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A B S T R A C T

Surveillance programs to detect alien invasive pests seek to find them as soon as possible, but also to minimize
the cost of damage from invasion. To examine the trade-offs between these objectives, we developed an eco-
nomic model that allocates survey sites to minimize either the expected mitigation costs or the expected time
until first detection of an invasive alien pest subject to a budget constraint on surveillance costs. We also ex-
amined strategies preferred by ambiguity-averse decision makers that minimize the expected and worst-case
outcomes of each performance measure. We applied the model to the problem of detecting Asian longhorned
beetle (Anoplophora glabripennis) in the Greater Toronto Area, Canada, one of the most harmful invasive alien
insects in North America. When minimizing expected mitigation costs or expected time to detection, the trade-off
between these survey objectives was small. Strategies that minimize the worst-case mitigation costs differed
sharply and surveyed sites with high host densities using high sampling intensities whereas strategies that
minimize the worst detection times surveyed sites across the entire area using low sampling intensities. Our
results suggest that preferences for minimizing mitigation costs or time to detection are more consequential for
ambiguity-averse managers than they are for risk-neutral decision-makers.

1. Introduction

Early detection of invasive species populations has long been re-
cognized as a strategy to reduce the impacts of invasive alien species
(see Büyüktahtakın and Haight, 2018 for review). The fundamental
goal of early detection is to find invasive pest populations before they
reach a size that is too difficult to eradicate (Baker et al., 2009; Ewel
et al., 1999; Finnoff et al., 2007; Holden et al., 2016; Leung et al.,
2012). In addition to increasing the chance of eradication success, early
detection soon after establishment makes other rapid response mea-
sures (e.g., deployment of biological control) possible and less costly
(Epanchin-Niell and Liebhold, 2015; Leung et al., 2002; Lodge et al.,
2006; Rout et al., 2014).

Surveillance is fundamental to early detection. Recent work on
developing surveillance strategies for invasive species has focused on
finding optimal levels of surveillance effort, sometimes in combination

with eradication or other control activities (e.g., Chen et al., 2018;
Epanchin-Niell et al., 2012; Hauser and McCarthy, 2009; Homans and
Horie, 2011; Mehta et al., 2007). Other work has examined optimal
survey selection in spatial settings (Hester and Cacho, 2012; Horie
et al., 2013; Yemshanov et al., 2015, 2017a) and jointly in both spatial
and temporal domains (Epanchin-Niell et al., 2014; Moore and
McCarthy, 2016). In these studies, surveillance was undertaken to
minimize the expected costs of damage, subject to budgetary con-
straints on the surveys and/or other aspects of the management re-
sponse.

The objective of an early detection survey is to uncover the presence
of a species of concern in the shortest possible time after it arrives and
establishes. This objective has a one-period planning horizon that fol-
lows a typical one-year pest survey planning cycle. Often, first detection
of a novel harmful pest in a previously uninvaded area triggers a set of
response actions aimed to eradicate the pest population or impose
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phytosanitary restrictions to initiate containment actions (CFIA, 2013a,
2014a, 2017, FAO-IPPC, 2010; Guillera-Arroita et al., 2014). These
large-scale response actions can only be initiated once the pest's es-
tablishment into the area of concern is confirmed.

Timely detection is critical because eradication and containment at
earlier stages of an invasion have a substantially higher probability of
success (Tobin et al., 2012). In short, early detection surveys that aim to
discover the first arrival of a new invader into the area of concern can
be thought of as analogous to an alarm system that is designed to detect
the first unauthorized entry and trigger the response actions as soon as
possible. Therefore, the objective of early detection survey differs from
a typical objective of a delimiting survey, which aims to uncover all
details about the pest distribution in the area and may continue over
longer periods after initial discovery of the invader and regardless of
the number of detections in the area. Often delimiting surveys place
higher emphasis on sites with high host densities, since they are most
vulnerable to having high damages if detection fails. The strategy of
minimizing time to first detection does not have the same requirement
to consider site vulnerability to high mitigation costs. Instead, quick
detection of pest entry is the priority because it allows managers to
head off these mitigation costs by applying response measures at earlier
stages of an invasion when they are most effective.

To examine the trade-offs between these survey objectives, we de-
veloped a spatial optimization model that selects a subset of survey
locations to minimize either the expected costs of mitigating the inva-
sion (if the survey fails to detect the pest organism) or the expected time
until first detection of the pest in the surveyed area, subject to a budget
constraint on surveillance costs. In our study, the mitigation costs
amount to the expense of removing and destroying infested and highly
susceptible host trees from invaded sites, according to the protocols
defined for managing wood-boring pest invasions in urban areas. The
probabilities of pest introduction are uncertain and vary across the
landscape. We used estimates of these probabilities to develop a large
set of probabilistic invasion scenarios that depicted likelihoods of in-
vasion and subsequent damage to suitable hosts. We examined the
sensitivities of the survey allocations to changing the management
objective (i.e., minimizing expected mitigation costs vs. expected time
to first detection) and examined alternative strategies that minimized
the expected worst-case costs of each performance measure. We ad-
dressed these surveillance problems using the example of an ongoing
early detection survey program for Asian longhorned beetle (ALB,
Anoplophora glabripennis) in the Greater Toronto Area (GTA) of Ontario,
Canada to detect the presence of new introductions resulting from the
importations of commodities that may carry ALB from its native range.

2. Methods

We have developed a spatial optimization model for surveillance in
which uncertainty about the presence of an invader is represented by a
set of probabilistic scenarios (see Table 1 for a summary of notation
definitions). We subdivided our study area landscape into J contiguous
sites. For each site j, there is a population of Nj trees that may host an
invasive pest. Individual sites may have different risk of pest attack and
require different amounts of tree inspections to detect the signs of in-
festation. To detect the pest at a site j, we need to estimate the following
parameters contributing to a successful detection. For each tree k,
k=1, …, Nj at a site j, we need to know the likelihood that a tree is
infested θjk, the inspection effort vjk, the cost per time unit of inspection
cjk and the probability of detecting an outbreak after inspecting a tree if
it is present, γjk. While the true likelihoods of tree infestations are un-
known, their relative values can be estimated based on the invader's
historical patterns of spread and empirical estimates of infested trees
found in surveyed sites during previous surveillance campaigns. We
have used these estimates to develop a set of infestation scenarios, S,
where each scenario s, s ∈ S, is characterized by probabilities of in-
festation, θjks, for all trees k ∈ Nj and all sites j ∈ J. These scenarios are

based on stochastic predictions of the pest's spread through an unin-
vaded area. We assume each invasion scenario s has an equal prob-
ability of occurrence, 1/S.

The specific objective of our optimization model is to define the
amount of inspection effort that must be devoted to each candidate site
to minimize either the expected mitigation costs across the area of
concern (problem 1) or the inspection effort until first detection of the
pest in the targeted area (problem 2). We depict the intensity of in-
spections at surveillance sites as a number of trees inspected at a site j.
We define a set of M tree sampling levels, where each inspection level
m, m ∈ M, is characterized by a number of inspected trees, Km, where
Km≥ 1 and Km≤Nj. We also assume that Km trees are selected in order
of ease of access (i.e., accessible street trees before park and backyard
trees). For each site j, the choice of tree sampling level is defined by a
set of binary decision variables xjm, for all m ∈ M and j ∈ J, where each
xjm represents whether or not the sampling level m is selected at survey
site j. At most, one tree sampling level may be selected for each site:

∑ ≤ ∀ ∈
=

x j J1,
m

M

jm
1 (1)

Given a solution that the site is not surveyed, xjm , m=1, , , , , M,
then ∑ == x 0m

M
jm1  .

2.1. Problem 1: minimize expected mitigation costs

Problem 1 minimizes the expected costs to mitigate the invasion
from potential pest entries into both surveyed and un-surveyed sites.
For simplicity, we estimated the mitigation costs as the number of in-
fested and susceptible host trees that must be removed if the pest es-
tablishes in the area. For each surveyed site j under an infestation
scenario s, the mitigation cost, if the pest is found, is d1js, which re-
presents the cost of removing and disposing of infested trees. If the pest
is not found due to failed detection, we assume the pest continues to
spread in the area until it is detected by other means, leading to greater
mitigation costs, d0js, where d0js > d1js. The mitigation cost d0js re-
presents the cost of removing and disposing of the infested trees once
the signs of infestation are detected later by some other means (i.e.,
accidental detection by the general public), when a greater number of
trees will have to be removed to control the infestation. Similarly, we
assume that some trees will have to be removed from unsurveyed sites,
under the assumption that a portion of the trees across these sites may
be infested. Since each scenario s has unique probabilities of infestation
for individual trees, θjks, the mitigation cost at each site j is indexed by
scenario s.

Let pjms be the probability of detecting one or more infested trees in
a sample of Km trees in site j under scenario s:

∏= − −
=

p θ γ1 (1 )jms
k

K

jks jk
1

m

(2)

Then, the expected mitigation cost value at a surveyed site j under
scenario s is:

∑ + −
=

x p d p d[ (1 ) ]
m

M
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1
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(3)

If the site is not surveyed, ∑m=1
Mxjm=0, the expected mitigation

costs under scenario s is:
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Then, problem 1 minimizes the total expected mitigation costs over
all sites and scenarios:
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subject to an upper bound B on the inspection budget:
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and the inspection level selection constraint (1).

2.2. Problem 2: minimize time to first detection

The objective of problem 2 is to choose an inspection level for each
site to minimize the expected inspection time until first detection of the
pest in the area of concern. For each site j, inspection level m, and
scenario s, the parameter for the expected time to first detection of an
infested tree is tjms. The time to first detection is a statistical expectation
of the effort (measured in inspection time units) required to detect the
signs of infestation in a sample of inspected trees at a survey site j. The
time unit in our model depicts the effort required to inspect a single tree
(term vjk in Appendix S1 and Eq. (7)). It can also be expressed in
monetary terms as units of inspection effort (where inspecting a single
tree equals one unit of effort). Consider an inspection of a sample of k
trees in a survey site. Inspection of the first tree takes a unit of time, v1.
After inspecting the first tree, the probability of finding the infestation
is p(v1). Inspection of the next tree takes v2 and yields the detection
probability p(v2)× (1− p(v1)), which is the probability of failing to
detect after examining tree 1 but making the detection after inspecting
tree 2, etc. The time to first detection after inspecting k trees is a pro-
duct of the time (or inspection effort) spent on surveying trees 1, …, k
and the conditional probabilities of detecting the pest after inspecting
the kth tree while failing to detect after surveying all previous trees 1,
…, k-1. In short, we estimate the probability mass function for detecting
the pest after surveying a kth tree in a sample of inspected trees.

It is possible that the inspections of a sample of k trees may find no
infestation, therefore we need to account for the probability of detec-
tion failure after inspecting a sample of k trees. Based on a history of

past pest outbreaks, new infestations are eventually discovered by ac-
cidental means over a longer time, so we depict the “no-detection”
conditions in similar time domain and define the “no-detection” effort
with a very large time value at a site level, T that greatly exceeds the
detection times in sampled trees (T=1000). Thus, the time to first
detection metric is not a true estimate of detection time because it
factors in the conditional probability that the inspections of tree sam-
ples at the survey sites fail to detect an infestation, allowing it to spread
until the pest is detected by other means outside of the survey program.

In Appendix S1, we derive a formula for tjms by first defining a
discrete random variable for the time before the first detection is made
and then calculating its expected value:
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The time to first detection formula (7) has two terms. The first term
on the right-hand-side is the statistical expectation of the time (or ef-
fort) needed to make the first detection in a sample of inspected trees
and the second term is the expectation that the inspections of the
sampled trees will fail to detect the pest and it will be detected in time T
by other accidental means. For each site j, Eq. (7) computes the unique
detection time tjms for each combination of an infestation scenario s and
tree sampling rate xjm. For each scenario s, the expected time to first
detection is equal to the minimum detection time tjms across the J sites
in a scenario s, so the possibility of simultaneous inspections across
multiple sites is not considered.

The detection time metric tjms always varies between 0 and T, so it is
a relative measure. The closer the time to first detection across all sites j
to T, the more likely tree inspections will not find the pest after in-
spections of surveyed sites. The larger the sample of the inspected trees
at a site, the more likely the first detection will be made, so the de-
tection time becomes shorter. Accounting for non-detection is im-
portant because it helps depict the conditions when the tree-sampling
rate (or the probability of infestation) is low.

To minimize the expected time to first detection, we define a binary
variable Rjms for each scenario s that denotes whether the first detection
was made at a site j using an inspection level m. Binary variable Rjms is
used to identify the site with shortest detection time in an area J in a
scenario s. A detection can be made at site j using inspection level m

Table 1
Summary of the model variables and parameters.

Symbol Parameter/variable name Description

Sets:
j Potential survey sites in the managed area j ∈ J, J=1180
s Stochastic pest entry scenarios s ∈ S. S=1800
m Survey intensity levels m ∈ M, M=7
n,k Individual trees n,k inspected in a sample of Km trees at a survey site (auxiliary subscript, used to derive time to first detection tjms and detection

probability pjms, see Appendix S1)
n,k∈ Km

Parameters
B Survey budget B > 0
Nj Number of host trees at a site j Nj≥ 0
θjks Probability of infestation of a tree k in a site j in a scenario s θjks ∈ [0; 1]
γjk Pest detection rate for tree k in site j γjk ∈ [0; 1]
pjms Probability of detecting one or more infested trees in a sample of Km trees at a site j in a scenario s pjms ∈ [0;1]
cjk The cost of a unit of time to survey tree k in site j cjk > 0
vjk Time to inspect tree k in site j vjk > 0
tjms Expected time to first detection in site j using a sample size Km, under scenario s tjms > 0
d1js Damage to host at the time of detection at a site j in a scenario s d1js≥ 0⁎⁎

d0js Damage to host at a site j in a scenario s when the survey fails to detect the pest d0js≥ 0
Km Total number of trees that are inspected at a survey intensity level m 16…600
α Confidence level that defines the mitigation costs value that can be exceeded only in (1− α)⁎100% of worst pest entry scenarios 0.9
D Expected worst-case mitigation cost limit that could be tolerated by decision-maker D > 0

Decision variables:
xjm Binary survey selection of a site j xj ∈ {0,1}
Rjms Binary variable for each scenario s that denotes whether the first detection was made at site j using inspection level m. Rjms ∈ [0;1]
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only if the site is surveyed at that level, i.e., Rjms≤ xjm. Further, only
one detection event across the landscape J is considered shortest in each
scenario, i.e.:∑j=1

J∑m=1
MRjms=1. We assume that additional detec-

tions will not reduce the time to the first detection any further. Then,
problem 2 minimizes the expected time to the first detection over all
sites and scenarios:

∑ ∑ ∑
∈ ∈ = = =S

t Rmin 1
x j J m M s

S

j

J

m

M

jms jms
{ } 1 1 1jm (8)

subject to the budget constraint (6), inspection level selection con-
straint (1) and the constraints on the decision variables:

≤ ∀ ∈ ∈ ∈R x s S j J m M, ,jms jm (9)
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M
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Note that budget constraint (6) in problem 2 includes both inspec-
tion effort vjk and cost per unit of inspection effort cjk. Eq. (6) stipulates
that the sum of the inspection cost for each inspected tree (i.e., cjkvjk),
across all surveyed sites, must be less than or equal to the total budget.
Inspections of more trees usually increase the likelihood of finding in-
fested trees and so reduce the time to first detection, so the budget
constraint (6) is meaningful for problem 2.

2.3. Minimizing the expected worst-case time to first detection

Uncertainty about which sites the pest invades and how many trees
the pest infests causes the expected detection times tjms to vary across
infestation scenarios s, s ∈ S. As a result, for any given surveillance plan,
the inspection efforts to first detection within the managed area will
vary across the scenarios. The objective function in Eq. (8) minimizes
the mean time to first detection over all infestation scenarios but does
not explicitly consider the longest detection times in the tail of the
distribution (which have a small effect on the mean value). As a prac-
tical matter, the right-hand tail of the detection time distribution may
contain times to first detection close to T values, which indicate non-
detection and translate into greater damage to the host and greater
mitigation costs.

When faced with a potential detection failure, an uncertainty-averse
decision-maker may decide that non-detections are unacceptable even
if the probabilities of these events are low and will try to minimize these
outcomes at all costs. This behaviour is an example of ambiguity
aversion (Gilboa and Schmeidler, 1989). An ambiguity-averse manager
evaluates potential actions in terms of the minimum utility that might
emerge from selecting these actions. If the prior information about
potential outcomes of infestation is lacking, an ambiguity-averse
strategy at least ensures the best of the expected worst possible out-
comes.

Minimizing the expected longest time to first detection over the
infestation scenarios requires controlling the right tail of the distribu-
tion of detection times with a percentile metric that characterises the
expected tail value (Jorion, 2006; Studer, 1997). In particular, value-at-
risk (VaR) and conditional value-at-risk (CVaR) are used in the finance

field to evaluate risk of extreme losses (Acerbi and Tasche, 2002; Duffie
and Pan, 1997; Inui and Kijima, 2005; Rockafellar and Rockafellar and
Uryasev, 2000, 2002). In our detection survey problem, VaRα is de-
fined, with a confidence level α, α ∈ [0,1], as the value in the dis-
tribution of times to first detection in S scenarios that is exceeded only
in (1− α)× 100% of the scenarios (see Fig. S2.1 in Appendix S2). In
turn, CVaRα is defined as the expected detection time above VaRα for
confidence level α (Fig. S2.1 in Appendix S2). We use CVaR to depict
the ambiguity-averse strategy of avoiding the worst-case outcomes of
survey actions, i.e., minimizing the expected worst-case time to first
detection (and by extension, the expected worst-case mitigation costs D),
i.e.:

min[CVaR (time to first detection)]α (11)

s.t.

≤ DCVaR (mitigation costs)α (12)

where D is the expected worst-case mitigation cost level that could be
tolerated by a decision-maker. In our scenario-based formulation, the
objective function was linear with respect to the decision variables xjm
and Rjms, so we linearized the CVaR minimization using concepts from
Rockafellar and Rockafellar and Uryasev (2000, 2002), as implemented
by Yemshanov et al. (2017b) (see Appendix S2).

Table 2 lists basic optimization scenarios, which include the pro-
blem 1 and 2 solutions with and without ambiguity aversion assump-
tion. The model was composed in the GAMS environment (GAMS,
2016) and solved with the GUROBI linear programming solver
(GUROBI, 2016). We also explored the sensitivity of the objective
function values for problems 1 and 2 to relative changes in the model
parameter values (see Appendix S3).

2.4. Case study

2.4.1. Early detection of Asian longhorned beetle in the GTA
We applied our optimization models to develop strategies to detect

the presence of ALB in the GTA. Several outbreaks of ALB have been
found in eastern North America since 1996, when the first population
was found in New York, NY USA (Haack et al., 1997; Haack et al., 2010;
Shatz et al., 2013; Trotter III and Hull-Sanders, 2015; Turgeon et al.,
2015). All of these introductions involved specimens that arrived from
China (APHIS, 2005, 2013, 2016; Carter et al., 2009a, 2009b, 2010;
Javal et al., 2017). In all these infestations, maple (Acer spp.) was ALB's
main host. Other good hosts included birch (Betula spp.), poplar (Po-
pulus spp.), elm (Ulmus spp.) and willow (Salix spp.) (CFIA, 2014b;
Lingafelter and Hoebeke, 2002; Smith et al., 2009; Wang et al., 2005;
Williams et al., 2004). The first outbreak of ALB in Canada was dis-
covered in the GTA in 2003 (Hopkin et al., 2004). As part of the era-
dication strategy, a 152-km2 regulated area was established around the
infested area (Carter et al., 2009b; Haack et al., 2010; Smith et al.,
2009; Turgeon et al., 2010). Canadian Food Inspection Agency (CFIA)
declared this regulated area pest free in 2013 (CFIA, 2013b). Despite
successes at eradicating ALB in Canada and in the United States (APHIS,
2015; CFIA, 2013b; Stefan et al., 2014), and the implementation in
2006 of International Standards for Phytosanitary Measures No.15

Table 2
Model scenarios.

Problem formulation Objective value Decision-maker's perception of the
uncertainty

Objective function

Problem 1 Mitigation cost Ambiguity-neutral Min (expected mitigation cost) over S infestation scenarios and J survey
sites

Problem 1 Mitigation cost Ambiguity-averse Min (expected worst mitigation cost) over S scenarios and J survey sites
Problem 2 Time effort to first detection Ambiguity-neutral Min (expected time to first detection) over S scenarios and J survey sites
Problem 2 Time effort to first detection Ambiguity-averse Min (expected worst time to first detection) over S scenarios and J survey

sites
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(ISPM 15) to reduce the risk of introduction of quarantine pests asso-
ciated with the movement of wood packing materials (FAO-IPPC,
2017), ALB remains a threat in the GTA because the area receives large
quantities of imports from countries where ALB is found. The following
subsections briefly describe the values of parameters we used in our
optimization models (Table 1). We also provide full parameter esti-
mation in Appendix S4.

2.4.2. Sites and inspection levels
The CFIA currently conducts surveys to detect the presence of new

ALB populations in the GTA. The survey scheme involves subdividing
an area of potentially high risk of ALB arrival into hexagonal cells ap-
proximately 146.6 ha in size (Fig. 1) and inspecting 30 trees at each site
(Bullas-Appleton et al., 2017). We used this grid of hexagonal cells to
define our sites, and defined seven (M=7) possible inspection levels,
Km, ranging between 15 and 600 trees inspected per survey site.

Our detection time estimation followed the standard protocols
adopted by plant biosecurity agencies and municipalities for site sur-
veys involving tree inspections. Due to budget constraints, we assumed
that tree inspections at a site are performed sequentially by minimum-
size crews. Unlike a disease epidemic, for which there may be frequent
status updates, the status of an invasive insect pest such as ALB in an
area of concern is usually reassessed on an annual basis, which is
consistent with the life cycle of the pest and the deciduous tree hosts.

2.4.3. Likelihoods of ALB entry
We associated potential entries of ALB with imports based on his-

torical data that recorded interceptions of wood-boring pests on dif-
ferent commodity types. We used data on imports of commodities to the

GTA for 2014–16 provided by the Canadian Border Security Agency.
The data included country of origin, destination, commodity type, and
declared value. We considered only commodities that are documented
as potential carriers of ALB and similar wood-boring pests (Haack,
2001, 2006; Koch et al., 2011; McCullough et al., 2006; Work et al.,
2005). We used the import values as proxies of the likelihoods of ALB

Volume of imports,
million Cdn $-year-1

< 0.01 (low)
0.01 - 0.1
0.1 - 1
1 - 5
5 - 10
> 10 (high)

Fig. 1. Hexagonal pattern of survey sites in the Greater Toronto Area and the
risk of pest entry (depicted as average volumes of imports of pest-associated
commodities to GTA for 2014–2016, Cdn $-year−1).

Total host 
treeees, tr.-site-1:

Woodlot/papark     
treeees, tr.-site-1:

< 4000000 (low)
40004000 - 6006000
60006000 - 8008000
80008000 - 100010000
1000010000 - 120012000
> 120012000 (high)

Streeeet treeees, , 
tr.-site-1:

< 100100 (low)
100100 - 30300
300300 - 50500
500500 - 70700
700700 - 90900
> 90000 (highgh)

< 40004000 (low)
40004000 - 6006000
60006000 - 8008000
80008000 - 100010000
1000010000 - 120012000
> 12002000 (highgh)

a)

b)

c)

Fig. 2. Host tree density in the study area (ALB host genera only): a) total host
tree density; b) woodlot and park tree density; c) street tree density.
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entry at the survey sites (Fig. 1, Appendix S4).
Reports from ALB outbreaks in the GTA and in the eastern USA

suggested that infestations generally start at a single entry point (Hull-
Sanders et al., 2017; Turgeon et al., 2015). Hence, we assumed that an
ALB infestation at a site j represented a population spreading from a
single nucleus within a site. This assumption is primarily for compu-
tational simplicity and does not preclude infestations occurring (and
being detected) in multiple sites. For each scenario s, the number of
infested trees in an infested site j was chosen at random from a dis-
tribution of infested tree densities recorded in previous surveys in re-
sponse to the GTA outbreak. Based on records from these surveys, the
infested nuclei included between 1 and 40 infested trees with an
average of 8.3 trees per nucleus (Turgeon, unpubl. data). We used the

distribution of infested trees per nucleus to generate the number of
infested trees at ALB entry points in each stochastic scenario s (see
Appendix S4).

2.4.4. Mitigation cost values for successful and failed detections
We associated the mitigation cost values for successful and failed

detections, d1js and d0s respectively, with the number of infested and
likely infested host trees requiring removal when the pest is detected
via survey (or an undetected infestation is reported by the general
public). For successful detections, we assumed the size of the detected
nucleus to be roughly similar to the nuclei sizes documented in previous
ALB surveys in the GTA. We assumed that the number of trees requiring
removal would include the infested trees at the time of detection plus

Problem 1: Minimizing 
expected mitigation costs

≤30
30-100
>100
High host damage
if detec�on fails
High host density

Problem 2: Minimizing 
expected time to first detection

a)

b)

c)

Fig. 3. Survey allocations in problem 1 (minimizing the expected mitigation costs) and problem 2 solutions (minimizing expected time to first detection): a) budget
level $10,000; b) budget level $30,000; c) budget level $90,000. Maps show the solutions based on 1800 invasion scenarios. Close-ups highlight a portion of an
industrial area in the eastern GTA for problem solutions 1 and 2 (outline rectangle). Areas with high host tree densities are shaded in light grey. Empty circles show
the locations with the highest expected mitigation costs if detection fails (or the location is not surveyed). Solid circles, triangles and squares show different
inspection rates at the selected survey sites in optimal solution, trees-site−1.
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healthy host trees in a 400-m safety zone around all infested nucleus
plus those within the safety zone (as prescribed by CFIA's eradication
program (Smith et al., 2009)). We interpreted the number of host trees
within that safety zone as the mitigation cost value, d1js, when the pest
was detected at a site j.

When detection failed or the site was not surveyed, ALB was ex-
pected to spread undetected and build a larger population comparable
with the size of unchecked ALB populations observed during the 2003
outbreak in the GTA (i.e., over 646 infested trees). To estimate the
mitigation cost values for undetected populations, d0js, at each site, we
imposed a spatial spread configuration consistent with infestation pat-
terns during the 2003 GTA outbreak. We then added a 400-m safety
buffer to the locations of infested trees (again in keeping with eradi-
cation plan) and calculated the total number of host trees that would
require removal (see Appendix S4).

2.4.5. Detection probabilities and host tree densities
Estimation of mitigation cost values and detection probabilities re-

quired spatial information on the number of host trees in the GTA. We
predicted the total number of host trees by first estimating the area of
tree cover at each survey site j from the SOLRIS (2008) land cover
dataset and then converting this area into a number of host trees using

tree densities and the host species proportions from the City of Tor-
onto's Every Tree Counts survey (City of Toronto, 2012, 2013). We
identified host tree genera using CFIA's list of host species for ALB
(CFIA, 2016).

Detection of signs of infestation in urban settings was done via vi-
sual tree inspections by trained professionals (Turgeon et al., 2010).
The probability of finding signs of attack depends on where a tree is
located. Based on experience from previous ALB surveys in the GTA, we
identified three broad tree classes: street, backyard and woodlot/park
trees (Fig. 2). Street trees were the most accessible and required the
shortest inspection times. Inspection of backyard trees takes 2.5 times
longer due to limited access. Park and woodlot trees take six times
longer to inspect.

For each survey site we estimated the number of street trees using
Toronto's street tree database (City of Toronto, 2016). For areas in the
GTA but outside of the Toronto municipality, the number of street trees
was estimated as a function of the length of the street network and the
proportion of a given land cover type in a survey polygon (see Appendix
S4). The model explained 92.4% of the variance with cross-validation
accuracy 86.7% and was used to map the street tree densities outside of
the Toronto city limits (Fig. 2b). We assumed that the number of
backyard trees in the GTA was equal to the number of street trees
(McKenney et al., 2012). We estimated the number of woodlot trees as
the difference between the total number of host trees (described earlier)
and the number of street and backyard trees (Fig. 2c).

The detection probability, γ, after inspecting a street or backyard
tree was 0.7 (Turgeon et al., 2010). Park and woodlot trees have lower
detection rates (γ=0.4) because ALB exit holes are located higher in
dense stands, making the probability of detecting the pest lower than
for street trees.

Survey costs were based on the rates paid to contractors to do street
tree inspections in previous ALB surveys, with the average cost of in-
specting a street tree cjkvjk=Cdn $6.83 tr.−1. The costs of inspecting
backyard and woodlot trees were assumed to be proportional to their
inspection times (i.e., 2.5 and 6 times higher respectively). Tree types
were also assigned different likelihoods of being infested by ALB. Based
on data gathered from previous outbreak in the GTA, we assumed that
street and backyard trees are 5.6 and 5.9 times more likely to be in-
fested with ALB than woodlot trees (see Appendix S4).

2.4.6. Comparing optimal and rule-based survey strategies
In some circumstances, optimization-based planning of pest surveys

is unavailable and the survey design is guided by rules of thumb
(Parnell et al., 2015). We compared expected times to detection for four
simple rule-based strategies with the detection times in our optimal
solutions. Rule-based strategy 1 ranks the sites in the area by the
likelihood of pest entry and then the survey starts with inspecting all
trees at the site with the highest likelihood of pest entry. After all trees
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Fig. 4. Trade-off between the expected mitigation costs (in terms of the number
of trees requiring removal) and expected time to first detection. Squares (cal-
lout I) show optimal solutions for problem 2, which minimizes the expected
time to first detection. Triangles (callout II) show the optimal solutions for
problem 1, which minimizes the expected mitigation cost value. Labels above
the symbols denote the budget limit (B) for the optimal solutions. The co-
ordinates of each point on the curve show the problem 2 objective value (ex-
pected time to first detection) and problem 1 objective (expected mitigation
costs) set as a constraint.

Table 3
Number of sites surveyed vs. program budget in problem 1 and 2 solutions.

Model Survey intensity, trees-site−1 Total number of sites surveyeda

Budget level:
Proportion of sites surveyed, %
Budget level:

$10,000 $30,000 $90,000 $10,000 $30,000 $90,000

Problem 1:
minimize the expected mitigation costs

0–50 (low) 20 20 36 1.7% 1.7% 3.1%
50–150 12 36 56 1.0% 3.1% 4.7%
150–300 1 6 20 0.1% 0.5% 1.7%
300–600 (high) – – 10 – – 0.8%
Total 33 62 122 2.8% 5.3% 10.3%

Problem 2:
Minimize expected time effort to first detection

0–50 (low) 18 36 33 1.5% 3.1% 2.8%
50–150 16 38 72 1.4% 3.2% 6.1%
150–300 – 4 29 – 0.3% 2.5%
300–600 (high) – – 3 – – 0.3%
Total 34 78 137 2.9% 6.6% 11.6%

a The total number of candidate survey sites, J=1180.
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at the highest-ranked site are inspected, all trees at the site with the
second highest pest entry rank are inspected, and so on until the survey
budget is exhausted. Rule-based strategy 2 uses the same site ranking
scheme but limits the surveys to inspections of street trees only. Stra-
tegies 3 and 4 also use the same site ranking scheme but limit the survey
to 90 and 30 street trees per site. The rule-of-thumb solutions used the
same input data and detection time calculations as the optimization-
based solutions.

3. Results

3.1. Minimizing mitigation costs vs. minimizing time to first detection

Fig. 3 compares the model solutions that minimized expected mi-
tigation costs (problem 1) with those that minimized the expected time
to first detection (problem 2). At a broad scale, solutions to problems 1
and 2 concentrated surveillance in the three major industrial and
commercial areas in the GTA (Fig. 3 callout I) where the likelihood of
ALB introduction is highest (Fig. 1). Both problems called for industrial
areas to be surveyed at moderate inspection intensities. These areas are
characterized by low host densities (represented mostly by street trees)
and high likelihoods of pest introduction because they receive the lar-
gest amounts of high-risk imports. This makes industrial and commer-
cial areas prime candidates for surveys. Surveys also tended to avoid
sites with high host densities (shaded in light grey in Fig. 3) in parks,
woodlots and ravines. High tree density and difficult site access make
those sites expensive to survey.

The objective values in the solutions to problems 1 and 2 responded
differently to changes in model parameters. In problem 1 solutions that
minimized expected mitigation costs, the amount of damage if detec-
tion fails was the most influential parameter (Table S3.1 Appendix S3).
With respect to problem 2 solutions that minimized the expected time
to first detection, pest entry likelihood and the probability of detection
were the most influential parameters, followed by the survey cost
(Table S3.2 Appendix S3). In general, the spatial configuration of pest
entry likelihoods had greater influence on the objective function value
than the host density pattern. This implies that the correct estimation of
spatial likelihoods of infestation is critical for estimating the optimal
survey solutions.

At fine scales, the survey patterns in the problem 1 and 2 solutions
showed notable differences (Fig. S5.1 Appendix S5). Problem 1

solutions tended to select sites with high likelihood of pest entry (Fig. 1)
and the potential for high host damage (Fig. 3a) if detection fails (to
minimize the potential mitigation costs). For example, at larger budget
levels, the problem 1 solutions selected some sites in industrial and
commercial areas in close proximity to wooded areas (Fig. S5.1b Ap-
pendix S5 callout I). These sites are characterized by high probability of
pest entry but also high host densities in nearby woodlots. The problem
1 solutions selected these sites because timely detections could avoid
significant damage from undetected infestations that otherwise would
be incurred given the sites' proximity to these wooded areas. The pro-
blem 1 solutions (i.e., at larger budget levels) also selected some sites
with very high potential host damage values that derived largely from
their high host densities (Fig. S5.1b Appendix S5 callout II). However,
sites with high host densities require large numbers of trees to be in-
spected, which is expensive. Therefore, the problem 1 solutions only
called for inspections of a few of these critical sites in wooded areas,
although it is worth noting that these sites were not surveyed at all
under problem 2. Indeed, at larger budgets the problem 2 solutions
selected more sites in core industrial and commercial areas (Fig. S5.1b,
c Appendix S5, callout III), where the likelihood of pest entry is high but
host tree density is low.

We explored the trade-offs between model objectives under dif-
ferent budget levels and found that the budget level had much greater
impact on the expected mitigation costs value and expected detection
time than the choice of the model objective. Indeed, the trade-off be-
tween problem 1 and 2 solutions for the same budget level is small
(Fig. 4, callouts I and II), but the expected mitigation costs and detec-
tion time both decline steadily as the budget level increases. This is not
surprising for a couple of reasons. Foremost, the budget level de-
termines the total number of trees that can be inspected throughout the
survey area; more tree inspections translate to higher detection prob-
abilities and less time to expected first detection – but also to lower
expected mitigation costs from failed detections. The small magnitude
of the trade-off is explained partially by the contrasting spatial con-
figurations of the mitigation cost values for failed detections and the
likelihoods of pest entry. The sites that receive large quantities of im-
ports and thus have high pest entry likelihoods are all located in in-
dustrial and commercial areas. Most of these areas have low host
densities. A low number of host trees at a site translates to a smaller
sample of trees that require inspection to achieve a desired likelihood of
detection. Additionally, a low host density at a survey site also
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translates to a lower expected mitigation cost value if detection fails. In
short, a combination of high pest entry likelihoods and low host den-
sities makes industrial and commercial areas the best survey candidates
in both problems 1 and 2, so the trade-off between the problem solu-
tions is small. The magnitude of the trade-off would be greater if more
of the areas that receive high quantities of imports were close to areas
with high densities.

The budget level also influenced the number of sites surveyed at
high and low inspection intensities. The problem 1 solutions surveyed
more sites at high inspection intensity (Table 3). These sites were lo-
cated in wooded areas with high host densities and so required a high
inspection rate to facilitate detection. The problem 2 solutions selected
3–26% more sites for survey than the problem 1 solutions, and gen-
erally called for lower inspection rates (50–150 tr.-site−1) in the se-
lected sites.

3.2. Project budget and the expected mitigation cost target

Our results also provide insights on the cost-effectiveness of survey
efforts. Fig. 5a shows the survey budget level that is required to achieve
a desired target with respect to the expected mitigation costs and
Fig. 5b shows the budget level that is required to achieve a desired time
to first detection. Both curves in Fig. 5a, b show exponential decay as
the budget level increases. In both cases, the marginal mitigation cost
values and detection time both increase almost linearly starting from
very low budget levels (Fig. 5c, d). This implies that the surveillance at
low budget levels uses the budget funds more effectively than high-
budget surveys.

3.3. Rule-based vs. optimization-based survey strategies

We compared times to first detection in problem 2 solutions that
minimized the expected time to first detection with times to first de-
tection under four rule-based survey strategies (Table 4). For strategy 1,
which inspects all trees at survey sites, starting from the site with the
highest pest entry risk, the expected detection times were close to worst
detection time (i.e., T=1000). If the surveillance budget is low, then
under rule-based strategy 1, it may not be possible to inspect more than
a few sites. In turn, the expected detection time becomes close to the
maximum cutoff time T, when surveillance is assumed to have failed.
Inspecting all trees at a survey site implies examining backyard and
woodlot trees which have longer access and higher inspection cost than
street trees. This is why strategy 1 is less cost-effective than strategies
2–4, which limit inspections to street trees only and reveal shorter
detection times. The rule-based strategy 3, which calls for inspection of
a small set of street trees at a site, had the closest detection times to the
optimal solution for problem 2.

The budget range shown in Table 4 shows a typical range of survey
budgets in ALB survey programs in the GTA. At both budget levels, the
optimal solutions for problem 2 consistently yielded shorter expected
detection times than rule-based solutions. Nevertheless, it appears that
prioritizing the surveys by the risk of pest entry is a useful rule-based
strategy as long as inspections are limited to a small fixed number of
street trees.

3.4. Ambiguity-averse vs. risk neutral survey strategy

We compared the solutions for problems 1 and 2 that minimized the
expected values (Fig. 3) with the solutions when minimizing, respec-
tively, the expected worst-case mitigation costs and the longest ex-
pected time to first detection (Fig. 6). The survey patterns under these
ambiguity-averse strategies differed from the allocations based on the
strategies that minimized the expected values. For example, the pro-
blem 1 solutions that minimized the expected mitigation costs in Fig. 3
selected survey sites mostly in industrial areas. In contrast, the solutions
based on minimizing the worst-case mitigation costs prioritized sitesTa
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with very high host densities near parks and ravines (Fig. 6a, c, e).
Moreover, all selected sites in Fig. 6a, c, e that had high host densities
were surveyed at high inspection rates. This is because the acceptable
detection probability could only be achieved at those sites by inspecting
large numbers of trees.

Similarly, the problem 2 solutions that minimized the worst-case
time to first detection (Fig. 6b, d, f) revealed different survey patterns
than the solutions that minimized the expected detection time (Fig. 3).
Almost all selected sites were surveyed at the lowest inspection in-
tensity and were spread widely across entire study area. By comparison,
the strategy that minimized the expected time to first detection sur-
veyed fewer sites in major industrial areas, and at higher inspection
rates.

The spatial survey configurations in problem 1 and 2 worst-case
solutions did not coincide because of the distinct spatial configurations
of site attributes that cause the worst-case outcomes in problems 1 and
2. In problem 1, the sites that are likely to experience the most host

damage and require significant mitigation costs are characterized by
high host densities. Therefore, minimizing worst-case costs requires
surveying sites with high host densities. However, making detections at
these sites requires high sampling rates, which limits the total number
of sites that can be inspected for a given budget level. In problem 2, the
range of sites that could have the worst detection times (i.e., non-de-
tection) is much wider. Theoretically, detections could fail at any site,
so to constrain the worst detection times in the area as many sites as
possible must be surveyed. Because the best chances to make first de-
tection are at sites with high infestation likelihoods but low host den-
sities, lower sampling rates can be used and so more sites can be in-
spected than in problem 1 solutions.

We also examined the trade-offs between the two worst-case stra-
tegies. Fig. 7 shows trade-off curves for the two objectives at three
different budget levels. The squares at one end of each curve depict the
solutions minimizing the worst-case time to first detection (corre-
sponding to the maps in Fig. 6b, d, f), while the triangles at the other

a)

c)

e)

b)

d)

f)

≤30
30-100
>100
High damage
High host density

Min [ CVaR (mitigation costs) ] Min [ CVaR (time to first detection) ]

Fig. 6. Survey patterns for risk-averse policies in problems 1 and 2 that minimize either the expected worst-case mitigation costs or the expected worst-case time to
first detection: a, c, e) minimizing expected worst-case mitigation costs value, i.e., CVaR of cost values; b, d, f) minimizing expected worst-case time to first detection,
i.e., CVaR of detection time. Budget level: a, b) $10,000; c, d) $30,000; e, f) $90,000. Close-ups show an example of an industrial area in the eastern GTA (rectangle
outline). Areas with high host tree densities are shaded in light grey. Empty circles show the sites with highest expected mitigation costs when detection fails or the
site is not surveyed. Solid circles, triangles and squares show different inspection rates at the selected survey sites in optimal solution, trees-site−1.
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end of each curve depict the solutions minimizing the worst-case mi-
tigation costs (corresponding to the maps in Fig. 6a, c, e). The curves
indicate that a moderate reduction of the worst-case mitigation costs
does not substantially increase the worst-case detection time until a
point beyond which the worst-case detection time increases sharply.
This abrupt increase is a consequence of changing the survey strategy:
The only way to further decrease the expected worst-case mitigation
costs beyond that point is to survey sites with high host densities at high
inspection rates. This would reduce the budget portion spent on sur-
veying the remainder of the area and so the detection time increases
sharply. Fig. 7 suggests that the optimal strategy is to minimize the
worst-case detection time with moderate reduction of the worst-case
mitigation costs but not minimizing both.

Compared to the solutions based on minimizing the expected out-
come, minimizing the worst-case outcomes imposes a penalty on the
expected time and expected mitigation cost values (Fig. 8). For ex-
ample, minimizing the expected detection time does not lead to mini-
mization of the worst-case detection time (Fig. 8a, callout I). Further-
more, minimizing the worst-case detection time actually increases the
expected detection time, in some cases by>12% (Fig. 8a, arrows).
Note that the expected detection time decays exponentially as the
budget increases but the worst-case detection time decreases linearly
(Fig. 8a). This implies that the reduction of the worst-case detection
time, in relative terms, remains cost-effective when the survey budget

increases. A small budget is not sufficient to reduce the worst-case
detection time but causes a sharp increase of the expected detection
time (Fig. 8a callout II). Effective reduction of the worst-case detection
time is only possible when the budget limit exceeds $32,000. This in-
dicates that an ambiguity-averse strategy may only be feasible when the
budget is sufficient to survey a large number of sites. In comparison, the
strategy that minimizes the expected time to first detection is most cost-
effective at small budget levels (below $32000) when the surveys yield
the greatest marginal reduction of the detection time.

Minimizing the worst-case mitigation costs also imposes a penalty
on the expected mitigation cost value, but this penalty is relatively low
(Fig. 8b, arrows). As the budget level increases, both the expected and
worst-case mitigation cost decline in a similar fashion starting from
very small budget levels. This implies that strategies that minimize ei-
ther the expected or worst-case mitigation costs can be effective at a
wide range of budget levels, including small budgets below $32,000.

4. Discussion

Early detection of invasive alien species is challenging because de-
cision-makers deal with uncertainty about where and when the species
might establish in an uninvaded area. Often, the detection efforts are
constrained by poor capacity of the surveys to detect the organism and
a limited survey budget. Our model helps address these challenges with
the objective of detecting the invader in the shortest possible time. The
model also provides a mathematical foundation for the logic behind
some general pest surveillance practices, and facilitates the identifica-
tion of optimal early detection strategies for complex spatial cases when
the underlying assumptions about an invasive pest are uncertain. We
also demonstrate key differences between the time-minimizing detec-
tion strategy and surveys that minimize expected mitigation costs
across the entire landscape.

Our model is designed as a one-period planning tool but can be
applied within a broader response framework. Briefly, there are two
overarching outcomes of our model: the pest of interest is detected by
the survey program or it is not detected. If it is not detected, then the
model can be applied for the next planning cycle and so on until the
first detection in the area is made. However, if it is detected, this in-
itiates a new and distinct sequence of response actions, which might
include more detailed delimiting surveys and eradication efforts.

Note that the objective of early detection surveys is intrinsically
short-term – the surveys aim to detect the fact of new pest entry into an
uninvaded area and thereby serve as an alarm system designed to
trigger large-scale response actions after detection. In this case, the
number of invaded sites that are discovered over the course of the
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Fig. 8. Budget level vs. the reduction of the expected and
worst-case mitigation costs and times to first detection: a)
budget level vs. expected and worst-case times to first de-
tection. Ambiguity-averse survey strategy (bold lines) in-
dicates minimizing the expected worst-case time to first de-
tection (CVaR of detection time); risk-neutral strategy (dotted
and dashed lines) indicates minimizing the expected time to
first detection (the problem 2 solution); b) budget level vs.
expected and worst-case mitigation costs. Ambiguity-averse
survey strategy (bold lines) indicates minimizing the ex-
pected worst-case mitigation costs value (CVaR of cost va-
lues); risk-neutral strategy (dotted and dashed lines) indicates
minimizing the expected mitigation cost value (the problem 1
solution). Callout I shows that minimizing the expected time
to first detection does not minimize the CVaR of detection
time. Callout II shows a survey allocation example with the
budget level B=$32,000. Arrows show differences between
the expected and worst-case outcomes under risk-neutral
(dotted and dashed lines) and risk-averse survey strategies
(bold lines).
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survey is not critical as long as the pest is detected at some site in the
shortest possible time. In focusing on this specific short-term objective,
we are able to downplay time-sensitive components such as discounting
or pest population growth after arrival.

One important feature in our model is that it factors in failed de-
tections in the calculations of expected mitigation costs in individual
scenarios and therefore emphasizes the penalty for not finding the
target pest in a particular scenario. This instructs the model to focus on
those scenarios that may incur the largest damage from failed detec-
tions, so that successful detections in those scenarios would reduce the
total mitigation costs. The rationale behind including failed detections
is to consider the trade-off between choosing sites with the shortest
times to first detection versus sites where successful detections would
yield a greater reduction of the cost to mitigate further damage.

In theory, the model might behave differently if the control of mi-
tigation costs was included in the objective function equation. The non-
detections at the sites with low host densities would be penalized in
favour of selecting the sites with high host densities where the damage
to host from non-detection would be high. Incorporating the mitigation
costs into the objective function equation would enable assessing in-
tegrated management strategies which include both surveys and era-
dication (such as presented in Yemshanov et al., 2017a, 2017b). This
aspect is beyond the scope of this study but could be the focus of future
work.

4.1. When is an ambiguity-averse survey strategy preferred?

The problem 1 and 2 solutions both assume that a decision-maker is
risk-neutral and thus prefers to minimize the expected outcome.
However, these solutions differed sharply from the ambiguity-averse
survey strategies that minimized the expected worst-case outcomes. In
our case, the right tail of the detection time distribution included the
time when infestation is not detected via survey and instead is reported
by the general public (i.e., T=1000). Lowering the expected longest
detection time implies that the survey could detect the presence of the
pest, in the worst case, sooner than the public. So, in practical terms,
minimizing the longest detection time can be thought of as an ambi-
guity-averse survey strategy to find the pest before it is reported by the
public.

Having a low tolerance for pest detection failure significantly con-
strains the spatial options for selecting the surveys. It appears that an
ambiguity-averse strategy becomes feasible only when the budget is
sufficient to inspect a large number of sites. When the budget is too
small, the worst-case detection time cannot be reduced (Fig. 8a callout
II). This implies that managers should follow an ambiguity-averse
strategy of minimizing the expected longest detection times only if
there are enough resources to survey a large area.

4.2. Utility of the optimization-based approach

Our model reveals key trade-offs between early detection strategies
with different objectives and decision-making perspectives. It also an-
swers some practical survey questions, such as when it is useful to in-
spect trees in parks and woodlots. Doing so seems to be ineffective
when the survey budget is small. Our findings agree with the current
survey protocol in the GTA that mostly targets street trees.

We were also able to compare the performance of our approach to
that of a set of rule-based survey strategies. Our comparisons revealed
that surveying a fixed number of street trees yields the closest detection
times to the optimal solution, but the choice of the number of trees to
inspect depends on the budget level and the likelihood of infestation at
a particular site. Moreover, while the rule-based strategies may yield
acceptable detection times, they do not approach the detection times in
the optimal solutions because the trade-offs between the factors that
control invasion are not considered.

Some other aspects that have not been addressed in the model may

be important in practical applications. In our calculations of time to
first detection, we assumed that tree inspections within a site occur in
sequential order but did not assume a particular order or a case of
multiple simultaneous inspections at different sites. The assumption of
simultaneous tree inspections at multiple sites would require finding
optimal combinations of inspection sequences at multiple sites, which
minimizes time to first detection. This aspect was beyond the scope of
the current study and could be the focus of future work.

For the current ALB case study, we limited our mitigation cost es-
timates to the cost of removing the infested trees as well as healthy host
trees in surrounding safety zone. It is possible that other damages, such
as decrease in property values or extra costs to local industries, could
increase the total cost value. Incorporating these costs would require
developing the data that quantify the spatial variation of these damages
in the area of interest. This would be an important consideration if, for
example, the model was applied to a larger region beyond the city
limits where the spread of ALB could cause damage to the commercial
timber supply and non-market ecosystem services.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ecolecon.2019.04.030.
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