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A B S T R A C T

Red spruce (Picea rubens) ecosystems in the high elevations of the central Appalachians of the eastern United
States are the focus of ongoing restoration efforts due to the valuable ecosystem services these forests provide.
Recent research has shown that spodic materials still present in the soil represent the pedomemory of the historic
extent of red spruce forests in the region. A dataset containing 221 points with varying spodic intensities and 29
environmental variables collected from the Monongahela National Forest in West Virginia, USA, was used to
evaluate the utility of a species distribution model, Maximum Entropy (MaxEnt), for predicting the presence of
spodic properties. MaxEnt was selected for evaluation because, as a presence-only model, it inherently omits
absence locations and thereby reduces the risk of including false absences (i.e., herein, locations that have
undergone some level of depodzolization) unlike other models previously used to predict pedomemory. Model
outputs that employed three different spodic intensity class inputs—very weak to strong expression, weak to
strong expression, and strong expression—resulted in similar spodic probability predictions, though there was
less area mapped as transitional probabilities in the strong expression model than the two models that included
weaker spodic intensity input data. Permutation importance indicated that no single or small subset of en-
vironmental variables controlled the three model outputs, perhaps because the environmental covariates may
have been too coarse or not strongly enough associated with podzolization processes to be very important. When
the output from the MaxEnt model using the full range of spodic intensities (very weak to strong) was compared
to an output produced using a presence-absence model (random forests), there was approximately 62% agree-
ment (where both models predicted presence or both predicted absence) for the cells in the top 40% of the
predicted probabilities.

1. Introduction and background

Soils form as the result of five interacting environmental factors:
climate, organisms, relief, parent material, and time (Dokuchaev, 1999;
Jenny, 1941). The concept of using environmental factors to predict soil
characteristics is accepted and provides the basis for traditional soil
mapping and contemporary digital soil mapping (e.g., McBratney et al.,
2003; Boettinger et al., 2010). Nauman et al. (2015a, 2015b) demon-
strated that the inverse also may be possible; that is, current soil
properties might be useful for predicting previous environmental con-
ditions because certain soil characteristics can persist even after some
environmental factors change—a concept termed pedomemory
(Targulian and Goryachkin, 2010; Lin, 2011; Monger and Rachal, 2013;
Nauman et al., 2015a, 2015b).

In the central Appalachians of the eastern United States, Spodosols
are a soil order that is particularly well aligned with the concept of
pedomemory. Spodosols form through the process of podzolization
(Schaetzl and Isard, 1996; Lundström et al., 2000a; Lundström et al.,
2000b; Sauer et al., 2007). In this region, podzolization is largely driven
by three factors: organisms (conifer vegetation, particularly red spruce/
hemlock ecosystems) climate (cool, moist) and parent material (base-
poor geologies) (Oosting and Billings, 1951; Stanley and Ciolkosz,
1981), and the resulting spodic characteristics (typically thick organic
horizons, albic horizons, and subsoil accumulations of organic matter
and aluminum and iron sesquioxides) can persist for long periods after
the vegetation from which they were formed is no longer present or is
much less dominant in the over story stand (Soil Survey Staff, 2003).
However, through time, spodic materials degrade if one or more of the
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conditions responsible for their formation are modified; this process is
referred to as depodzolization (Barrett and Schaetzl, 1998). In the
central Appalachians, depodzolization has resulted primarily from the
loss of red spruce, which was much more dominant prior to 1880, but
was largely lost from forest stands between 1880 and 1930 due to ex-
tensive logging and subsequent wildfires (Clarkson, 1964; Lewis, 1998).

The degree to which spodic characteristics are expressed (i.e.,
spodic intensity) at any point in time depends upon the state and
pathways of progressive or regressive pedogenesis (Barrett and
Schaetzl, 1998). Podzolization can take as long as hundreds to thou-
sands of years (Lundström et al., 2000a, 2000b), whereas depodzoli-
zation can occur more rapidly, requiring as few as 30 yr or as many as
200 yr (Hole, 1975; Nornberg et al., 1993). The rates of both podsoli-
zation and depodzolization ultimately depend upon site-specific en-
vironmental characteristics (Barrett and Schaetzl, 1998).

Based on the knowledge that both podzolization and depodzoliza-
tion are soil forming processes, some assumptions regarding spodic
properties and historic red spruce cover in this region can be made. If
spodic soil properties are observed today, one can reasonably assume
that red spruce was present at that site in the past. However, if spodic
soil properties are not visually evident in the observed soil morphology,
one cannot assume that red spruce was not historically present, due to
the potential for depodzolization.

This paper describes the results of a novel application of the species
distribution model Maximum Entropy (MaxEnt) to predict soil pedo-
memory. MaxEnt is a presence-only model, which means that it uses
only presence data as its input (in this case, locations where some level
of spodic properties were observed). The first objective of this study
was to determine how the mapped extent of podzolization employing
three different spodic intensity ranges compare using MaxEnt. The
second objective is based on the assumption that using a presence-only
model will decrease the risk of including false absences; in other words,
because it includes only presence data, it avoids the assumption that the
lack of current spodic intensity is not interpreted as spodic character-
istics were never present or the site is not conducive to spodic devel-
opment. For the second objective, the model output from MaxEnt using
the full range of spodic intensity (very weak to strong expression) was
compared to the output generated by Nauman et al. (2015a) for the
same area using the presence-absence model random forests. In the
latter model, absence (i.e., no spodic morphology observed) also were
included in the input data.

Studies have documented potential negative effects of including
absence data in ecological modeling, mainly due to the possibility of
including ‘false absences’ (in this case, locations where spodic mor-
phology was not observed) (Svenning and Skov, 2004; Jimenez-
Valverde et al., 2008). The inclusion of absence data may introduce
confusion in the random forests model due to the potential for de-
podzolization (Nauman et al., 2015a, 2015b). Consequently, the re-
sulting mapped extent of spodic properties using MaxEnt may be more
representative of the ‘fundamental niche’ (Phillips et al., 2006) of
spodic properties, which represents all places on a landscape which are
conducive to Spodosol formation (and, therefore, likely within the
historic extent of red spruce forests).

2. Materials and methods

2.1. Study area

This study involves approximately 124,687 ha of the Monongahela
National Forest (MNF) in eastern West Virginia, USA (Fig. 1). It includes
areas underlain by Chemung Group (Devonian-age acid siltstone and
sandstone), Hampshire Formation (Devonian-age acidic shale and silt-
stone), and Pottsville Group (Pennsylvanian-age acid sandstone) geol-
ogies (West Virginia Geological and Economic Survey, 1968). The
majority of the MNF has a moist climate (1184–1524 mm of pre-
cipitation per year) with cool mean annual temperatures (ranging from

6 to 8 °C) (NOAA NCDC, 2016). Much of the area considered in this
study is among the wettest and coolest in the MNF and West Virginia.
The elevation ranges from approximately 800 to 1300 m; associated soil
temperature regimes span the bounds between mesic and frigid soil
temperatures (Lietzke and McGuire, 1987; Stanley and Ciolkosz, 1981),
with the colder soil temperatures generally present at higher elevations.
On the MNF, these areas are typically transition zones between areas
dominated by mixed hardwood species (Acer rubrum, A. pennsylvanicum,
Prunus serotina, and Fagus grandifolia) and those dominated by red
spruce and hemlock (Tsuga canadensis) (Shigo, 1972; Nauman et al.,
2015a).

The presence-only data for this study are part of a dataset collected
from 2010 to 2012 in an effort to understand the extent of podzoliza-
tion across the MNF (Nauman, 2015). Point observations were collected
from soil pits and soil transects across a variety of geology types and soil
series (Dekalb, Berks, Mandy and Wildell), and under varying forest
compositions (from no red spruce present to red spruce dominant). A
total of 332 point observations obtained from Nauman (2015) were
compiled (Fig. 2). Spodic intensities were assigned at the time of soil
sampling to each of the 332 points using the spodic-intensity scale
developed by the USDA NRCS, which has discrete values ranging from 0
to 2 based on soil morphological properties observed in the field
(Table 1) (Nauman et al., 2015a). Spodic properties occur in varying
intensities (Schaetzl and Isard, 1996; Lundström et al., 2000a, 2000b;
Nauman et al., 2015a) depending on the degree of influence of each
environmental factor at the specific location. Spodic properties include
a lighter colored E horizon and subsoil accumulations of aluminum and
iron sesquioxides that are darker and redder in color (Soil Survey Staff,
2003). A spodic intensity of 0 indicates that the soil has no visible
spodic properties, while a spodic intensity of 2 indicates the soil has the
strongest spodic expression.

2.2. MaxEnt modeling approach and settings

MaxEnt requires two sets of data: presence-only data (in this case,
point locations where spodic soil properties were observed) and en-
vironmental variables believed to be important for the attribute of in-
terest (Pearson, 2007, 2010). Environmental variables can be con-
tinuous (e.g., elevation) or categorical (e.g., geologic formations),
although MaxEnt works best when the number of categorical variables
is limited (Pearson, 2007, 2010). The 332 data points originally com-
piled included locations spanning the entire range of spodic intensities
(Table 2). The MaxEnt model required locations that had evidence (i.e.,
presence) of podzolization, so only locations with a spodic intensity of
at least 0.5 were utilized in this study. Consequently, 221 presence
points were included. These data were further assembled into three
presence-only data sets for use in MaxEnt based on three spodic in-
tensity ranges: 0.5–2.0, 1.0–2.0, and 2.0 (Table 2).

Environmental variables believed to be important to the develop-
ment of spodic soil properties and presence of red spruce were used to
generate the background sample (a user-specified number of samples
taken from all possible locations considered to be equally likely to be a
presence locality) in the MaxEnt models (Merow et al., 2013b). To
allow comparison to the result from Nauman et al. (2015a), we em-
ployed 29 of the same 32 environmental variables, derived from digital
elevation models and Landsat Geocover data, that they used (Table 3).
The three calculated ratios of Landsat Geocover data were excluded
because their use resulted in too much missing data due to division by
zero.

Coefficients of correlation (r) were calculated among all 29 vari-
ables and, as expected, many showed high correlation (which we de-
fined as r > 0.80 or<−0.80). Undesired outcomes, such as increased
model complexity and decreased confidence in interpretations, may
result when correlated variables are used in MaxEnt (Phillips, 2017;
Baldwin, 2009). Therefore, model runs using all 29 variables first were
compared to runs without correlated variables to determine how model
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gain was affected by including and excluding the correlated variables.
Area under the curve (AUC) (i.e., under the receiver operating char-
acteristic (ROC) curve) values (Elith et al., 2011; Beane et al., 2013;
Merow et al., 2013a), described later, revealed the two types of runs
resulted in only minor differences in AUC values (measures of model
performance). Because the differences were minor and one of our ob-
jectives was to compare MaxEnt and the random forests results ob-
tained by Nauman et al. (2015a) who employed the correlated vari-
ables, all 29 of the variables were utilized in the MaxEnt model runs
described herein.

MaxEnt has numerous model settings that influence the outputs. For
most settings, the model defaults were utilized in all runs (Pearson,
2007, 2010). Only those settings for which the defaults were not uti-
lized are discussed further (Table 4).

MaxEnt has three methods of replication (used to quantify the
variation in model results), but only bootstrapping was used in this
analysis. Bootstrapping selects the user-specified number of points from
the environmental variables across the study area to create the back-
ground sample. For each bootstrap analysis the background sample is
randomly selected from the selected environmental variables, and then
each point is returned back to the sample pool (Pearson, 2007, 2010;
Beane et al., 2013) so the same record may be included in more than
one replicate run (Pearson, 2007, 2010). We also used the random seed

option in bootstrapping to ensure that each replicate data set was in-
dependent from all others (Pearson, 2007, 2010). Prior to running the
replications, bootstrapping also randomly withholds a percentage of the
available presence-only data to test model validation, and these random
test data are not included in the replicate runs. We used 40% of the data
as random test data because this is a percentage commonly used in
MaxEnt modeling (Elith et al., 2006; Phillips and Dudik, 2008; Beane
et al., 2013). Forty percent equates to 89, 80 and 35 withheld test
sample sizes, respectively, for spodic intensity classes 0.5–2.0, 1.0–2.0
and 2. Ten replicates for each spodic intensity range were run.

MaxEnt has three output types: raw, and two transformed outputs
derived from the raw data (Merow et al., 2013a; Pearson, 2007, 2010).
For this analysis, logistic output, one of the transformed outputs, was
used because it is useful for comparing model results (Merow et al.,
2013a) and both study objectives involve comparisons of model runs.
Some explanation of logistic outputs is warranted for understanding the
results described later; a more detailed explanation of the logistic and
other outputs is provided in Merow et al. (2013a).

As noted, the logistic output is a transformation of the raw output.
For the raw output, MaxEnt initially assumes that all cells in the study
area are equally likely to contain the species or attribute of interest, so
the initial relative occurrence rate value for each cell is calculated by
the inverse of the total number of cells. For this analysis, there are

Fig. 1. Location of sample points across the Monongahela
National Forest in eastern West Virginia.
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approximately 1.6 million cells, so the probability of spodic presence
for each cell in the study area would have be approximately 1/1.6
million. Probabilities of each cell then are adjusted based upon en-
vironmental variable values at presence-only locations and the back-
ground sample such that the sum of the final probabilities for all cells in
the raw output must sum to 1. Consequently, the cells in a raw output
are not independent from one another. The transformation applied to
the raw data for obtaining the logistic output amplifies higher prob-
abilities while linearly scaling lower probability values. Therefore, the
cell probability values for logistic output also are not independent, but
they do not sum to 1 (Merow et al., 2013a).

2.3. Model comparison techniques

Comparison of maps and spatial modeling outputs often is ne-
cessary—and indeed was needed for this study—but no widely accepted
protocols exist for such comparisons (Kuhnert et al., 2005; Visser and
Nijs, 2005). Consequently, we used a combination of model-generated
statistics, visual assessment, and model comparison tools for this paper
(Kuhnert et al., 2005; Visser and Nijs, 2005).

To address the first study objective of comparing the MaxEnt model
outputs of the three different spodic intensities, the three possible two-
way comparisons were examined (i.e., 0.5–2.0 vs. 1.0–2.0, 1.0–2.0 vs.
2.0, and 0.5–2.0 vs. 2.0). However, because the probability data are
continuous, and model agreement would result only for cells in which

Fig. 2. Soil sampling and description points within the study area. Symbols denote the spodic intensity recorded at each point.
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the probabilities were exactly equal (an almost impossible result), a
more useful and interpretable procedure was used. Frequency dis-
tributions of the average probabilities were developed for each of the
spodic intensity class model outputs. All three possible comparisons had
similar distributions and there was a natural break in the distributions
at the 0.6 probability level. Using that break, the MaxEnt modeled
outputs were converted to binary outputs, where cells ≥0.6 and< 0.6
were assigned unique integer values and compared mathematically.

The AUC value was used to assess MaxEnt model performance. This
value is the area underneath a ROC curve (Pearson, 2007, 2010; Elith
et al., 2011; Beane et al., 2013; Merow et al., 2013a) (Fig. 3). A ROC
curve is a plot of true positive vs. false positive rates (Pearson, 2007,
2010). The curve is a plot of sensitivity (number of presences correctly
predicted) versus 1-specificity (number of absences incorrectly pre-
dicted) (Pearson, 2007, 2010). An AUC value of 0.5 suggests that the
model performed no better than a random model, while an AUC value
of> 0.9 suggests the model excelled (Pearson, 2007, 2010; Young
et al., 2011).

The importance of environmental variables was evaluated using
permutation importance, normalized to percentages. The larger the
permutation importance value, the more influence that variable has on
the model outcome, particularly when it is followed by a marked de-
cline in the permutation importance value for the next most important
permutation value (in descending order) (Kalle et al., 2013). Permu-
tation importance is not influenced by the paths that MaxEnt uses to
generate the individual runs and final results (Phillips, 2006).

To evaluate the second objective of this paper, the MaxEnt model
results were compared to the Nauman et al. (2015a) random forests
model results. Because the random forests model employed presence
and absence data (i.e., the entire 0–2.0 spodic intensity range), only the
MaxEnt model using the most similar spodic intensity range (0.5–2.0)
was employed in the comparison (i.e., 0 spodic intensity observations
were not used because MaxEnt is a presence-only model). This com-
parison presents some challenges due to the inherent differences be-
tween the two models. Recall that cell values are not independent for
MaxEnt, which often results in many cells with small predicted prob-
ability values (Merow et al., 2013b). By contrast, random forests output
for each run is binary – after the model runs, each cell within the

project area is classified as spodic or non-spodic. The cell probabilities
reported by Nauman et al. (2015a), were based on the outcomes of 100
replicate runs: the value of each cell is equal to the number of times out
of 100 that the cell was predicted to be spodic. For example, a cell with
a value of 0.80, was classified as spodic (having some level of spodic
expression) in 80 out of 100 model runs. Consequently, in random

Table 1
Spodic intensity classes and respective characteristics (adapted from Nauman et al., 2015a).

Rating Level of podzolization Soil properties associated with podzolization

0.0 No evidence Not applicable
0.5 Very weak Only slight physical evidence of podzolization; slightly redder hue and higher value is present at the top of the B horizon, but the hue is less

than one Munsell hue redder than an underlying horizon; soil is non-smearya.
1.0 Weak, spodic intergradeb Weak expression of podzolization; spodic materials are present, but do not meet the criteria for a spodic horizon; a weakly expressed Bs

horizon is present, and is one Munsell hue redder than an underlying horizon. Bhs material is usually absent; no albic E horizon; spodic
materials are sometimes weakly smeary

1.5 Moderate, spodic intergrade Moderate expression of podzolization; spodic materials present as a spodic horizon; moderately expressed Bs horizon present, often with
pockets of Bhs material; no albic E horizon; spodic materials are often weakly smeary

2.0 Strong, Spodosol Strong expression of podzolization; spodic horizon is present usually underlying an albic E horizon; Bhs or Bh horizon is continuous across
at least 85 percent of the pedon; spodic materials are often moderately smeary.

a See Schoeneberger et al., 2012 page 2–65 for a description of this metric.
b Spodic integrades are soils that may have some spodic properties or materials but do not fully meet the requirements of a Spodosol (Soil Survey Staff, 2003).

Table 2
Number of samples by spodic intensity (left), and number of samples by MaxEnt modeling
classes. Points with a spodic intensity of 0.0 represent spodic absences, so they were not
used for MaxEnt modeling because it employs presence-only data.

Spodic intensity Number of observations Class Number in class

0.0 111
0.5 22
1.0 103 0.5–2.0 221
1.5 8 1.0–2.0 199
2.0 88 2.0 88

Table 3
Digital elevation model-derived and Landsat Geocover environmental variables used to
map spodic properties in MaxEnt (taken from Nauman et al., 2015b).

Variable name Description

National elevation dataset (27.5 m resolution)
nwness Index from+1 to−1 of how northwest (+1) or southeast (−1)

a site faces
eastness Index from+1 to−1 of how east (+1) or west (−1) a site faces
southness Index from +1 to −1 of how south (+1) or north (−1) a site

faces
neness Index from+1 to−1 of how northeast (+1) or southwest (−1)

a site faces
dem Elevation in meters
plan_curv Curvature perpendicular to the slope direction
prof_curv Curvature parallel to slope direction
ls_factor Slope-length factor from USLE as calculated in SAGA GIS
convergence Overall measure of concavity
slopepos Index from 0 (valley floor) to 100 (ridgetop) of slope position

(Hatfield, 1996)
slope Slope gradient (rise/run) in fraction units
mrrtf Multiple resolution ridgetop flatness index
mrvbf Multiple resolution valley bottom flatness index
twi Topographic wetness index
aacn2 Altitude above local stream channel
baselevel Elevation of nearest channel point to each cell in its given

watershed
contribarea Upstream contributing area
relht1 Height of cell above the local minimum elevation in 1-cell

radius
relht2 Height of cell above the local minimum elevation in 2-cell

radius
relht3 Height of cell above the local minimum elevation in 3-cell

radius
relh_5 Height of cell above the local minimum elevation in 5-cell

radius
relht10 Height of cell above the local minimum elevation in 10-cell

radius
relht20 Height of cell above the local minimum elevation in 20-cell

radius
relht30 Height of cell above the local minimum elevation in 30-cell

radius
relht50 Height of cell above the local minimum elevation in 50-cell

radius
relht70 Height of cell above the local minimum elevation in 70-cell

radius

Landsat Geocover 2000 (14.5-m resolution, resampled to 27.5 m)
Nir Near infrared band in 8-bit digital number units
Mir Middle infrared band in 8-bit digital number units
Green Green visible band in 8-bit digital number units
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forests output, each cell is independent of all other cells (Nauman et al.,
2015a).

Due to the differences between MaxEnt and random forests, we
focused on the general rank of cells for comparing the two model
outputs. An agreement/disagreement analysis, similar to that for the
three MaxEnt comparisons described previously, was performed. In this
case the upper 40% of cells (in terms of predicted probability) were
considered to be high probability (of spodic presence), and lower 60%
of cells were considered low probability, but it should be noted that the
upper 40% of cells had very different ranges of probability of presence
(MaxEnt = 0.092589–0.937165; random forests = 0.610–0.994).

We also were interested in examining the environmental conditions
present at locations where both models agreed (e.g., both predicted
high probability of spodic presence) and disagreement (e.g., one pre-
dicted a low probability of spodic presence and the other a high
probability) to get some idea of model drivers, as well as the degree of
overlap in the environmental covariates where the models did not
agree. Because the data were not normally distributed, the nonpara-
metric Wilcoxon rank-sum test was used for the latter analysis to de-
termine if environmental conditions were significantly different be-
tween the two models where their outcomes disagreed.

3. Results

3.1. MaxEnt comparisons

The modeled outputs for each of the three spodic intensity classes
are shown in Fig. 4. Red and orange cells in Fig. 4A indicate a high
probability that some degree of spodic expression are present because
the 0.5–2.0 range includes the entire range of spodic intensity expres-
sion from very weak to strong (Table 1). By comparison, red and orange
cells in Fig. 4B indicate a high probability of the presence of weak to
strong spodic intensities since the 1.0–2.0 class data are employed, and
in Fig. 4C those colors indicate high probability of only the strong
spodic expression (2.0 class).

The distributions of all the MaxEnt probability data are heavily
tailed, and follow a second order decay function. This is due to the fact
that in a MaxEnt output cells are not independent (Merow et al.,
2013b). Approximately 80% of the cells have probability of presence
values ≤0.2 for all three models (Fig. 5). Because no cells are modeled
as 0 probability in MaxEnt, probability values between the smallest
value and 0.01 were used to approximate 0 probability. Using that
approach, 25, 24, and 30% of the entire area had approximately 0
probability of presence for the 0.5–2.0, 1.0–2.0, and 2.0 spodic in-
tensity class models respectively. Those areas are concentrated pri-
marily in the four corners of the area, particularly in the northwest and
southeast corners (Fig. 4).

Mean AUC values for the outputs of three spodic intensity classes
(0.5–2.0, 1.0–2.0, 2.0) were identical at 0.96 (96%), and the standard
deviations were all quite small, respectively, 0.003, 0.003, and 0.007.
That the largest standard deviation was associated with the spodic in-
tensity 2.0 class is not surprising given that it contained less than half
the number of presence points than the other two classes (Table 2).
Overall, the high AUC values and low standard deviations indicate
excellent model performance (Pearson, 2007, 2010).

The results of the binary agreement/disagreement analysis of the
MaxEnt model outputs indicate very high agreement (98–99%) among
the three MaxEnt models (Table 5). The greatest amount of disagree-
ment (cells predicted by one model as high probability, and predicted
by another model as low probability) occurred for the spodic intensity
class comparison of 0.5–2.0 vs. 2.0, which was due at least in part to
those two models, respectively, having the greatest and fewest numbers
of initial presence points (Table 2). However, it should be noted that
only a small number of the cells had probabilities ≥0.6 (Table 6), so
the agreement/disagreement results are reflective of only a small per-
centage of the entire area that was originally modeled in Fig. 4.

Interestingly, there are fewer cells with ≥0.6 probability in the
1.0–2.0 spodic intensity class than in the 2.0 spodic intensity class (or
the 0.5 to 2.0 class) (Table 6), even though the 2.0 class had less than
half the number of original presence sites than the 1.0–2.0 class
(Table 2). This result suggests that for the original data there was a
much narrower range of conditions for the environmental covariates for
the 1.0 and 1.5 spodic intensity classes than for the 2.0 class, or that the
covariates were most strongly associated with the strongest spodic
characteristics (i.e., the 2.0 intensity class model). There were marked
drops in permutation importance values in the 1.0–2.0 and 2.0 models,
such that there were three variables for each of those two models that
were more important than the other environmental covariates

Table 4
MaxEnt settings used in this analysis and the justification for the setting choice. Model defaults were used for settings not listed in this table.

Setting Setting utilized Justification References

Output format Logistic Recommended for comparing models (Merow et al., 2013a)
Replication type Bootstrapping Bootstrapping samples with replacement; commonly used in the literature (Elith et al., 2011; Merow et al., 2013a)
Random test percentage 40% Commonly used in MaxEnt analyses (Phillips, 2017; Phillips and Dudik, 2008)
Replicates 10 Chosen due to computing restraints (Merow et al., 2013a; Pearson, 2010)

Fig. 3. A generalized example of an area under the receiver operating characteristic
(ROC) curve value. The dashed line is included in all generated AUC values and is not
reflective of data used in the model; it indicates an AUC value of 0.5, and represents a
model that performs no better than one with random output. A model that performs
perfectly would have an AUC value of 1. The solid line represents an actual model run
(after Pearson, 2010).
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(Table 7). For the 0.5–2.0 class model, all the permutation importance
values were relatively small and there were no distinct breaks across the
29 environmental variables (Table 7). Rather, according to the per-
mutation importance metric, all covariates had similarly important
influence. In all three models, an elevation-associated covariate was
most important; dem for 0.5–2.0 and 1.0–2.0, and baselevel for 2.0. This

is not surprising given that spodic characteristics are primarily asso-
ciated with red spruce in this region, and red spruce is known to
compete best at high elevations (Adams et al., 2010; Rentch et al.,
2007).

Fig. 4. The three MaxEnt spodic intensity model outputs: (A) spodic intensity class = 0.5–2.0, (B) spodic intensity class = 1.0–2.0, and (C) spodic intensity class = 2.0.

Fig. 5. Frequency distributions of MaxEnt probability of presence of spodic expression for
the 0.5–2.0, 1.0–2.0, and 2.0 spodic intensity classes:

Table 5
Percentages of agreement and disagreement probability of presence for the pairwise
comparisons produced by the three spodic intensity classes (0.5–2.0, 1.0–2.0 and 2.0)
using MaxEnt.

Pairwise comparisons

Modeled probability of presence
(agreement or disagreement)

0.5–2.0 vs.
1.0–2.0

1.0–2.0 vs
2.0

0.5–2.0 vs
2.0

% agreement or disagreement

Both models predict low probability
or both models predict high
probability (agreement)

99.35 98.96 98.76

One model predicts high probability,
one model predicts low
probability (disagreement)

0.65 1.04 1.24

Table 6
Number of cells and percent of cells (or area) in the high probability (≥0.60) and low
probability (< 0.6) classes for the MaxEnt models for each spodic intensity class.

Probability range Spodic intensity range

0.5–2.0 1.0–2.0 2.0

Number of cells
Less than 0.6 1,601,664 1,605,569 1,601,847
Greater than or equal to 0.6 13,623 9718 13,440

Percent of cells
Less than 0.6 99.16 99.40 99.17
Greater than or equal to 0.6 0.84 0.60 0.83
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3.2. MaxEnt and random forests output comparisons

The MaxEnt and random forests outputs are shown in Fig. 6. The
highest probabilities in random forests output are distributed relatively
evenly over the entire study area, compared to MaxEnt, which as noted
previously, are primarily concentrated in the area where most of the
original soil samples were collected. The agreement/disagreement
comparison of 40% highest probability cells for the MaxEnt and random
forests output showed approximately 62% agreement and 38% dis-
agreement between the models (Table 8). Much of the concentration of
cells where the models disagreed were again in the corners of the study
area (Fig. 7).

The mean, minimum, and maximum values for each of the en-
vironmental covariates for the top 40% of highest probabilities of
spodic occurrence in which there was agreement between the MaxEnt
and random forests model are shown in Table 9. The same statistics are
presented for each model for the top 40% of cells in which they did not
agree in Table 10. The Wilcoxon rank sum test indicate that there was a
significant difference (p < 0.0001) between the two models for every
covariate.

4. Discussion

All three of the MaxEnt models yielded very similar results spatially
and with respect to their binary predictions of spodic presence. The
model was not overly sensitive to the degree of spodic expression for
any of the three data sets, whether including the entire range of spodic
intensities or only the highest degree of spodic intensity. This similarity
suggests that even though MaxEnt was developed as a species dis-
tribution model, it has application in physical analyses and is capable of
identifying spodic potential.

The environmental covariates used in this examination had only
minor influence on contributing to the spodic intensity predictions in

MaxEnt. The highest permutation importance value was 15.6% for the
spodic intensity 1.0–2.0 class model. This value is fairly low compared
to permutation importance values typically obtained for many of the
more traditional species distribution model applications described in
the literature (e.g., Adhikari et al., 2012; Brambilla and Ficetola, 2012;
Smart et al., 2012). The decreases in permutation importance values for
the 2.0 intensity class (i.e., that included only strong spodic expression)
showed three variables (baselevel, relht50, and mir) that were useful for
model prediction (Table 7), but even these were not particularly strong
relationships based on the permutation values and degree of drop over
those three values. It is possible that the environmental covariates used
are at scales that are too coarse or they have little influence on pro-
cesses required for podzolization. The environmental covariates were
least sensitive when presence data included the widest possible spodic
intensity range. For any covariate to be identified as important in this
situation, it would have to be uniquely associated with Spodosol for-
mation or presence, including weak expression, while simultaneously
not associated with locations where spodic expression is absent.

The highest probabilities for all three of the MaxEnt outputs (Fig. 4)
tend to be concentrated near the area of the original model input pre-
sence points (Fig. 2). Farther from those points, such as toward the
northwest and southeastern corners of the areas, the probabilities were
predominantly approximately 0. This is likely due to the fact that these
areas were not sampled as intensively as the central portion of the study
area. MaxEnt is known to be constrained by sampling bias, so it per-
forms poorly when predicting outside of the range of conditions from
which the original presence data were collected (Elith et al., 2011;
Hernandez et al., 2006; Kramer-Schadt et al., 2013). Consequently, it
follows that even if environmental conditions in those locations were
conducive to spodic presence, no observations were made there, so the
full range of conditions that promote spodic presence were not sampled,
limiting the modeled probability of presence in those areas. This is an
important consideration for future MaxEnt modeling efforts in soil

Table 7
Permutation importance values for each of the 29 environmental covariates for the three MaxEnt spodic intensity class outputs. Variable definitions are provided in Table 3.

Spodic intensity range

0.5–2.0 1.0–2.0 2.0

Variable Permutation importance Variable Permutation importance Variable Permutation importance

dem 9.4 dem 15.6 baselevel 13.2
relht70 7.7 mrvbf 8.8 relht50 12.9
slpos 6.6 relht70 8.3 mir 11.2
baselevel 5.5 relht20 4.5 eastness 5.4
mir 5.2 baselevel 4.4 southness 5.1
relht20 5.1 green 3.8 nwness 4.9
relht1 4.6 relht5 3.8 relht70 4.9
lsfactor 4.5 eastness 3.6 mrvbf 3.3
relht50 4.4 nwness 3.5 green 3.2
eastness 4.3 mir 3.5 slope2 3.0
nir 3.9 nir 3.2 relht5 3.0
green 3.4 slpos 3.2 contribare 2.8
relht5 3.2 relht10 2.8 neness 2.7
nwness 3.1 mrrtf 2.8 relht3 2.6
mrvbf 3.1 relht50 2.7 relht1 2.5
relht10 2.5 relht3 2.6 aacn2 2.5
slope2 2.5 aacn2 2.6 relht20 2.4
aacn2 2.4 relht30 2.2 relht2 2.2
plan_curv 2.3 southness 2.2 relht30 2.2
southness 2.3 convergenc 2.2 slpos 2.1
convergenc 2.1 relht1 2.0 relht10 2.1
relht3 1.8 plan_curv 1.9 dem 1.5
relht30 1.7 prof_curv 1.8 mrrtf 1.1
mrrtf 1.7 relht2 1.8 plan_curv 0.9
contribare 1.6 slope2 1.6 prof_curv 0.7
twi 1.5 contribare 1.4 convergenc 0.5
prof_curv 1.3 lsfactor 1.4 nir 0.4
neness 1.1 neness 1.0 lsfactor 0.4
relht2 1.0 twi 0.7 twi 0.3
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applications. Sampling for the dependent variable should extend out-
side the area of interest in all directions to adequately capture predic-
tions over the area of interest.

One visually apparent difference in the MaxEnt modeled outputs
between the spodic intensity class that contained only a single rating
(2.0) and the other two classes that included ranges of spodic intensities
is the amount of area mapped as transitional areas (i.e., yellow shades)
(Fig. 4). The output for the single spodic rating 2.0 (Fig. 4C) has very
little transitional area; instead red shades tend to transition directly to
green shades. By comparison, the 0.5–2.0 and 1.0–2.0 modeled outputs
have substantially more area in those transitional yellow shades (Fig. 4a
and b). The frequency distributions of the three models (Fig. 5) show
this response more quantitatively—the number of cells in the 2.0 class
for the low probabilities (≤0.1) are greater than the other two classes,
and there are more cells for the mid-range values (i.e., yellows) of the
2.0 intensity class than for the two other classes. It is not known which
of these representations (more or less transitional presence) is more
accurate, but the presence of transitional areas where spodic expression
is not at its maximum seems intuitive and therefore reasonable. Re-
gardless, these differences among the MaxEnt results indicate that a

range of values for the variable utilized as presence data (e.g., spodic
intensity classes, species abundance, density, etc.) can influence
MaxEnt outputs differently than presence variables that do not include
a range of values (the variable is either present or not, such as the 2.0
intensity class alone), at least when covariates do not exert strong in-
fluence on the model outputs.

Even though metrics for MaxEnt output generated here and random
forests output generated by Nauman et al. (2015a) indicated good to
excellent model performance for predicting spodic expression, there
was still substantial amount of area in disagreement between the two
models. Where the high probability cells for the two models were in
disagreement, all of the values of the environmental covariates were
significantly different between models. In terms of magnitude, the
contributing area (contribare) was the environmental variable that was
most different for cells that were not in agreement between the two
models. The mean and maximum contributing area (m2) for MaxEnt
cells were both an order of magnitude smaller than the mean and
maximum contributing areas for random forests (Table 10). MaxEnt
tends to predict the higher probabilities for spodic characteristics
higher up in watersheds. Another striking difference between the two
models for high probability (i.e., top 40%) predictions pertains to as-
pect. The mean values for eastness, nwness, southness, and neness from
MaxEnt were associated with the opposing aspect than that for random
forests, as denoted by the opposite signs of each between models
(Table 10).

The two models clearly resulted in different extent and location of
spodic presence; however, a comparison between these two models was
not a primary focus of this study. The model which most accurately

Fig. 6. Comparison of MaxEnt (A) and random forests (B)
outputs. The MaxEnt model employed presence data using
the range of 0.5–2.0 spodic intensity, while random forests
used 0–2.0 spodic intensity data, since random forests in-
cludes absence data. Cells were separated into five equal
quantiles to compare these outputs by rank. Colors re-
present probability that spodic properties exist, not in-
tensity of spodic expression.

Table 8
Percentages of agreement and disagreement probability of presence for the MaxEnt-
random forests comparison.

Agreement Disagreement

% agreement 61.85 38.15
# of cells 403,901 249,152
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describes current presence cannot be determined without some field
verification. Yet even field verification of spodic intensity presents a
conundrum for validation because a lack of spodic intensity may be due
to complete depodzolization or that podzolization never occurred in
that location. Spodic characteristics can be determined chemically after
visual indicators of spodic morphology have degraded (Soil Survey
Staff, 2003), but it is not known how long these chemical signatures
remain after spodic expression is gone, and these techniques are cost
prohibitive to undertake on a landscape scale.

A pressing research need is to understand where podzolization could
possibly occur to inform red spruce restoration—specifically, to identify
landscape locations that have the greatest potential for successful ex-
pansion of red spruce. There are many reason for encouraging its ex-
pansion; in addition to providing greater forest diversity and highly-
valued recreational opportunities, this forest type is intimately tied to
and essential for the survival of threatened and endangered wildlife
species (Menzel and Ford, 2004; Dillard et al., 2008; Pauley, 2008).

The potential for depodzolization creates more difficulty for mod-
eling spodic potential than many typical modeling applications in
which presence of a specific modeled feature or attribute can be verified
by field validation. As such, success in modeling spodic potential, and
thus, conditions conducive to red spruce survival, may require the use
of environmental variables that include fine-scale microclimate metrics
as these may be more discerning for identifying conditions associated
with spodic formation, and for differentiating between weak spodic
presence and spodic absence. Inclusion of microclimate variables may
yield models that are more robust and effective at predicting the oc-
currence of Spodosols. In addition, rather than relying solely on phy-
sical attributes, other local biological or chemical soil characteristics
may be more robust and effective for informing MaxEnt about spodic
prediction.

5. Conclusion

The probability of occurrence of spodic expression was modeled in a
portion of the Monongahela National Forest in eastern West Virginia
using the presence-only species distribution model MaxEnt. Three dif-
ferent spodic intensity classes were modeled, but the results were re-
latively similar, suggesting that MaxEnt modeling may be a useful tool
for predicting spodic expression—the model was not overly sensitive to
the degree of spodic intensity in its prediction, and the use of presence-
only data may reduce the risks associated with including false absences
that can occur in presence-absence models. The primary difference
among the MaxEnt outputs was the model employing only the strongest
spodic intensity values tended to have more abrupt transitions between
cells with high probability of occurrence and those with low probability
compared to the models that employed wider ranges of spodic intensity.

Individually, the 29 environmental covariates did not contribute
substantially to any of the MaxEnt the modeled outputs, though the two
models that excluded the very weak spodic intensity class found a few
variables with some influence. Most of these were related in one way or
another to elevation, which was expected because podzolization in this
region is associated historically with red spruce presence, and red
spruce is primarily found at high elevations.

The MaxEnt output determined from the widest spodic intensity
class was compared to results from random forests, which employed
presence and absence data from the same data set. Outputs using the
40% of cells with the highest probability of occurrence from both
models were compared. Approximately 60% of those cells were in
agreement between the two models. Areas of disagreement were pri-
marily concentrated in areas that were located far from the original soil
sampling points.

Covariates may not have been unique enough to the conditions that
control spodic formation, which may have caused the prediction of low
probabilities with distance from the original soil sampling locations. It
is possible that more important environmental variables might include

Fig. 7. Spatial comparison of the MaxEnt and random forests agreement and disagree-
ment, using the top 40% of probabilities for each model. White areas are cells in the lower
60% of probabilities for both the MaxEnt and random forests outputs, so they were not
included in this comparison.

Table 9
Mean, minimum, and maximum environmental variable values for the top 40% of highest
probability cells where MaxEnt and random forests models were in agreement.

Variable Mean Minimum Maximum

aacn2 64.56 0 463.18
baselevel 998.22 633.88 1263.65
contribare 5515 772 29,312,400
convergenc 3.87 −61.21 93.73
dem 1062.78 645.22 1461.23
eastness −0.49 −1.00 1.00
green 43.44 0 247.30
lsfactor 3.74 0 17.81
mir 56.20 0 255.00
mrrtf 0.11 0 3.90
mrvbf 0.05 0 3.96
neness −0.21 −1.00 1.00
nir 134.61 0 255.00
nwness 0.48 −1.00 1.00
plan_curv 0.00055 −0.0055 0.0082
prof_curv 0.00007 −0.0088 0.0085
relht1 6.75 0 24.56
relht10 53.68 0 165.69
relht2 13.33 0 45.86
relht20 77.38 0 275.95
relht3 20.51 0 70.22
relht30 93.12 0.17 360.40
relht5 32.84 0 94.59
relht50 116.26 0.96 491.42
relht70 135.74 0.96 576.65
slope2 0.248 0.000 0.759
slpos 50.04 0 102.00
southness −0.20 −1.00 1.00
twi 5.77 3.18 21.82
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site-specific biological and chemical soil characteristics, rather than just
coarse-resolution environmental characteristics alone. The overall in-
terest in predicting spodic potential is to apply this information to
identify areas for red spruce restoration. Because this forest type is
highly valued for many reasons, including providing habitat for several
threatened and endangered species, further investigation into model
improvement will likely continue.
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