ing on species composition and management objectives, older
forest areas could be maintained through uneven-aged methods
based on shorter harvest intervals (e.g., Nolet et al. 2014) that
emulate aspects of historical disturbance regimes (Seymour and
Hunter 1999), while allowing flexibility to adapt ecosystem com-
ponents to emerging novel dynamics. In addition, permanent
retention of legacy trees (i.e., allowing some trees to live out their
full life cycle; see principle of continuity) in areas otherwise man-
aged on shorter rotations can allow for accumulation of genetic
variation and adaptive capacity in a species and population by
providing greater opportunity (i.e., time) for somatic mutations
to occur (Hanlon et al. 2019).

(iv) Context
The last foundational principle, context, acknowledges the im-

portance of accounting for the influence of silvicultural treat-
ments in affecting landscape structure and function over time,
particularly as it relates to provisioning for diverse habitat

conditions and flows of matter and organisms at multiple spatial
scales (Palik et al. 2020). This principle builds on the body of
knowledge accumulated over the past several decades that dem-
onstrates the spatially variable impacts of natural disturbances
and the resultant diversity in landscape-level habitat conditions
they maintain (Bergeron et al. 1999; Franklin and Forman 1987;
Hunter 1993). Recommendations for implementing the context
principle often involve spatially heterogeneous applications of
the first three principles to generate a diversity of forest develop-
mental stages with complex compositional and structural condi-
tions across a landscape (Harvey et al. 2002; Kuuluvainen and
Gauthier 2018). Of the four principles, context has proven most
challenging to implement for several reasons, including con-
straints of ownership size and cross-ownership coordination;
insufficient information on historical, landscape-level disturb-
ance patterns; and lack of acceptance of potential reductions
in timber revenues associated with extensive applications of ec-
ological silviculture (Kuuluvainen and Grenfell 2012; Long 2009;
J.R. Thompson et al. 2009).
Relative to managing for adaptation, a criticism of the context

principle has been the reliance on historical natural disturbance
regimes for guiding landscape-level implementation of silvicul-
tural activities, particularly given observed and projected shifts
in disturbance regimes under climate change (Beller et al. 2020;
Klenk et al. 2009). Nevertheless, aspects of this principle related
to acknowledging cross-scale interactions and maintenance of
diverse and complex habitat elements are consistent with land-
scape-scale recommendations for adaptation based on complex-
ity theory (Table 1; Messier et al. 2019). The latter places an
emphasis on spatially strategic application of adaption strategies
(e.g., enhancing functional diversity through regeneration activ-
ities) to enhance functional linkages across landscape units (Fig. 2;
Messier et al. 2019), whereas such interventions have largely been
guided by biodiversity objectives in the context of ecological

Fig. 2. Light detection and ranging (LiDAR) canopy height model of a portion of the New England Adaptive Silviculture for Climate Change
installation at the Dartmouth College Second College Grant, New Hampshire, USA (Nagel et al. 2017). Polygons delineate 10 ha management
units in which adaptation approaches for ecosystem resistance, resilience, and transition to climate change and disturbance impacts have
been implemented. Arrows illustrate examples of potential multiscale functional linkages and feedbacks between different landscape
elements (cf. Messier et al. 2019), including harvest gaps planted with species representing a range of functional traits, reserve patches,
and fine-scale mosaics of canopy disturbance generated by hybrid single-tree and group selection approaches. LiDAR image provided by
E. Broadbent, University of Florida, GatorEye Unmanned Flying Laboratory 2020 (http://www.speclab.org/gatoreye.html). [Color online.]
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silviculture. Despite these differences in framing, operational
implementation of landscape-level adaptation strategies will
likely consider ecological context and include landscape varia-
tion in the inclusion of ecological silvicultural principles, such as
continuity, complexity and diversity, and timing (Kuuluvainen
and Gauthier 2018; Ontl et al. 2020), but with a pronounced em-
phasis on their resultant functional response to climate and dis-
turbance (Aubin et al. 2016).

Natural development models and adaptation to novel
stressors
The framing of the previously mentioned principles of ecologi-

cal silviculture around emulation of natural forest dynamics and
resultant structural and compositional conditions of natural
forest ecosystems has led some to question their relevance in
addressing the novel stressors and dynamics facing many forests
globally (e.g., Messier et al. 2015). Instead, a point of emphasis for
many adaptation strategies has centered on deliberate shifts in
composition, including increasing the representation of species
projected as adapted to future climate and disturbance regimes
(Aubin et al. 2016; Iverson et al. 2019; Muller et al. 2019), or
encouraging regeneration and increased abundance of nonhost
species for a given introduced pest or pathogen (D’Amato et al.
2018). It can be argued that these tactics have little historical ana-
log, and thus the principles of ecological silviculture have little
relevance, yet an understanding of the regeneration and disturb-
ance processes that lead to recruitment of functionally similar
native species (e.g., shade tolerance or reproductive strategy)
remains a useful construct for guiding adaptation and ecosystem
transition.
As an example, recent projections of future tree distributions

indicate high potential for “new species” to expand in regions
dominated by northern hardwood ecosystems in northeastern
North America (Iverson et al. 2019). Given the general negative
correlation between shade and drought tolerance (Niinemets
and Valladares 2006), the majority of these “future-adapted” spe-
cies will be intolerant to mid-tolerant of shade. Traditionally,
these species would likely be encouraged using even-aged regen-
eration systems, such as clear-cutting with planting, to increase
their representation for adaptation (Pedlar et al. 2012). But such
recommendations run counter to the prevailing silvicultural sys-
tems used for the northern hardwood ecosystem in the region

(uneven-aged methods), which increasingly incorporate continu-
ity, complexity and diversity, and timing, and ignore the strong
dominance of shade-tolerant canopy tree species currently and
historically characterizing these forests (Russell et al. 2014; Thompson
et al. 2013). Instead, multi-age silvicultural approaches based on
elements of natural disturbance may still be appropriate, such as
continuous cover-irregular shelterwoods that emulate the meso-
scale wind events that historically provided recruitment opportu-
nities for species of lesser shade tolerance (Fig. 3; Hanson and
Lorimer 2007). Such an approach would provide adaptation strat-
egies that build from, versus run counter to, current operational
and ecological contexts.
For example, regeneration responses to natural-disturbance-

based regeneration methods in Wisconsin, USA, included a greater
abundance of future-climate-adapted species (based on Iverson
et al. 2019) in irregular shelterwood treatments that emulated
structural and resource conditions observed following micro-
bursts and other mesoscale events (Fig. 3; Hanson and Lorimer
2007). In contrast, selection-based treatments emulating frequent
gap-scale events primarily recruited climate-vulnerable, shade-
tolerant species (Fig. 3; Reuling et al. 2019). Although these latter
treatments are appropriate as resistance strategies for climate
change refugia, silvicultural systems that emulate mesoscale
events are most likely more suitable for managers seeking to
increase representation of future-adapted species and functional
responses as part of resilience and transition adaptation strat-
egies (cf. Nagel et al. 2017). In this case, seeking congruity between
recommended adaptation strategies and prevailing management
frameworks, such as ecological silviculture, may actually lead to
increased implementation of adaptation, compared with more
generic or theoretical adaptation recommendations, which can
appear abstract in the contexts of local management experience
and forest conditions (Timberlake and Schultz 2017).

Conclusion
Given the tremendous uncertainties around future changes in

climate and disturbance regimes, it is naïve to assume that any
single management framework or approach will be wholly suc-
cessful at sustaining ecosystem services and functions into the
future. Similarly, there is danger in rapid dismissal of contempo-
rary management frameworks, such as ecological silviculture,
that, despite originating under differing historical motivations,

Fig. 3. Mean density of natural regeneration of species (all species pooled) projected to be “future climate adapted” under a high-emissions
scenario (based on Iverson et al. 2019) in a large-scale ecological silviculture study in northern hardwood forest ecosystems in Wisconsin, USA
(see Fassnacht et al. 2015 for study details). Treatments correspond to an unharvested control, selection treatments emulating single-tree fall
gaps (“small gaps” = 90 m2 gaps) and multiple-tree fall gaps (“large gaps” = 260–470 m2 gaps), and irregular shelterwood systems emulating
mesoscale wind disturbance (“wind”). Bars are means and standard errors (n = 3), and values with different letters are significantly different at
p < 0.05 based on analysis of covariance (ANCOVA) and Tukey’s honestly significant difference (HSD). DBH, diameter at breast height (breast
height = 1.30 m).
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may provide forest conditions that confer future adaptive capacity
(Messier et al. 2015). The management community’s ability to
translate broad and often theoretical recommendations for adap-
tion into tangible, localized silvicultural strategies will require
clear operational linkages to current practices and should be eas-
ily related to experiences that are familiar (Ontl et al. 2018). This
includes recognizing commonalities between operational out-
comes of the ecological silviculture principles described herein
and strategies being advanced to manage for complex adaptive
systems and confer resilience in the face of global change (Messier
et al. 2013).
In many respects, the early reluctance to widely adopt ecologi-

cal silviculture practices, such as variable retention harvesting
and variable density thinning, was due in part to a poor cross-
walk of these practices to familiar silvicultural approaches such
as irregular shelterwood methods (Palik et al. 2020). Once this
cross-walk was made, adoption of, for example, variable reten-
tion harvesting began to be more widely accepted (Gustafsson
et al. 2012). Building adaptation strategies from existing and com-
patible frameworks, such as ecological silviculture, may avoid
similar pitfalls and confusion and allow for more rapid develop-
ment of the operational adaptation strategies urgently needed to
address global change.
The continued evolution of novel forest dynamics, and move-

ment towards undesirable tipping points, will increasingly di-
minish the relevance of historical dynamics and conditions for
informing silviculture (Fig. 4). However, as we have pointed out,
the principles of ecological silviculture (Palik et al. 2020) will con-
tinue to serve as key guides for development of adaptation silvi-
culture. The central premise of ecological silviculture focusing
on the maintenance and creation of structural and functional
complexity and heterogeneity, and compositional diversity at

multiple scales, through an understanding of ecological dynam-
ics, remains relevant to addressing the uncertainties of future
global change (Messier et al. 2015). Monitoring the outcomes of
ecological silviculture treatments in the face of changing condi-
tions will remain critical for determining the degree to which an
adaptation strategy departs from current practice and thus the
need for more novel transition approaches. It is likely that pro-
gression over time towards more novel conditions (e.g., Fig. 4)
and undesirable ecological thresholds will increase the reliance
on more experimental transition strategies; however, core ele-
ments of the ecological silviculture principles described herein
should remain central to these approaches, given their consis-
tency with our understanding of the ecosystem properties con-
ferring resilience (I. Thompson et al. 2009).
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