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Abstract
Many national forest inventories (NFI) use auxiliary data to increase the precision of estimates. Typically, this is accomplished 
via stratified estimation techniques that rely on assignment of similar sample plot observations to strata constructed with 
the goal of lowering the variance of estimates. While early applications of stratification used strata constructed from photo-
interpretation of aerial photography, current technology makes using wall-to-wall digital map information more appealing 
due to automated processing capabilities; however, there is generally a reduction in classification accuracy in comparison with 
photo-interpretation and a concomitant decrease in the precision of estimates. While most established NFI have permanent 
plots and employ post-stratification (PS) with stratum weights known from a map, it is unclear what are the compromises 
compared to using a photo-interpretation (PI) approach. In this study, differences in cost and precision were evaluated for 
post-stratification using strata derived from a digital map and double sampling for post-stratification (DSPS) with strata cre-
ated from PI of aerial imagery. It was found that DSPS consistently provided better precision than PS for estimates of total 
biomass and forestland area with approximately 13 PI points per sample plot, which incurred a cost increase equivalent to 
0.5% per ground plot. Increasing the number of PI points per plot resulted in further gains in precision, with cost increases 
proportional to the PI intensity. To attain specific precision goals, DSPS was generally less costly than increasing the sam-
ple size under PS, although the PS design was more cost-effective if the PI intensity was too low. The results of this study 
provide a decision framework for inventory planners considering sampling designs that rely on post-stratified estimation.
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Introduction

Stratification in sampling design and subsequent estima-
tion to achieve increased precision of estimated population 
parameters is well known to forest inventory practitioners 
(Frayer and Furnival 1999; McRoberts et al. 2002; Kangas 
and Maltamo 2006). Although a priori specification of the 
strata is often preferred, it is often ill-advised for ongo-
ing large-area inventory and monitoring programs having 
permanent plots such as national forest inventories (NFI), 
due to the likely increase in within-stratum heterogeneity 

over time and the associated loss of precision (De Gruijter 
et al. 2006). It is arguably more desirable to employ post-
stratification where the strata reflect changing landscape 
conditions in subsequent inventories, even though there is a 
slight increase in estimator variance from doing so (Cochran 
1977). Currently, it is common to use wall-to-wall satellite 
imagery for defining strata used in forest inventory estima-
tion (Tomppo et al. 2008). This process is efficient because 
it can be largely automated and the wall-to-wall map cover-
age affords known stratum weights. Before the advent of 
digital mapping with satellite imagery, double sampling for 
stratification was often used via photo-interpretation (PI) of 
selected points (Bickford 1952; Lam et al. 2011). Disadvan-
tages to this approach were cost (time consuming PI work) 
and the use of double sampling introduced additional vari-
ance arising from stratum weights being estimated instead 
of known values. However, an advantage of using PI over 
digital mapping was increased accuracy of stratum assign-
ments due to the use of a human interpreter, which can lead 
to more precise estimates than post-stratification based on 
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automated pixel classifications (Hansen and Wendt 2000; 
Wayman et al. 2001).

Generally, the goal of optimal forest inventory design is 
to obtain estimates that meet specified precision goals for 
the least cost (Köhl et al. 2011). Thus, effective and efficient 
inventories are often determined via comparison of various 
cost pools and precision outcomes for candidate sampling 
designs (Westfall et al. 2016). The two cost pools directly 
related to precision of the estimates pertain to the number 
and cost of sample plots and the development of a stratifica-
tion scheme for estimation purposes. Greater precision is 
obtained by increasing the sample size of the field plots, 
with the cost of the increased precision directly related to the 
cost of additional field work. A related cost:precision issue is 
the expense of developing the stratification information and 
the amount of precision gained relative to that cost. If the 
locations of field plots are determined prior to the stratifica-
tion, stratified designs would rely on post-stratification. In 
these situations, comparisons of typical wall-to-wall post-
stratification (PS) to the double sampling for stratification 
paradigm would therefore require the concept of double 
sampling for post-stratification (DSPS) to be considered. 
Specifically, the objectives of this study include: (1) deriva-
tion of the DSPS variance estimator, (2) evaluation of the 
cost:precision compromises for different levels of PI effort 
and (3) comparisons of the cost and precision between the 
PS and DSPS approaches.

Methods

Estimators

Parameters to be estimated are the population total T̂  and 
its variance V̂

(

T̂
)

 . Regardless of the stratification paradigm 
being employed, the estimate of T̂  is given by 

where A total area of the population (ha) w
h
 the estimated or 

known weight of stratum h, ȳ
h
 the sample mean of observa-

tions in stratum h (h = 1… H denote the strata) and ȳ overall 
sample mean.

The variance of the total for post-stratification, V̂
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 , 
has been derived in various sampling texts and is used in the 
FIA program, without correction for a finite population, as 
(Scott et al. 2005):
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where n total number of plots and s2
h
 sample variance for 

stratum h.
To derive the estimator for V̂

(

T̂
DSPS

)

 , the adaptation of 
equation 12.32 from Cochran (1977) as presented by Scott 
et al. (2005) for double sampling for stratification (DSS) 
serves as the basis:

The previously undefined notation includes the following: 
n′ number of first phase PI points, n′

h
 number of first phase PI 

points in stratum h and n
h
 number of plots in stratum h. The 

first term estimates the stratified variance under proportional 
allocation, while the second term is due to estimation of the 
stratum weights. In a post-stratification context, additional 
variance is incurred due to the variability of within-stratum 
sample sizes, nh. Specifically, the estimator in (3) needs to 
incorporate the expected value of the number of observa-
tions per stratum (Stephan 1945): 

Substituting the right-hand side of [4] for 1
n
h

 in (3) sug-
gests the form of the estimator for V̂

(

T̂
DSPS

)

:

The percent sampling errors of the estimates are calcu-
lated as:

where T̂
⋅
 refers to either T̂

PS
 or T̂

DSPS
 depending on the design 

being analyzed.
In the context of post-stratification, it should be noted that 

V̂
(

T̂
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)

 as shown in (5) is the unconditional variance esti-
mator, i.e., the variation across all combinations of within-
strata sample allocations. There seems to be a longstanding 
debate among practitioners regarding whether the uncon-
ditional or conditional form of the post-stratified variance 
estimator is most appropriate for inference. Holt and Smith 
(1979) provide a brief synopsis of different presentations in 
the literature at that time and conclude from their research 
the conditional estimator is preferred. Other research by 
Durbin (1969), Valliant (1993) and Gregoire et al. (2016) 
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(among others) also suggests the use of the conditional for-
mulation. Yet, some authors present the unconditional esti-
mator as the basis for post-stratified inference (Scott et al. 
2005; Köhl et al. 2006; McRoberts et al. 2013). The primary 
issue is that unconditional variance estimates will only be 
accurate when Wh ≈ nh/n within strata. Generally, this should 
not be a concern for most NFI that implement a systematic 
or quasi-systematic sample design across the population, 
as sample sizes tend to be proportional to the size of the 
strata. For example, Saborowski and Cancino (2007) showed 
in a simulation of forest inventory using a post-stratified 
systematic design that nearly identical results are obtained 
from the conditional and unconditional variance estimators. 
Nonetheless, forest inventory specialists should be aware of 
circumstances that may favor a conditional approach.

Monte Carlo estimation of DSPS variance

To provide empirical evaluation of the variance estimator 
(5), a simulation study was conducted wherein a popula-
tion containing 250,000 elements was generated. For each 
element, total tree biomass (kg/ha) and crown cover per-
cent values were assigned. For biomass, the values were 
randomly chosen from a N(µ, σ) distribution where µ = 9200 
and σ = 5500 kg/ha. Similarly, the crown class percent values 
were chosen from a U(0,1) × 100% distribution and rounded 
to the nearest 1%. To mimic a typical landscape, biomass 
values less than zero were assumed to represent nonforest 
land without trees and thus both biomass and crown cover 
were set to zero. It was also assumed that relatively large 
biomass values would occur in mature stands with crown 
closure, such that crown cover was assumed to be 100% 
when biomass exceeded 11,000 kg/ha. To implement strati-
fied estimation, each population element was assigned to 
one of the three strata based on the crown cover: 1 = 0–9%, 
2 = 10–50%, and 3 = 51–100%.

The Monte Carlo simulation was conducted by randomly 
selecting 100 sample points to represent field plot observa-
tions. Subsequently, an additional 900 sample points were 
chosen and the stratum weights were estimated from the 
set of 1000 points (wh; double sampling for stratification). 
The 100 initial sample points were considered to have been 
established prior to the development of strata (post-stratifi-
cation). At each iteration, the population total was estimated 
from (1) and the estimated variance calculated using (5). 
After 25,000 iterations, the mean value of V̂

(

T̂
DSPS

)

 and the 
variance of the estimated totals T̂

DSPS
 were calculated. The 

0.1% difference between these two variance estimates sug-
gests the specification of (5) provides a suitable estimator 
of the variance when a DSPS design is employed. Evalua-
tion of the individual terms of (5) indicated proportions of 
the total variance were 0.949 for the first term, 0.013 for 
the second term, and 0.038 for the third term bracketed on 

the right-hand side of (5), respectively. Thus, for our exam-
ple population, approximately 95% of the variance arises 
from plot-to-plot variability, whereas contributions due to 
random post-strata sample sizes (1.3%) and estimated stra-
tum weights (3.8%) comprise the remaining 5%. The rela-
tive contributions of each variance component may differ 
for other population/stratification scenarios; however, it is 
expected the plot-to-plot variance will still be the primary 
source of uncertainty (Brown and Westfall 2012).

Application to NFI

To provide a case study of the implementation of the DSPS 
estimator and compare outcomes with those obtained from 
digital map post-stratification, data from the forest inventory 
and analysis (FIA) program within the US forest service 
(USFS) were used. Three counties that represent a range of 
areal extent and proportion of forestland area were chosen 
in eastern Pennsylvania (Fig. 1). The full cycle of inventory 
plots were measured over the period 2011–2016, under a 
systematic-unaligned sampling design having a sampling 
intensity of approximately 1 plot per 2428 ha (Reams et al. 
2005). The field data were collected using a 0.067 ha 4-point 
plot design (Bechtold and Scott 2005) and include the pro-
portion of plot area that is forested and individual-tree meas-
urements used to predict tree biomass from models (U.S. 
Forest Service 2012). Plot-level observations of tree biomass 
are obtained by summing over all trees and expanding to a 
per-hectare basis. Although the field data were collected in 
a panelized design, this analysis combines all plots in the 
inventory cycle for estimation.

To develop the stratification scheme for PS, the national 
land cover dataset (NLCD) tree canopy map (Homer et al. 
2015), a 30 m resolution, Landsat-based map depicting 
canopy cover proportion, was used to determine the strata 
and their associated weights. The pixel-based area for each 
canopy cover percent was determined from the NLCD map. 
Using these data and a minimum sample size rule of 10 
plots per stratum (Westfall et al. 2011), canopy cover classes 
0–5%, 6–50%, 51–75%, and 76–100% were chosen to define 
the post-strata. Due to the smaller sample size for Lehigh 
County, only three post-strata were created (0–5%, 6–75%, 
and 76–100%). The stratum weights were the canopy cover 
class area proportion of the total pixel-based area.

Estimated stratum weights for the DSPS design were 
obtained using national agriculture imagery program (NAIP) 
digital photography from 2015 (USDA-FSA-APFO 2016). 
Based on protocols presented by Bickford (1952), the PI 
point sample intensity was chosen to be approximately 25 
points per FIA plot. PI points were distributed in a spatially 
balanced manner using a space-filling curve fractal. This 
method tessellated the region into the appropriate number of 
compact, equal-area subregions, within which one PI point 
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was randomly chosen (Lister and Scott 2009). The PI point 
that was closest to each FIA plot was removed from the PI 
analysis and replaced with the corresponding FIA plot loca-
tion, which was also classified using PI. At each PI point, a 
circle with radius of 43.9 m was established (corresponding 
to the size of the outer boundary of an FIA plot; Fig. 2). 
Each circle contained a grid of 52 points to be assessed 
for intersections with tree crowns occurring in areas that 
would meet the FIA definition of forestland (U.S. Forest 
Service 2012). The canopy cover percent for the PI point 

is the percentage of the 52 grid points meeting the criteria 
(tree crown in forestland). The DSPS stratum weights were 
calculated by determining the proportion of PI points falling 
in each of the canopy cover classes (de Vries 1986). To make 
valid comparisons of results, the same canopy cover classes 
were used for stratification in both the PS and DSPS designs.

For both designs, estimates of total population biomass 
and forestland area in each county were calculated using 
the appropriate formulae described earlier. To better under-
stand how the number of PI points affected the results, the 
amount of PI points was reduced by 25%, 50% and 75% 
and the estimates recalculated with each reduced PI sample. 
To provide an indication of expected effects of using fewer 
PI points, these reductions were replicated 1000 times and 
the average values were reported. The same process was 
repeated for reductions of 80%, 84%, 88%, 92% and 96% to 
examine the behavior of the estimates for relatively small PI 
efforts. Finally, a scenario was considered where the only PI 
information obtained was at the plot locations.

The estimation of costs for the DSPS design only included 
the variable costs associated with staff time to develop can-
opy cover information. A time stamp was generated in the 
data as each PI point was completed. Although the accuracy 
of time data is often diminished by unanticipated interrup-
tions, personal breaks and general productivity variability 
efforts should be made to include these factors in estimates 
of the total time to complete the PI. Conversely, very long 
time frames that are obviously anomalous should not be 
included in the assessment. It was assumed that any point 
taking more than 20 min to complete (as indicated by the 
time stamp) was not a representative observation and was 

Fig. 1   Map of Berks 
(229,650 ha; 35% forested), 
Lehigh (90,987 ha; 31% 
forested) and Schuylkill 
(194,426 ha; 65% forested) 
Counties in eastern Pennsylva-
nia, USA

Fig. 2   Configuration of the PI point where crown cover (shaded 
areas) was assessed at 52 locations systematically arranged around 
the center (*) of a plot having 43.9  m radius. In this example, the 
crown cover is 18/52 = 34.6%
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disregarded in the time analysis (1.2% of observations). The 
average time per PI point was calculated and multiplied by 
various salary rates to obtain the cost per point for several 
workforce cost scenarios. Due to the same set of field plots 
being used throughout the analysis, the field data collection 
cost is the same under both sampling paradigms. All other 
costs associated with forest inventory implementation and 
administration were considered to be the same under both 
sampling methods.

Results/discussion

As expected, the county estimates for forestland area and 
total biomass were slightly dissimilar between the PS and 
DSPS designs (Table 1)—primarily attributable to unequal 
stratum weights. However, the precision of the estimates 
as indicated by the sampling errors differed substantially, 
with biomass being less precise than forestland area. In all 
cases, the sampling error increases as the PI point intensity 
decreases from the original intensity of 25 points per plot 
(PI 100%). A notable outcome was that the PI effort could be 
reduced to 25% (PI 25%—6 points per plot) and the DSPS 
estimates would still be more precise that PS for estimates 
of forest area. The PI effort could similarly be reduced by 
50% (PI 50%) while still outperforming PS for estimates 
of total biomass. Using the DSPS design and obtaining PI 
information only where the sample plots occur resulted in 
considerable decreases in precision compared to PS.

It is also interesting to note the effect of reducing the 
PI effort has only marginal effects on the sampling errors. 

For example, the SE% only increases by about 10% when 
going from PI 100% to PI 25%. The degradation of the sam-
pling error increases dramatically between PI 25% (6 points 
per plot) and PI plots (1 point at the plot location). Further 
investigation into relatively small PI efforts showed increas-
ing rates of degradation as efforts dropped below PI 25% 
(Fig. 3). Generally, PI efforts below PI 25% are not recom-
mended due to the precision loss relative to more intensive 
efforts and the fact that the PS design becomes more favora-
ble when the PI effort is minimal. It is also shown that if 
the number of PI points is equal to the number of sample 
plots, there is considerable disadvantage to co-locating the 
PI points and the plot locations (PI plot). Presumably, little 
new information is obtained in the co-location scenario as 
compared to having the PI points positioned elsewhere.

A factor affecting the outcomes is the temporal frame 
of the remote sensing information used in the stratifica-
tion. In this study, the NLCD map layer was from 2011, the 
NAIP imagery from 2015, and the plot data collected over 
the 2011–2016 period. If one considers the midpoint of the 
data collection effort to be 2014, the NAIP imagery is on 
average closer to the plot observation time than the NLCD 
map. Thus, the NAIP stratification may have some advantage 
in this regard, depending on how much the populations have 
changed between 2011 and 2015. This situation points to the 
temporal benefits of using NAIP in comparison with NLCD 
for two reasons. First, NAIP is updated on a 2–3-year inter-
val, whereas NLCD data are presented at 5-year increments. 
Second, availability of NAIP imagery occurs soon after the 
photography is completed; but the NLCD product usually 
takes several years beyond the base date to be completed. 

Table 1   Estimates and sampling 
errors for total forestland area 
(ha) and tree biomass (tonnes) 
for 3 counties using the PS and 
DSPS designs

County Design Stratification Points Biomass (tonnes) SE% Forest area (ha) SE%

Schuylkill DSPS PI 100% 2099 17,339,268 7.05 124,311 3.65
DSPS PI 75% 1575 17,351,687 7.11 124,382 3.73
DSPS PI 50% 1050 17,381,081 7.21 124,555 3.88
DSPS PI 25% 525 17,415,935 7.51 124,744 4.28
DSPS PI Plots 71 18,119,576 10.39 128,754 7.62
PS NLCD Map 18,157,560 7.25 130,383 4.58

Lehigh DSPS PI 100% 925 5,412,296 19.12 24,276 14.01
DSPS PI 75% 694 5,409,749 19.25 24,264 14.20
DSPS PI 50% 463 5,426,299 19.46 24,338 14.51
DSPS PI 25% 231 5,430,023 20.09 24,356 15.38
DSPS PI Plots 34 5,492,805 26.75 24,640 23.86
PS NLCD Map 5,479,217 23.19 21,995 16.98

Berks DSPS PI 100% 2350 14,374,125 9.02 78,178 6.23
DSPS PI 75% 1763 14,355,313 9.13 78,094 6.38
DSPS PI 50% 1175 14,324,136 9.33 77,955 6.66
DSPS PI 25% 588 14,228,979 9.87 77,508 7.38
DSPS PI Plots 85 13,069,231 15.34 72,205 13.86
PS NLCD Map 12,620,458 9.68 69,638 7.83
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More generally, the closer the remote sensing data are to 
the plot measurement date, it is more likely the stratification 
effectiveness will increase (McRoberts et al. 2016).

Estimating the cost of the PI stratification was based on 
average time per PI point. The mean value was 23 s and the 
corresponding cost to perform the work was approximately 
US $35/h. Thus, the cost per PI point was approximately 
US $0.224 and the entire cost for the PI work across all 3 
counties was nearly US $1200. It is recognized that a range 
of other cost scenarios may be encountered—such as differ-
ing rates of productivity and/or staff costs. Table 2 provides 
comparative information that may help inform costs of PI 
work in other situations. Realized production rates are sub-
ject to numerous factors such as landscape heterogeneity, 
imagery resolution and/or photo-interpreter experience. The 
data collected in this study showed no discernable correla-
tion between the photo-interpretation time and canopy cover 
percent at the PI point.

Of considerable importance is the evaluation of the cost 
of the PI work in the context of overall inventory costs and 
precision gains. Because the PI effort is expressed on a PI 
points per ground plot basis, the additional expense can be 
given as an increase in cost per plot. Table 3 shows the addi-
tional cost per plot is very small, regardless of PI effort and 

interpreter efficiency. Given an average cost of US $600 to 
complete a ground plot, a 100% PI effort and interpreter rate 
of 34 s/point would result in an increase in cost per plot of 
about 1.4%, although our data suggest the cost is more likely 
to be slightly less than 1.0% (23 s/point). If the PI effort was 
reduced to 50%, DSPS would still provide superior preci-
sion than PS with an additional cost incursion of less than 
0.5% per plot.

An alternative method of assessing cost differences 
between the DSPS and PS designs is to determine the addi-
tional number of field plots required to attain a specified 
level of precision. For the purposes of comparison, the addi-
tional number of plots needed in the PS design to attain 
the precision of DSPS was examined for Berks County. To 
obtain DSPS precision at the PI 100% level, the PS design 
would require 15% and 58% more plots for estimates of total 
biomass and forestland area, respectively (Table 4). Reduc-
ing the effort to PI 50% still shows DSPS to be more cost-
effective (0.5% increase) than PS (8% and 38% increase, 
respectively). At PI 25%, the PS design becomes more cost-
effective than DSPS for total biomass, but is still consider-
ably more costly for forestland area. Essentially, as long as 
the percent sample size increase for PS exceeds the percent 

Fig. 3   Sampling error (SE%) for 
low levels of PI effort using the 
DSPS design in Berks County, 
PA. There are two SE% given 
for each attribute at the PI effort 
of 4%—one reflecting the PI 
being done at the plot locations 
(PI Plots) and the other indicat-
ing the same level of PI effort at 
nonplot PI points

Table 2   Cost per PI plot (US $) comparison matrix for several levels 
of salary cost and interpretation productivity rates

Salary
(US $/h)

Time per points (s)

11 23 34

50 $0.153 $0.319 $0.472
35 $0.107 $0.224 $0.331
20 $0.061 $0.128 $0.189
10 $0.031 $0.064 $0.094

Table 3   Additional cost per inventory plot for DSPS at various levels 
of PI effort and interpretation time per point (assumes salary of US 
$35/h)

Time per points (s)

PI effort (%) 11 23 34

PI 100 $2.67 $5.59 $8.26
PI 75 $2.01 $4.19 $6.20
PI 50 $1.34 $2.80 $4.13
PI 25 $0.67 $1.40 $2.07
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cost increase for PI work, the DSPS design is less expensive 
to implement for the same level of precision.

The cost evaluations were based on a number of factors 
specific to the FIA program in the study area. Most notably, 
the sample plot size and configuration, number of attrib-
utes to be measured, travel time (depends on road density, 
topography, etc.), and number of crew members and their 
salary rates. As such, cost assessments for other invento-
ries should be conducted with respect to the specific cir-
cumstances encountered. Similarly, the cost of performing 
the PI work should be evaluated, e.g., as shown in Tables 2 
and 3. This reassessment of the PI is particularly important 
if there is a different configuration and/or number of grid 
points within each PI point than was used here. Depending 
on the outcomes of these assessments, DSPS may become 
more or less favorable than PS as shown in this analysis.

No cost was ascribed to development of the stratifica-
tion for PS based on the NCLD canopy cover map. It was 
assumed that software would be generally available for a 
number of tasks related to remote sensing analysis, and thus 
the software cost should not be assigned to this specific 
task, although there may be situations where the software 
is primarily obtained and used for stratification purposes, in 
which the cost should then be accounted for. Some amount 
of staff effort is needed to perform the calculations from the 
NLCD map; while comparatively, staff effort would also be 
incurred to organize the imagery for the DSPS stratifica-
tion. In this study, it was assumed the staff time was similar 
in either case and generally negligible in the context of the 
other costs. This may not be the case in all situations and 
any notable differences between the two approaches should 
be accounted for in the cost assessment.

Lastly, for existing forest inventories where many fea-
tures such as sample sizes, plot locations and wall-to-wall PS 
methods are already in place, changing to DSPS represents 
an increase in the cost of the inventory. Even though only a 
small relative cost increase is incurred and the advantages in 
precision of estimates can be substantial, it may be that addi-
tional costs simply cannot be incurred, i.e., the inventory was 

designed and structured within the funding limitations. In 
such cases, DSPS may not be a viable alternative, although 
perhaps efficiencies in other parts of the inventory operation 
can be found and savings redirected at PI work. For new 
inventory endeavors, DSPS should be considered as a viable 
alternative when evaluating cost:precision scenarios during 
the inventory design planning phase.

Conclusion

Application of the double sampling for stratification para-
digm to an existing forest inventory required conceptualiza-
tion of the DSPS design, and in particular, the development 
of an appropriate variance estimator that accounts for both 
random stratum sample sizes and estimated stratum weights. 
This allowed for valid comparisons in precision between 
the PS and DSPS designs. The initial DSPS effort of 25 PI 
points per sample plot produced better precision than PS 
for estimates of total biomass and forestland area; however, 
even less intensive efforts (PI 50% for biomass; PI 25% for 
forestland area) could be conducted while still maintaining 
more precise estimates from DSPS. The results also sug-
gested that 25 PI points per plot may be excessive, in that 
the precision decreases only by about 10% when 6 PI points 
per plot are used; however, these outcomes may differ for 
other populations and ultimately the PI effort needs to be 
carefully examined for efficiency:precision relationships that 
exist for a given population of interest. It is also worth not-
ing the DSPS design performs remarkably well despite the 
vastly smaller number of information elements available for 
the stratification—suggesting the canopy cover accuracy of 
the PI work is substantially higher than that obtained from 
classified digital maps.

A primary disadvantage of conducting PI work is the 
additional cost. However, depending on the PI effort, the 
methods used in this study suggest the cost increase per 
sample plot is on the order of 0.5–1.0%. In comparison with 
obtaining the same precision under the PS design, the DSPS 
design is considerably more cost-effective as long as the PI 
effort is maintained at or above PI 50% for biomass and PI 
25% for forestland area. DSPS becomes more costly when 
the PI effort is too small and the resulting precision is near 
or less than that from the PS design. The cost-effectiveness 
of any stratified forest inventory design needs to be evalu-
ated considering all factors pertaining to conducting both 
the sample plot measurements and the cost of developing 
the stratification scheme for estimation. Thus, the results 
of this study should be not construed as being applicable to 
all situations, but the methods and outcomes may provide 
a framework and guidance for conducting cost:precision 
assessments to determine the viability of the DSPS design 
in other environments.

Table 4   Percent change in sample size needed under the PS design to 
obtain the same precision obtained from the DSPS design for Berks 
County

PI effort (%) Sample size change

Biomass (%) Forest 
area 
(%)

PI 100 15 58
PI 75 12 51
PI 50 8 38
PI 25 − 4 13
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