
INTRODUCTION

Wildlife management often requires estimates of
animal abundance. Indices of abundance or esti-
mates of site occupancy can be used to address eco-
logical questions for wildlife. However, many con-
servation questions require knowledge of the actual
number of animals such as those concerning species
status. Species of conservation concern (SOCC), or
those federally listed as threatened or endangered,
are often the focus of studies to estimate abundance
because of the need to understand factors driving
their population numbers. Studies often seek to un-
derstand relationships between species abundance
and specific habitat or landscape characteristics
(Royle, 2004a), so they can inform conservation and
management. Abundance estimates collected over
time can be used to determine if species abundance
is decreasing, increasing, or stable. Recent threats to
bat populations in the eastern United States (e.g.,

white-nose syndrome, wind turbine fatalities, habi-
tat destruction, etc.) provide heightened demand for
methodologies that can estimate abundance at sites
(Kunz et al., 2007; Puechmaille et al., 2011; Turner
et al., 2011; Walters et al., 2013). Counts can be
used as indices of abundance or used to estimate
abundance by correcting for incomplete and vari-
able detectability (Buckland et al., 2001; Rosen -
stock et al., 2002; Williams et al., 2002; Johnson,
2008). Anal yses of relationships between abundance
and environmental features can be confounded if 
detection probability (P) varies with the features be-
ing considered (Ruiz-Gutiérrez et al., 2010). Mark-
recapture, removal, and distance-sampling methods
are common approaches for estimating P and abun-
dance (Buckland et al., 2001; Williams et al., 2002;
Farnsworth et al., 2012). Accurately estimating
abundance is challenging for rare species, species
with low detectability, and species that are trap shy
or avoid capture even if they are common on the
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The ability to accurately estimate abundance is crucial to ecologists, conservationists, and managers to provide insight on species
status, population trends, and viability. Acoustic detection and occupancy modeling can provide an understanding of resource use
for bats, but these methods do not estimate how many bats are in an area, or how these numbers change over time. In North America,
there is a heightened need to estimate bat abundance and trends in response to white-nose syndrome (WNS) and other threats to bat
populations. We assessed the performance of the N-mixture model for repeated count data and the general multinomial-Poisson
model for removal sampling to estimate bat abundance from simulated mist-net capture data. We evaluated performance under
varying numbers of sites and visits, detection probabilities (P), and population sizes. We simulated four scenarios with a total of 
85 combinations of parameter values each containing 1,000 replications. We used the UNMARKED package in R to fit the 
N-mixture and removal models. We calculated relative bias (RB), mean absolute error (MAE), and mean absolute percent error
(MA%E) from model estimates to evaluate model performance. Relative bias, MAE, and MA%E decreased as p and bat abundance
increased for all models. The removal model outperformed the N-mixture model in all scenarios except when P = 0.05. The
N-mixture model had low RB, MAE, and MA%E when bat abundance was ≥ 70 and P > 0.5, but in other scenarios, errors were
large. The mean of estimates from the removal model were unbiased and RB, MAE, and MA%E were very low for most scenarios.
Use of the removal model with data from repeated mist-net surveys may allow resource managers and conservationists to better
quantify how resource management and landscape composition affect bat species abundance and overall populations.
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landscape and especially if P is variable or changes
spatially and temporally. 

Bats are difficult to count due to their cryptic be-
havior. Mark-recapture or distance sampling meth-
ods are largely not feasible for bats because of low
recapture probabilities and it is difficult or impos-
sible to measure distances to detections (Kunz and
Kurta, 1988; Marques et al., 2013). For these rea-
sons and others, bat studies usually have not at-
tempted to measure abundance, and focus instead on
site occupancy (MacKenzie et al., 2002; Amelon,
2007). Bat occupancy studies often use acoustic de-
tectors to actively or passively record echo location
calls to determine the presence or non-detection of 
a species at a survey location (Yates and Muzika,
2006; Amelon, 2007; Marques et al., 2013; Walters
et al., 2013; Starbuck et al., 2015). Even though
abundance and occupancy are often related, bat oc-
cupancy studies only provide insight into resource
use and cannot be utilized to estimate how many
bats use an area, or how numbers change over time.
Considering potential population impacts from
WNS, wind energy, and anthropogenic changes to
the landscape, we sought to provide guidance in ex-
amining the performance of new analytical tools for
bat studies seeking to estimate species abundance.

Several methods exist for estimating abundance
and detectability without individuals being marked
or removed from the population, or measurements
of distance (Kéry et al., 2005). These abundance
models have been developed to account for rare
species by allowing for low numbers of detections
per site while incorporating meaningful site, habitat,
and landscape covariates that influence P and abun-
dance (Royle et al., 2004a, 2004b; Kéry et al.,
2005). These models have potential utility in bat
conservation and management because bat detection
varies between sites based on habitat and landscape
features, temporal factors, and abundance.

The N-mixture model for repeated counts and
general multinomial Poisson model for removal
sampling (hereafter N-mixture model and removal
model, respectively) are potentially suitable for 
estimating abundance of bats from repeated mist-net
surveys, and do not require distance measurements
or mark-recapture to estimate abundance. The 
N-mix ture model assumes a closed population be-
tween repeated visits at a site, and that species de-
tectability across visits is independent. The removal
model assumes that the population is closed, but that
each repeated visit is dependent on previous visits.
The removal model is a common survey method
when estimating abundances in a closed population

(Wil liams et al., 2002; Dorazio and Royle, 2003).
Re moval sampling requires that an individual must
be removed from all subsequent visits at a site, ei-
ther by physical removal from the population, mark-
ing captured individuals to remove from data, or by
accounting for the reduction in trap-ability due to
net avoidance behavior after initial capture (Will -
iams et al., 2002; Royle, 2004b; Dorazio et al.,
2005; Rigby, 2016). Removal can be achieved with
bats by marking individuals with a unique wing
band, hair clippings, or marking with a non-toxic
marker that lasts the duration of the multiple visits to
a site (Womack, 2017). The assumption that a popu-
lation is closed between repeated visits should be
met in summer bat studies (Veilleux and Veilleux,
2004; Menzel et al., 2005), especially if visits occur
over consecutive nights during the maternity season.
The assumption by the N-mixture model of inde-
pendence between visits may be violated because
bats exhibit net avoidance behavior after capture
(Kunz and Anth ony, 1977; Berry et al., 2004; Lar sen
et al., 2007). The removal model is not affected by
net-avoidance behavior because only the first cap-
ture is used. Study design constraints (e.g., numbers
of visits versus number of sites) and differences
among species (e.g., rare versus common; high 
ver sus low P) could also affect the performance of 
N-mixture and removal models. The evaluation of
models with simulated data is common in the litera-
ture as justification and validation of new analytic-
al techniques for different taxa (Royle, 2004a; Mc -
Caffery et al., 2016; Rigby, 2016; Yamaura et al.,
2016).

Models are available in the UNMARKED pack-
age in R that use count data to estimate P and abun-
dance while incorporating meaningful site, habi-
tat, and landscape covariates that could affect both 
P and abundance estimates (Royle et al., 2004a,
2004b). Several studies report success in predicting
ecologically realistic abundance and density esti-
mates for multiple bird species using models in 
UNMARKED (e.g., Reidy et al., 2014; Rigby, 2016;
Roach, 2016). We sought to use several of these
mod els to determine their utility in bat ecology.

We evaluated the application of N-mixture
(Royle, 2004b) and removal models (Royle, 2004a)
to estimate bat abundance from capture data. Our
goal was to determine the utility of these two 
abundance models so that future studies might col-
lect population demographic information beyond
occupancy data to address the need for population
demographic data over time to evaluate changes in
population size. We simulated data to represent bat
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captures from repeated mist-net surveys with known
population sizes (Ń) and fit models to determine
how accurately these models would estimate abun-
dance. We evaluated the sensitivity of abundance es-
timates to the number of sites (Scenario 1), number
of visits (Scenario 2), population size (Ń) and 
P (Scenario 3), and the effect of net avoidance be-
havior as represented by decreasing P at a site over
time (Scenario 4). We designed scenarios to cover 
a range of parameter values that we considered 
possible based on a literature review and previous
field studies of bat species and landscapes in the
Eastern and Midwestern United States. We consid-
ered typical attributes of survey designs (number of
sites and visits) as well as species’ ecology (P and
abundance) to help inform design and analyses in
future studies.

MATERIALS AND METHODS

Model Descriptions and Assumptions

We fit N-mixture models and removal models in R using the
UNMARKED package with the pcount and multinomPois pro-
cedures, respectively (version 3.2 — Fiske and Chandler, 2011).
We did not include any detection or abundance covariates but
rather focused on the effects of study design constraints and
model assumptions on abundance estimates. Both models re-
quire repeated visits at a site and assume a closed population for
the time interval encompassing the visits. N-mixture models
treat each visit as independent events and use a Poisson distri-
bution. The removal model assumes that repeated visits at a site
are dependent on previous counts because all individuals cap-
tured at a site during previous visit(s) are removed from counts
for subsequent visits at a site (Fiske and Chandler, 2011). This
can be done physically or by ignoring recaptures of marked 
animals. The removal model uses a Poisson distribution, which
is often appropriate for count data with a high frequency of
zeros (Fiske and Chandler, 2011).

Data Simulation

We created four scenarios by varying the number of sites,
the number of visits, the number of bats and P, or P based on
capture history to simulate net avoidance behavior. We manipu-
lated these parameters across a realistic range of expected val-
ues for bat species. We generated 1,000 random data sets for
each level of a parameter within a scenario, and fit models to the
data. Baseline values of parameters were sites = 80, visits = 3,
Ń = 70, and P = 0.5. We used these values for all parameters not
being manipulated within a given scenario. 

We selected baseline values and varied parameters to repre-
sent a range of likely conditions for surveys of bats and land-
scapes in the Eastern and Midwestern US. Studies here are often
limited to three months (15 May–15 August — USFWS, 2018),
which restricts number of sites and/or visits, or increases per-
sonnel, and labor expenditures. This restriction is based on the
US Fish and Wildlife Service’s Indiana bat (Myotis sodalis) 
survey guidelines; these dates are designed to detect female bats

during the formation of maternity colonies through colony
breakup throughout this species’ range. We considered parame-
ter values we thought representative for surveys of tree and cave
roosting species during the maternity season in these landscapes
such as eastern red bat (Lasiurus borealis), big brown bat
(Eptesicus fuscus), northern long-eared bat (M. sep tentrionalis),
gray bat (M. grisescens), Indiana bat, tri-colored bat (Perimyotis
subflavus), hoary bat (L. cinereus), and evening bat (Nycticeius
humeralis) based on our experience in the region (Womack,
2017). Males of these eastern US bat species are solitary or form
small bachelor colonies, and we assumed that males were scat-
tered throughout the landscape during summer. We simulated
counts of captures for a given visit at a site using a binomial dis-
tribution (1 = captured or 0 = not captured) for each individual
based on Ń and P. Captured individuals were totaled by visit for
the N-mixture model, but only the first capture of an individual
at a site was counted for the removal model. We repeated this
process to generate count data for each visit at a site and for all
sites. We used UNMARKED to fit the model and estimated
abundance and standard error for the simulated data. We repli-
cated this process 1,000 times for each parameter combination
within all scenarios. 

We evaluated both models’ performance at 15, 30, 50, 60,
80, 90, and 120 sites, and held other parameters at baseline 
values in scenario 1. Our previous experience in the region 
suggests the potential for suitable mist-net weather on 60 nights
from May 15th–August 15th, and we assumed a minimum of
three visits, which would allow one team of field researchers to
survey 20 sites per year. Another constraint is the number of
federally permitted biologists available to conduct surveys;
however, studies can occur over multiple years to offset this
constraint. Given these constraints, we thought our range of 
15 to 120 sites were reasonable values for a multiple year study.
We used 80 sites in our baseline model. Womack (2017) sur-
veyed 89 sites over a 3-year study in this region with a survey
effort of approximately 1.5 federally permitted mist-net teams. 

We simulated surveys based on 3, 4, and 5 visits to a site and
held other parameters at baseline values in scenario 2. Since
there is a tradeoff between the number of visits and the number
of sites that can be visited for a given level of effort, we thought
3–5 visits was a realistic and relevant number of visits to 
consider. 

We varied P (0.05, 0.1, 0.15, 0.2, 0.25, 0.4, 0.5, 0.75, and
0.9) and Ń (15, 35, 70, 110, and 150) in scenario 3. We chose
values of P and Ń based on literature on P and maternity colony
size estimates from emergence counts at roost locations within
the Ozark region (Carers and Barclay, 2000; Schwartz and
Schwartz, 2001; Amelon, 2007; Starbuck et al., 2015). In this
region, mist-netting often occurs over water sources which are
limited resources used by multiple maternity colonies and at-
tract congregates of solitary roosting species and male bats,
which potentially increases N and P. However, there are also
likely survey conditions where N and P will be low, so we con-
sidered P = 0.05–0.9 and Ń = 15–150 and selected intermediate
values for baseline values (0.50 and 70, respectively). We used
P at 0.5 as our baseline for our other model scenarios because in
our study region mist-netting occurs where both females and
males congregate which would increase the P of individuals 
utilizing this limited resource. We chose Ń to represent rare 
(Ń = 15) to very abundant species (Ń = 150). Maternity roosts
for northern long-eared bats generally have < 60 individuals
(Carers and Barclay, 2000). Tri-colored bats maternity colonies
range from 24–50 individuals (Schwartz and Schwartz, 2001).
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Males for all species are either solitary or form small bachelor
colonies during summer (Carers and Barclay, 2000; Schwartz
and Schwartz, 2001); however, they do congregate at water
sources (i.e., mist-net locations) along with female conspecifics
in our study region. We chose 150 as our largest Ń because sev-
eral maternity colonies could utilize the same mist net site for
foraging or as a water source. 

We simulated learned net avoidance behavior in scenario 
4 by using P = 0.5 for an individual until it was captured, and
then P = 0.1 for all subsequent visits at a site. We only evaluated
the N-mixture model for this scenario because the removal
model does not allow for recaptures of individuals on subse-
quent visits. We used parameters which violated the assumption
for the N-mixture model that repeated counts were independent
at a site in this scenario to understand how net avoidance 
affected the N-mixture model’s performance. 

Model Performance 

We evaluated model performance by calculating mean rela-
tive bias (RB), mean absolute error (MAE), and mean absolute
percent error (MA%E) across the 1,000 simulated data sets for
each parameter level within a scenario as: 

RB = (Ŷ/ Ń) – 1 (Formula 1)

MAE = (∑|Ń-ŷi|)/n (Formula 2)

MA%E = 100[∑|Ń-ŷi|/yi)/n]           (Formula 3)

where Ń was the true abundance, Ŷ the mean predicted
abundance, ŷi the predicted abundance for the ith simulation,
and n the number of simulations (Mayer and Butler, 1993;
Legates and McCabe, 1999; Efford and Dawson, 2009). Rel a -
tive bias represents the ratio of the mean predicted abundance to
known abundance, such that -0.25 and 0.25 would indicate pre-
dicted values were on average 25% greater (positive bias) and
lesser (negative bias), respectively, than the known abundance.
MAE and MA%E represent the mean absolute deviance in 
estimates from the known abundance in terms of the original
units and as a percent, respectively, and therefore represent the
variability of estimates from the true value. We summarized
model predictions in box plots produced with default settings in

program R that plotted the median, 25th and 75th percentiles
with a box, whiskers representing ± 1.5 × the interquartile range
(which approximates a 95% confidence interval), and data
points falling outside the whiskers. 

RESULTS

We generated 85,000 simulated datasets to eval-
uate both models. In all cases the models at least
partially corrected for individuals present but not 
detected because estimated mean abundance ( )
was greater than average number of captures, which
can be estimated as P × Ń (Tables 1–4). The 
removal model performed consistently better than 
the N-mixture model for all four scenarios except 
when P = 0.05. Relative bias averaged 0.59 and
0.03, and MA%E 70% and 6%, across all scenar-
ios for the N-mixture model and removal model, 
respectively. 

For scenario 1, the N-mixture model over esti-
mated abundance with RB 0.29–0.51 and MA%E
39–51% for 15–120 sites and other parameters at
baseline values, but surprisingly error was lowest
for the lowest number of sites (Table 1). Relative
bias was essentially 0 and MA%E was only 0.63–
1.8% for the removal model and 15–120 sites and 
Ń = 70 (Table 1). The distribution of estimates for
the N-mixture model was much wider than for the
removal model and mostly fell above the known
abundance, while the distribution for the removal
model was narrow and centered on the known abun-
dance (Fig. 1). 

In scenario 2, the performance of the N-mixture
model improved as the number of visits increased 
3–5 and other parameters were at baseline values,

N–
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TABLE 1. Mean abundances ( ), mean standard error of the estimates ( ), relative bias (RB), mean absolute error (MAE), 
mean absolute percent error (MA%E) for the N-mixture and removal model based on 1,000 data simulations with a known
population (Ń) = 70, detection probability = 0.5, 3 visits to a site, and 15–120 sites

N
– SE

—

Model Ń Sites RB MAE MA%E

N-mixture 70 15 90.35 26.67 0.29 27.95 39.93
30 96.50 23.44 0.38 29.34 41.91
50 100.12 20.46 0.43 31.26 44.65
60 102.16 19.45 0.46 32.91 47.02
80 104.22 17.85 0.49 34.57 49.39
90 103.38 17.48 0.48 33.56 47.94

120 105.59 16.17 0.51 35.69 50.99

Removal 70 15 70.09 2.69 0.00 1.26 1.80 
30 70.08 1.90 0.00 0.92 0.00
50 69.97 1.47 0.00 0.70 1.00
60 70.01 1.34 0.00 0.64 0.91
80 70.03 1.16 0.00 0.54 0.78
90 70.04 1.10 0.00 0.51 0.72

120 70.03 0.95 0.00 0.44 0.63

N
–

SE
—



but bias and error were low except when p or Ń were
very low with RB of 0.00–0.52 and MA%E 0–82%
(Table 3). The removal model did not converge
when P = 0.05 for all levels of Ń (Table 3). Esti -
mates from both models had a broader distribution
at low Ń. In all cases the distribution of estimates
was centered on Ń for the removal model while in
most cases the N-mixture model had substantial
bias, however at P ≤ 0.1 for all values of Ń the 
removal model tended to produce more outlying-
values than at greater values of P (Fig. 3).

The performance of the N-mixture model sur-
prisingly improved in scenario 4 when we violated
the model’s assumption of independence; RB de-
creased from 0.49 to 0.06 while MA%E increased
slightly from 49% to 53% (Table 4). The removal
model, however, still had lower RB (0.0) and
MA%E (0.78% — Table 4).

DISCUSSION

Our application of the N-mixture and removal
models to simulated data highlighted the potential
value of correcting abundance estimates for individ-
uals present but not detected or captured. In all cases
( ) was greater the mean number of individuals 
captured (estimated as P × Ń). For example, when 
Ń = 150, P = 0.1, ( ) was estimated as 96.66, and
157.46 by the N-mixture and removal models, re-
spectively, even though the number of captures 
averaged 15 individuals. 

The N-mixture model over-estimated abundance
for most simulated scenarios. Our results were 
consistent with Rigby (2016), who examined the 
N-mixture model in the UNMARKED package for
utility in estimating black throated blue warblers.
Rigby (2016) found N-mixture model results were
inflated for most years and were not correlated to
true densities. However, one difference between our
study and Rigby (2016) is that we did not use any

N–

N–
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FIG. 1. Abundance estimates for the removal and the N-mixture
models fit in the package UNMARKED based on simulated
count data and different numbers of sites and a known 

population size = 70

TABLE 2. Mean abundances ( ), mean standard errors of the estimates ( ), relative bias (RB), mean absolute error (MAE), 
mean absolute percent error (MA%E) for the N-mixture and removal model based on 1,000 data simulations with a known
population (Ń) = 70, detection probability of 0.5, 80 sites, and 3–5 visits to a site

N
– SE

—

Model Ń Visits RB MAE MA%E

N-mixture 70 3 104.22 17.85 0.49 34.57 49.39
4 99.98 17.04 0.43 30.25 43.21
5 93.15 14.64 0.33 23.37 33.38

Removal 70 3 70.03 1.16 0.00 0.54 0.78
4 68.17 0.87 -0.17 0.22 1.99
5 69.99 0.96 0.00 0.17 1.24

SE
—

N
–

but there was still substantial error and bias with RB
0.49–0.33 and MA%E 49–33% (Table 2). The distri-
bution of estimates for the N-mixture model for 3–5
visits was much wider than for the removal model
and mostly fell above the known abundance, while
the distribution for the removal model was narrow
and close to the known abundance (Fig. 2). The re-
moval model generally had low bias and error with
RB 0.0– -0.17 and MA%E 0.8–1.2% for 3–5 visits
to a site (Table 2). 

For scenario 3, the performance of the N-mixture
model improved as P and Ń increased but bias and
error were substantial for P < 0.9 when Ń = 15 and
P < 0.75 when Ń ≥ 35 with RB -0.45–2.99 and
MA%E 1–237% (Table 3). Estimates for the re-
moval model generally followed a similar pattern
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covariates in our simulations nor used biologically
collected data in this paper. We were purely inter-
ested in how each model performed without covari-
ates to understand the potential utility in bat ecology
studies. Womack (2017) did used the removal model
to determine how abundance was related to habitat
and landscape covariates in our study region with 
a sample size of 89 sites.

The N-mixture model only had a MA%E < 10%
for Ń 15–110 and P = 0.75–0.9 or when Ń = 150 and
P > 0.40. This is consistent with other studies indi-
cating when P is high the N-mixture model can 
accurately estimate abundance (McIntyre et al.,
2012; Yamaura, 2013; Rigby, 2016; Yamaura et al.,
2016). Bats are cryptic species and are not likely to
have counts close to the actual population abun-
dance or P = 0.9 due to net avoidance behavior
(Kunz and Kurta, 1988; Berry et al., 2004; Larsen et
al., 2007). However, it is possible for some bat
species when a mist-net location is over a water
source and next to a maternity roost when young of
the year are volant. Yamaura et al. (2016) suggests
modifying the study design for species with low 
P by increasing sampling locations or otherwise 
increase the chance of detecting individuals (e.g., 
increase sampling time at a site) which should im-
prove the N-mixture model performance (Drapeau
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FIG. 2. Abundance estimates for the removal and N-mixture
models fit in the package UNMARKED with simulated data for 

3, 4, or 5 visits to a site and known population size = 70

et al., 1999). While we believe this suggestion is
generally accurate, we had the lowest bias with the
N-mixture model when the number of sites was
the lowest. In addition, we found that the N-mix-
ture model performed better when we violated
the assumption of independence and P declined
between repeated visits once an individual was cap-
tured, which is consistent with the idea that the
model was underestimating P and overestimating Ń.
We do not recommend use of the N-mixture model
for field studies of bats in the Eastern United States
given its low accuracy and high bias for most condi-
tions simulated.

In contrast to the N-mixture model, the removal
model generally performed well. The model only
failed to converge in one instance when P = 0.05 and
Ń = 15. With one exception, RB and MA%E only
exceeded 0.05 and 10% for some combinations of 
Ń ≤ 70 and P ≤ 0.15. Rigby (2016) similarly found
that the removal model produced better estimates
than the N-mixture model when applied to simulated
bird point counts. Dorazio et al. (2005) found the 
removal model accurately estimated abundances 
of darter species by testing model performance on 
simulated data that fit the ecology of this species.
The removal model accurately estimated mean
abundances for all numbers of sites suggesting that
unless the number of sites is extremely small, it 
does not affect abundance estimates for this model.
The removal model estimated an unbiased mean
abundance even with as few as three visits to a site
in scenario 2. Fewer visits allow more sites to be
sampled within the summer maternity season thus
increasing sample size (number of sites). We found
that the removal model estimated abundances accu-
rately, on average, and with low relative bias for all
P except for P = 0.05. The removal model failed to
converge for any Ń when P = 0.05. Rigby (2016)
similarly found the removal model had difficult-
ly when P was low; otherwise, it outperformed the
N-mixture model.

We suggest the use of the removal model in bat
ecology as P for individuals is likely ≤ 0.25 and 
estimated population size for a site is greater than 
15 individuals. We caution the use of this model for
bat species with extremely low P because the model
failed to converge when P was 0.05 estimated abun-
dances ranged widely when P was 0.1. The model
performed well with a moderate number of sites (50)
and with only three repeated visits. The removal
model’s assumption of dependence between visits 
is consistent with bat behavior and known net 
avoidance by individuals that have been previously
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TABLE 3. Mean abundances ( ), mean standard error of the estimates ( ), relative bias (RB), mean absolute error (MAE), mean
absolute percent error (MA%E) for the N-mixture and removal model based on 1,000 data simulations based on three visits to a site,
80 sites, and a known population of Ń = 15–150 and detection probability of P = 0.05–0.90. The removal model was unable to
produce estimates of abundance when P = 0.05

N
–

SE
—

N-mixture Removal
Ń P

RB MAE MA%E RB MAE MA%E

15 0.05 47.44 41.51 2.16 35.62 237.48 – – – – –
0.10 57.45 38.43 2.83 43.09 287.29 22.78 56.10 0.52 12.31 82.04
0.15 59.89 30.77 2.99 45.21 301.37 17.83 12.68 0.19 5.29 35.24
0.20 62.20 29.39 3.15 47.32 315.44 15.65 3.13 0.04 2.28 15.20
0.25 64.28 27.37 3.29 49.36 329.06 15.27 1.80 0.02 1.35 9.00
0.40 62.87 25.61 3.19 47.93 319.54 15.07 0.73 0.00 0.48 3.18
0.50 45.12 15.70 2.01 30.20 201.37 15.01 0.54 0.00 0.24 1.63 
0.75 34.24 13.61 1.28 19.38 129.20 15.01 0.44 0.00 0.05 0.34
0.90 15.06 0.47 0.00 0.15 0.99 15.00 0.43 0.00 0.01 0.08

35 0.05 58.67 35.13 0.68 29.63 84.66 – – – – –
0.10 67.61 26.82 0.93 34.35 98.13 42.94 22.56 0.23 6.99 12.02
0.15 74.33 21.32 1.12 39.73 113.51 36.54 7.68 0.04 5.63 16.09
0.20 77.87 20.46 1.22 43.05 122.99 35.89 4.20 0.03 3.25 9.27
0.25 80.84 18.09 1.31 45.95 131.28 35.24 2.61 0.01 1.97 5.64
0.40 80.64 20.59 1.30 45.77 130.78 35.03 1.11 0.00 0.72 2.04
0.50 67.88 19.83 0.94 33.05 94.42 34.98 0.82 0.00 0.39 1.12
0.75 36.42 1.92 0.04 1.80 5.13 35.00 0.67 0.00 0.08 0.23
0.90 35.13 0.80 0.00 0.36 1.04 35.00 0.66 0.00 0.02 0.05

70 0.05 67.99 25.69 -0.03 12.52 17.88 – – – – –
0.10 80.73 16.89 0.15 13.94 19.91 77.30 24.72 0.10 6.58 11.56
0.15 88.31 13.31 0.26 18.95 27.08 71.24 9.67 0.02 6.19 10.13
0.20 93.26 11.65 0.33 23.76 33.94 70.42 5.55 0.01 4.20 5.99
0.25 98.36 10.92 0.41 28.57 40.82 70.34 3.66 0.00 2.77 3.96
0.40 106.66 13.66 0.52 36.87 52.67 70.16 1.57 0.00 0.99 1.41
0.50 104.14 18.31 0.49 34.44 49.20 70.03 1.16 0.00 0.54 0.78
0.75 72.57 3.68 0.04 3.37 4.81 70.00 0.95 0.00 0.11 0.16
0.90 70.19 1.31 0.00 0.74 1.05 70.00 0.94 0.00 0.02 0.03

110 0.05 76.91 19.48 -0.30 33.09 30.08 – – – – –
0.10 89.92 11.71 -0.18 20.08 18.25 116.73 28.02 0.06 5.06 9.59
0.15 98.58 9.40 -0.10 11.42 10.38 111.83 11.98 0.02 9.29 8.45
0.20 106.04 8.53 -0.04 4.11 3.73 110.63 6.92 0.01 5.42 4.93
0.25 112.77 8.19 0.03 3.55 3.23 110.51 4.57 0.00 1.52 1.57
0.40 130.28 9.28 0.18 20.57 18.70 110.08 1.95 0.00 1.30 1.18
0.50 136.51 12.78 0.24 27.15 24.68 110.02 1.45 0.00 0.71 0.65
0.75 114.24 5.77 0.04 5.44 4.95 110.01 1.19 0.00 0.14 0.13
0.90 110.30 1.86 0.00 1.16 1.05 110.00 1.17 0.00 0.03 0.03

150 0.05 82.77 15.55 -0.45 67.23 44.82 – – – – –
0.10 96.66 9.59 -0.36 53.34 35.56 157.46 31.16 0.23 7.01 12.06
0.15 107.60 7.62 -0.28 42.40 28.26 151.51 13.65 0.01 10.55 7.04
0.20 117.19 6.93 -0.22 32.81 21.87 150.66 8.04 0.00 6.42 4.28
0.25 126.10 6.63 -0.16 23.90 15.93 150.43 5.31 0.00 1.30 1.18
0.40 150.87 6.88 0.01 2.55 1.70 150.08 2.28 0.00 1.42 0.95
0.50 163.32 9.22 0.09 14.57 9.71 149.99 1.70 0.00 0.10 0.69
0.75 155.67 7.79 0.04 7.21 4.81 150.00 1.39 0.00 0.17 0.11
0.90 151.29 3.62 0.01 2.77 1.85 150.00 1.37 0.00 0.04 0.02

N
–

N
–SE

—
SE
—

captured (Kunz and Anthony, 1977; Berry et al.,
2004; Larsen et al., 2007). We suggest that research-
ers should be thoughtful in ensuring that the 
removal models assumption of a closed popu-
lation is met between visits to a site. This can be 

accomplished by conducting surveys during the 
maternity season when site fidelity is high and 
keeping visits close together in time. While these
methods can estimate and account for P, we 
agree with Rigby (2016) that it is still advisable 
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FIG. 3. Abundance estimates for the removal and N-mixture models fit in the package UNMARKED for various P and Ń. Models 
were fit to simulated count data for a population sizes indicated within each graph of Ń = 15, 35, 70, 110, and 150

Model P P1 RB MAE MA%E

N-mixture 104.14 17.85 0.5 0.5 0.49 34.57 49.39
73.99 10.03 0.5 0.1 0.06 36.86 52.66

Removal 70.03 1.16 0.5 0.00 0.54 0.78

N
– SE

—

TABLE 4. Mean abundances ( ), mean standard errors of the estimates ( ), relative bias (RB), mean absolute error (MAE), and
mean absolute percent error (MA%E) for the N-mixture and removal model based on 1000 data simulations with a known population
of 70, 80 sites, three visits to a site, and probability of detection for first captures (P) and subsequent captures (P1) of 0.5 and 0.1,
respectively. The removal model only uses information on the first capture

N
–

SE
—

to design studies that reduce potential biases in
counts and ensure a reasonably high P and number

of detections to result in the best possible abundance
estimate.
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