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Abstract
1.	 A	long‐standing	goal	of	invasion	biology	is	to	identify	factors	driving	highly	vari‐
able	impacts	of	non‐native	species.	Although	hypotheses	exist	that	emphasize	the	
role	of	evolutionary	history	(e.g.,	enemy	release	hypothesis	&	defense‐free	space	
hypothesis),	predicting	the	 impact	of	non‐native	herbivorous	 insects	has	eluded	
scientists	for	over	a	century.

2.	 Using	a	census	of	all	58	non‐native	conifer‐specialist	insects	in	North	America,	we	
quantified	the	contribution	of	over	25	factors	that	could	affect	the	 impact	they	
have	on	their	novel	hosts,	including	insect	traits	(fecundity,	voltinism,	native	range,	
etc.),	host	traits	(shade	tolerance,	growth	rate,	wood	density,	etc.),	and	evolution‐
ary	relationships	(between	native	and	novel	hosts	and	insects).

3.	 We	 discovered	 that	 divergence	 times	 between	 native	 and	 novel	 hosts,	 the	
shade	and	drought	tolerance	of	the	novel	host,	and	the	presence	of	a	coevolved	
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1  | INTRODUC TION

Expansion	 of	 global	 trade	 has	 increased	 establishment	 of	 non‐na‐
tive	herbivorous	insects	(Aukema	et	al.,	2010),	most	of	which	cause	
a	little	impact	in	their	invaded	range	(Williamson	&	Fitter,	1996).	A	
small	minority	of	invaders,	however,	cause	high	impacts	that	exceed	
US$70	billion	annually	just	in	North	America	(Bradshaw	et	al.,	2016),	
making	 it	 imperative	 to	 predict	 which	 species	 pose	 the	 greatest	
risk.	We	define	high‐impact	species	as	those	that	cause	mortality	of	
their	host	plants	at	population	or	regional	scales,	disrupting	ecolog‐
ical	 systems,	 and	causing	 serious	environmental	or	 socioeconomic	
harm	(Figure	1).	Although	there	have	been	advances	in	the	ability	to	
predict	the	establishment	of	non‐native	invaders	(Gallien,	Thornhill,	
Zurell,	Miller,	&	Richardson,	2019),	identifying	predictors	of	impact	
once	 they	 have	 established	 has	 proven	 difficult	 (Kolar	 &	 Lodge,	
2001).

A	long‐held	assumption	regarding	the	success	of	non‐native	in‐
vaders	relates	to	the	absence	of	their	coevolved	natural	enemies	in	
the	introduced	range	(enemy	release	hypothesis;	Keane	&	Crawley,	
2002),	which	has	motivated	classical	biological	control	programs	
against	non‐native	herbivorous	 insects	 for	130	years	 (Burgess	&	
Crossman,	 1929;	 Caltagirone,	 1981).	 Similarly,	 the	 defense‐free	
space	 hypothesis	 invokes	 lack	 of	 coevolved	 host	 defenses	 as	 a	
factor	responsible	for	high‐impact	herbivore	invasions	(Gandhi	&	
Herms,	 2010).	 Although	 the	 success	 of	 some	 classical	 biological	
control	 programs	 provides	 empirical	 support	 for	 the	 enemy	 re‐
lease	hypothesis	(DeBach	&	Rosen,	1991),	and	a	lack	of	coevolved	
defenses	against	some	invasive	herbivorous	insects	has	been	doc‐
umented	 (Brooks,	 Ervin,	 Varone,	 &	 Logarzo,	 2012;	 Desurmont,	
Donoghue,	Clement,	&	Agrawal,	2011;	Woodard,	Ervin,	&	Marsico,	
2012),	these	hypotheses	have	not	been	applied	to	predict	the	im‐
pact	 of	 non‐native	 insects.	 Recent	 frameworks	 have	 integrated	

multiple,	 single‐factor	 hypotheses	 into	 synthetic	 theories	 of	 in‐
vasion	 success	 (e.g.,	Barney	&	Whitlow,	2008;	Catford,	 Jansson,	
&	Nilsson,	 2009),	 but	 these	 are	 too	 general	 for	making	 specific	
predictions	and	may	mask	important	mechanisms	driving	the	im‐
pact	of	invasions.	Simultaneous	consideration	of	multiple	traits	of	
non‐native	insects	and	their	hosts	may	better	predict	the	probabil‐
ity	of	high‐impact	invasions	(e.g.,	Gurevitch,	Fox,	Wardle,	Inderjit,	
&	Taub,	2011).

We	 tested	 the	 hypothesis	 that	 multiple	 traits	 better	 predict	
high‐impact	 invasions	by	 focusing	on	non‐native	 insect	herbivores	
in	North	America	that	specialize	on	coniferous	(Order	Pinales)	trees	
(hereafter,	 conifer	 specialists),	which	 are	widely	distributed	across	
latitude	and	elevation,	dominate	multiple	biomes,	are	well	studied,	
and	have	great	ecological	and	economic	value	(Eckenwalder,	2009).	
Specifically,	we	tested	if	the	probability	of	a	non‐native	conifer	spe‐
cialist	causing	high	impact	on	a	North	American	(novel)	conifer	host	

F I G U R E  1  Example	of	high‐impact	damage	caused	by	a	
non‐native	insect:	Red	pines	(Pinus resinosa)	killed	by	the	red	pine	
scale	(Matsucoccus matsumurae)	near	Myles	Standish	State	Forest,	
Massachusetts.	Photograph	by	Jeff	Garnas,	University	of	New	
Hampshire

congener	on	a	shared	host,	were	more	predictive	of	impact	than	the	traits	of	the	
invading	insect.	These	factors	built	upon	each	other	to	strengthen	our	ability	to	
predict	 the	 risk	of	 a	non‐native	 insect	becoming	 invasive.	This	 research	 is	 the	
first	 to	 empirically	 support	 historically	 assumed	 hypotheses	 about	 the	 impor‐
tance	of	evolutionary	history	as	a	major	driver	of	impact	of	non‐native	herbivo‐
rous	insects.

4.	 Our	novel,	integrated	model	predicts	whether	a	non‐native	insect	not	yet	present	
in	North	America	will	have	a	one	in	6.5	to	a	one	in	2,858	chance	of	causing	wide‐
spread	mortality	of	a	conifer	species	if	established	(R2	=	0.91)

5. Synthesis and applications.	With	this	advancement,	the	risk	to	other	conifer	host	
species	and	regions	can	be	assessed,	and	regulatory	and	pest	management	efforts	
can	be	more	efficiently	prioritized.

K E Y W O R D S

evolutionary	history,	herbivore,	invasive	insect,	non‐native	species,	risk	assessment
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is	a	function	of	the	following:	 (a)	evolutionary	divergence	time	be‐
tween	the	native	and	novel	hosts,	 (b)	 life	history	traits	of	 its	novel	
host,	especially	those	traits	related	to	herbivore	resistance	and	toler‐
ance,	(c)	the	evolutionary	relationship	of	the	non‐native	conifer	spe‐
cialist	to	native	insects	that	have	coevolved	with	the	shared	North	
American	host,	and/or	(d)	the	life	history	traits	of	the	non‐native	in‐
sect.	We	quantified	the	contributions	of	these	factors,	 individually	
and	in	combination,	to	assess	the	magnitude	of	impact	and	provide	a	
model	framework	for	predicting	which	introduced	insect	herbivores	
are	 likely	 to	be	high‐impact	 invaders.	We	also	demonstrate	 that	 a	
composite	model	substantially	increases	predictability	relative	to	in‐
dividual	submodels.	Our	research	is	the	first	to	generate	quantitative	
evidence	 for	 the	 role	of	evolutionary	history	as	a	predictor	of	 the	
impact	of	non‐native	insect	herbivores	on	their	host	plants.

2  | MATERIAL S AND METHODS

2.1 | Insect traits

We	 censused	 non‐native	 insects,	 using	 published	 lists	 (Aukema	 et	
al.,	 2010;	Yamanaka	 et	 al.,	 2015),	 and	 identified	 58	 conifer	 special‐
ists	 currently	 established	 in	 North	 America	 that	 feed	 on	 hosts	 in	
Cupressaceae,	Pinaceae,	 and/or	Taxaceae	 (Table	A1).	 For	 each	 coni‐
fer	 specialist,	 literature	and	online	searches	were	conducted	 (March	
2016–July	2017)	 to	 find:	 (a)	values	of	15	potentially	 relevant	 insect	
life	history	traits	including	fecundity	and	voltinism,	(b)	the	highest	level	
of	plant	damage	described	in	published	literature,	(c)	all	documented	
North	 American	 host	 trees	 (excluding	 conifers	 outside	 their	 native	
range	in	North	America),	and	(d)	all	host	trees	from	the	insect's	native	
range.	High‐impact	 insects	were	defined	as	those	reported	to	cause	
tree	mortality	at	the	population	or	regional	 level	 (Figure	1),	whereas	

species	that	directly	or	indirectly	caused	only	individual	tree	mortality	
or	minor	damage	were	not	considered	to	be	high	impact	(Table	1).	A	
binary	 impact	 response	variable	was	considered	useful	 for	decision‐
making	(high	impact	or	not),	avoided	the	subjectivity	of	multiple	impact	
levels,	and	eliminated	the	potential	effect	of	time	since	introduction.	
For	example,	a	recently	introduced	species	with	a	limited	distribution	
would	qualify	as	high	impact	if	it	had	caused	mortality	in	its	localized	
host	population,	recognizing	that	it	could	potentially	spread	over	time.

Information	 available	 about	 non‐native	 conifer	 specialists	 in	
North	America	is	concentrated	on	species	causing	the	most	damage.	
Hence,	 some	 insect	 traits,	 such	as	 fecundity,	were	unavailable	 for	
many	species	and	were	not	included	in	the	analyses.	Further,	there	
were	strong	associations	between	insect	order	and	feeding	guild,	as	
well	 as	 between	 the	number	of	 native	 host	 genera	 and	degree	of	
host	specificity	in	the	native	range;	thus,	these	pairs	were	reduced	to	
a	single	trait	(feeding	guild	and	number	of	native	host	genera,	respec‐
tively)	for	analyses.	Eight	insect	traits	were	ultimately	evaluated	as	
predictors	of	impact	(Table	2).	We	used	multimodel	inference	within	
an	information	theoretic	framework	(Burnham	&	Anderson,	2003)	to	
rank	12	unique	generalized	linear	models	(GLM;	Table	2).	Candidate	
models	 included	the	null	 (no	predictors)	and	global	 (all	predictors).	
Models	were	ranked	based	on	Akaike's	Information	Criteria	adjusted	
for	small	sample	size	(AICc).	AICc	scores	and	weights	were	calculated	
with	 the	GLM and AICTAB	 functions	 in	 the	 stats	 and	AICcmodavg	
packages	for	R,	respectively	(Mazerolle,	2019;	R	Core	Team,	2017).

2.2 | Host traits

Our	 literature	 review	 revealed	49	North	American	conifer	 species	
that	were	fed	upon	by	the	58	conifer	specialists	(Table	A2).	Six	traits	
(foliage	texture,	growth	rate,	drought	tolerance,	fire	tolerance,	shade	

Impact number High impact Description

1 0 No	damage	documented	in	the	literature.

2 0 Minor	damage;	examples:	leaf/needle	loss,	leaf/
needle	discoloration,	twig	dieback,	or	fruit	drop.

3 0 Mortality	of	individual	stressed	plants.

4 0 Weakening	of	an	individual	plant	that	suffers	
mortality	from	another	agent.

5 0 Mortality	of	individual	healthy	plants.

6 1 Isolated	or	sporadic	mortality	within	an	affected	
plant	populationa;	examples:	occasional	out‐
breaks	that	yield	>	10%	mortality,	90%	mortality	
with	regeneration,	or	sustained	mortality	of	5%	
per	year	in	multiple	populations.

7 1 Extensive	or	persistent	mortality	within	a	popula‐
tion;	example:	more	than	25%	mortality	over	
10	years.

8 1 Wave	of	plant	mortality	with	regional	spread	of	
the	insect.

9 1 Functional	extinction	of	the	host	plant.

Note: Binomial	high‐impact	value:	1	=	yes;	0	=	no.
aA	population	is	defined	as	a	spatially	continuous	group	of	interbreeding	individuals.	

TA B L E  1  Description	of	documented	
non‐native	insect	impacts	on	naïve	hosts,	
independent	of	management	programs
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tolerance,	and	wood	density)	conceptually	relevant	to	host	quality	
were	 extracted	 for	 each	 conifer	 species	 from	 three	 sources:	 the	
United	States	Department	of	Agriculture	Plants	Database	(USDA	&	
NRCS,	2016);	the	TRY	Database	(Kattge	et	al.,	2011);	and	Miles	and	
Smith	(2009);	foliar	carbon–nitrogen	ratio	and	specific	leaf	area	data	
were	unavailable	for	many	conifers	and	were	therefore	not	included.	
As	with	insect	traits,	we	used	multimodel	inference	to	evaluate	10	
candidate	models	(Table	3)	that	related	host	traits	with	the	probabil‐
ity	of	high	impact	for	each	novel	insect–host	pair	(n	=	221).

2.3 | Host evolutionary history

Each	 insect–host	 pair	 was	 matched	 with	 each	 coevolved	 (native)	
host	of	the	insect	in	its	native	range	(n	=	1,271	triplets).	Divergence	
time	(millions	of	years	ago;	mya)	between	the	novel	and	native	host	
was	assigned	for	each	triplet	using	the	nearly	comprehensive	dated	
phylogeny	of	conifers	by	Leslie	et	al.	 (2012).	For	three	species	not	
represented	in	this	phylogeny	(Abies balsamea	(L.)	Miller,	Pinus cem‐
bra	 L.,	 and	P. banksiana	 Lambert),	 divergence	 times	were	 inferred	
using	dates	among	clades	 in	Leslie	et	al.	 (2012)	and	their	positions	
in	other	published	phylogenies	 (Gernandt,	López,	Garcia,	&	Liston,	
2005;	Parks,	Cronn,	&	Liston,	2012;	Xiang	et	al.,	2015).	For	each	tri‐
plet,	the	distance	to	the	most	recently	diverged	host	in	the	insect's	
native	 range	was	extracted	 for	 analyses,	which	minimized	 the	 im‐
pact	of	incomplete	host	records	and	ensured	independence	among	
observations.	Three	pairs	were	excluded	because	 the	globally	dis‐
tributed	 Juniperus communis	 L.	was	 both	 the	North	American	 and	

closest	native	Eurasian	host,	leaving	218	pairs.	Using	logistic	regres‐
sion	and	the	chi‐squared	likelihood	ratio	(G2),	we	tested	for	effects	
of	divergence	time	between	the	closest	native	and	novel	host	plants,	
feeding	guild	of	the	insect,	and	interaction	between	the	two,	on	the	
probability	of	high	impact.	Since	there	was	a	strong	interaction	term,	
we	tested	separate	models	for	each	feeding	guild.	Visual	examina‐
tion	of	the	data	suggested	nonlinearities	between	divergence	time	
and	impact;	thus,	we	also	considered	models	that	included	a	squared	
term	for	divergence	time	(RMS	package;	Harrell,	2017).

2.4 | Insect evolutionary history

Sharing	a	host	with	a	closely	related	herbivore	native	to	North	America	
could	 influence	 the	 impact	of	an	 invading	non‐native	 insect.	To	 test	
this	hypothesis,	we	compiled	a	 list	of	North	American	 insect	genera	
associated	with	each	North	American	conifer	in	our	analyses	using	the	
following	 sources:	Blackman	and	Eastop	 (1994),	Burns	and	Honkala	
(1990),	Drooz	 (1985),	Furniss	and	Carolin	 (1977),	Johnson	and	Lyon	
(1991),	 Pickering	 (2011),	 Robinson,	Ackery,	 Kitching,	 Baccaloni,	 and	
Hernández	(2010),	and	Wood	and	Bright	(1992).	To	account	for	false	
negatives	generated	by	any	undocumented	native	 insect	genera,	we	
excluded	the	10%	of	conifers	(n	=	8)	with	the	fewest	documented	in‐
sect	 genera.	 For	 the	 remaining	203	 insect–host	pairs,	we	evaluated	
models	predicting	 the	probability	of	high	 impact	based	on	the	pres‐
ence	or	absence,	on	the	same	host,	of	a	co‐occurring	native	insect	in	
the	same	genus	or	family	as	the	non‐native	conifer	specialist	(Table	4).	
However,	we	did	not	evaluate	the	global	model	because	insects	in	the	
same	genus	are	also	in	the	same	family.

TA B L E  2  Ranking	of	alternative	models	explaining	variability	
in	high‐impact	insect	invasions	on	North	American	conifers	as	a	
function	of	non‐native	insect	traits

Model K AICc ΔAICc w

Voltinism 2 43.308 0.000 0.27

Voltinism	+	Reproductive	
Strategy	+	Dispersal

5 43.911 0.603 0.20

Reproductive	Strategy 2 44.475 1.168 0.15

Null	Model 1 44.794 1.486 0.13

Congener 2 46.073 2.765 0.07

Number	of	Genera 2 46.305 2.997 0.06

Pest	Status 2 46.733 3.426 0.05

Dispersal 2 46.791 3.483 0.05

Native	Range 3 48.339 5.031 0.02

Guild 4 50.651 7.343 0.01

Native	Range	+	Pest	
Status	+	Number	Genera

5 51.935 8.627 <0.01

Global	model 11 64.639 21.331 <0.01

Note: Lower	Akaike's	Information	Criterion	adjusted	for	small	sample	
size	(AICc)	scores	and	higher	AICc	weights	(w)	indicate	a	greater	relative	
degree	of	support	for	the	model	from	the	data.	K	indicates	the	number	
of	parameters	in	each	model,	and	ΔAICc	is	used	to	facilitate	com‐
parisons	between	the	best‐supported	model	(AICc	=	0.00)	and	other	
models.	All	models	with	ΔAICc	scores	≤	2.00	(bold	font)	were	included	
in	the	confidence	set.

TA B L E  3  Ranking	of	alternative	models	explaining	variability	in	
high‐impact	insect	invasions	as	a	function	of	host	tree	traits

Model K AICc ΔAICc w

Shade	toler‐
ance	+	Drought	
tolerance

6 109.547 0.000 0.79

Growth	rate 3 114.765 5.218 0.06

Wood	density	+	Growth	
rate

4 114.929 5.382 0.05

Wood	density 2 115.567 6.020 0.04

Null	model 1 116.849 7.302 0.02

Foliage	texture	+	Growth	
rate

5 116.863 7.317 0.02

Foliage	texture 3 118.605 9.058 <0.01

Drought	tolerance 4 119.142 9.595 <0.01

Global	model 14 121.842 12.295 <0.01

Fire	tolerance	+	Drought	
tolerance

7 124.834 15.287 <0.01

Note: Lower	Akaike's	Information	Criterion	adjusted	for	small	sample	
size	(AICc)	scores	and	higher	AICc	weights	(w)	indicate	a	greater	relative	
degree	of	support	for	the	model	from	the	data.	K	indicates	the	number	
of	parameters	in	each	model,	and	ΔAICc	is	used	to	facilitate	com‐
parisons	between	the	best‐supported	model	(AICc	=	0.00)	and	other	
models.	All	models	with	ΔAICc	scores	≤	2.00	(bold	font)	were	included	
in	the	confidence	set.
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2.5 | Composite model

We	explored	whether	the	host	trait	values	and	evolutionary	history	
represent	 independent	 factors	 for	 composite	 model	 construction	
by	calculating	Blomberg's	K	index	of	phylogenetic	signal	(Blomberg,	
Garland,	&	Ives,	2003).	A	K	value	of	zero	indicates	random	distribu‐
tion	of	trait	values	on	the	phylogeny,	a	value	of	one	indicates	that	trait	
values	are	correlated	with	divergence	time	according	to	a	Brownian	
motion	model	of	evolution,	and	a	value	greater	than	one	 indicates	
that	related	species	have	trait	values	that	are	even	more	similar	than	
expected	under	Brownian	motion	(Blomberg	et	al.,	2003).	We	used	
the	R	package	Picante	(Kembel	et	al.,	2010)	to	calculate	K	values	for	
each	trait	and	to	test	against	the	null	hypothesis	of	random	distribu‐
tion	on	 the	phylogeny	using	1,000	 randomizations	of	 trait	 values.	
Ordinal	categorical	 traits	 (none,	 low,	medium,	high)	were	coded	as	
integers	(0,	1,	2,	3)	for	calculating	K.	We	used	the	same	host	phylo‐
genetic	tree	as	above,	but	it	was	trimmed	to	include	only	the	species	
for	which	trait	values	were	available.	Trait	values	were	plotted	on	the	
phylogeny	using	the	R	package	Phylosignal	(Keck,	Rimet,	Bouchez,	&	
Franc,	2016).

We	combined	the	strongly	supported	submodels	(native–novel	
host	 divergence	 time,	 novel	 host	 traits,	 and	 native–non‐native	
insect	 relatedness;	m	 =	 1	 to	 3)	 predicting	 risks	 of	 high‐impact	
invasions	 to	 estimate	 the	 composite	 risk	 (R)	 for	 each	of	 the	221	
combinations	of	conifer	hosts	(t)	and	conifer	specialists	(i)	accord‐
ing	to:

where Rt,i	is	the	estimated	probability	of	high	impact	(logit	units)	for	the	
combination	of	host	tree	t	and	conifer	specialist	i,	P̂m,t,i	is	the	predicted	
probability	of	high	impact	from	model	m	for	tree	t	and	insect	i,	Pm..	is	
the	proportion	of	high‐impact	incidences	for	the	tree–insect	combina‐
tions	used	to	parameterize	model	m,	Nm	is	the	number	of	models	(1–3	
depending	upon	the	insect–host	combination)	yielding	predictions	for	

that	insect–host	pair,	and	P
…
	is	the	overall	proportion	of	high‐impact	

incidences	among	all	221	insect–host	combinations	(P
…
	=	0.072).

To	evaluate	the	fit	of	the	predictive	model	to	the	observed	 in‐
cidences	 of	 high	 impact,	we	 ranked	 the	 predicted	 probabilities	 of	
high	impact	and	allocated	them	to	10	bins	(22	probabilities	per	bin	
with	23	in	the	final	bin).	The	mean	probability	of	each	bin	was	calcu‐
lated	and	compared	to	the	observed	proportion	of	high‐impact	pairs	
within	the	bin.

2.6 | Model goodness of fit and validation

We	calculated	R2	goodness‐of‐fit	metrics	to	assess	the	proportion	of	
variability	in	our	dataset	explained	by	each	submodel	and	the	com‐
posite	model.	For	each	submodel,	we	calculated	the	Nagelkerke	R2 
(Nagelkerke,	1991)	using	the	fmsb	package	 in	R	 (Nakazawa,	2018).	
Rather	than	evaluating	predictive	ability	with	data	used	to	train	the	
model,	we	conducted	10‐fold	cross‐validation	tests	of	the	submodel	
on	independent	data	by	randomly	subsetting	the	dataset	into	train‐
ing	(90%)	and	testing	(10%)	sets,	refitting	the	model	with	the	train‐
ing	set,	making	predictions	with	the	testing	set,	comparing	testing	
set	predictions	with	their	known	values,	replacing	the	observations,	
repeating	the	process	nine	more	times,	and	averaging	the	error	rate	
over	the	10	iterations	(Fushiki,	2011).

Ten‐fold	 cross‐validation	 results	 for	 each	 submodel	were	eval‐
uated	 using	 receiver	 operator	 characteristic	 (ROC)	 plots	 and	 area	
under	the	curve	(AUC)	statistics.	The	AUC	score	indicates	the	ability	
of	each	submodel	to	assign	a	greater	likelihood	of	high	impact	to	an	
insect–host	pair	that	was	actually	high	impact	compared	to	one	that	
was	not	 (Fielding	&	Bell,	1997).	AUC	scores	are	bounded	between	
0.00	and	1.00,	with	a	score	of	0.50	indicating	a	model	with	predic‐
tive	performance	equivalent	to	random	chance	and	a	score	of	1.00	
indicating	perfect	predictive	ability.	Notably,	the	AUC	score	for	the	
composite	model	was	not	generated	with	10‐fold	cross‐validation,	
but	with	the	data	used	to	parameterize	it.

3  | RESULTS

Of	 the	 approximately	 450	 non‐native	 herbivorous	 insects	 cur‐
rently	established	in	North	American	forests	(Aukema	et	al.,	2010),	
58	are	conifer	specialists,	with	six	historically	or	currently	causing	
high	impacts	(Table	A1).	Only	conifer	specialists	in	the	insect	orders	
Hymenoptera	 (i.e.,	 sawflies)	 and	 Hemiptera	 (i.e.,	 adelgids,	 aphids,	
and	scales)	have	caused	high	 impact.	Conifer	hosts	were	attacked	
by	1	to	21	non‐native	conifer	specialists	(Table	A2),	and	each	insect	
attacked	1	to	16	novel	hosts.

3.1 | Host phylogeny and insect‐feeding guild 
predict impact

Divergence	time	to	the	most	recent	common	ancestor	between	the	
insect's	native	and	novel	conifer	hosts	had	strong	quadratic	relation‐
ships	to	predict	the	impact	for	folivores	and	sap‐feeders.	Divergence	

(1)
Rt,i=

∑3

m=1
logit

�

P̂m,t,i

�

− log it
�

Pm..

�

Nm

+ log it
�

P
…

�

TA B L E  4  Ranking	of	alternative	models	explaining	variability	
in	high‐impact	insect	invasions	as	a	function	of	the	taxonomic	
relationship	between	non‐native	conifer	specialists	and	their	
closest	North	American	insect	relative	on	the	same	host	tree	
species

Model K AICc ΔAICc w

Shared	genus 2 98.778 0.000 0.89

Null	model 1 103.908 5.129 0.07

Shared family 2 104.958 6.179 0.04

Note: Lower	Akaike's	Information	Criterion	adjusted	for	small	sample	
size	(AICc)	scores	and	higher	AICc	weights	(w)	indicate	a	greater	relative	
degree	of	support	for	the	model	from	the	data.	K	indicates	the	number	
of	parameters	in	each	model,	and	ΔAICc	is	used	to	facilitate	com‐
parisons	between	the	best‐supported	model	(AICc	=	0.00)	and	other	
models.	All	models	with	ΔAICc	scores	≤	2.00	(bold	font)	were	included	
in	the	confidence	set.
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time	was	not	tested	for	wood	borers,	root	feeders,	and	gall	makers	
as	none	caused	high	impact.

The	greatest	probability	of	high	impact	for	a	folivore	conifer	spe‐
cialist	was	on	a	novel	conifer	that	diverged	from	the	native	conifer	
host	recently	(~1.5–5	mya;	Figure	2a;	Table	5;	p = .112 and p = .072 
for	divergence	time	and	divergence	time2,	respectively),	with	prob‐
abilities	of	high	impact	ranging	from	.000	to	.765	across	host	diver‐
gence	 times,	 with	 the	 10th	 and	 90th	 percentiles	 encompassing	 a	
12,000‐fold	range	 in	probabilities.	For	native	and	novel	hosts	that	
diverged	2–3	mya,	there	is	a	~76%	chance	the	folivore	will	cause	high	
impact,	but	that	risk	decreases	to	nearly	0%	for	hosts	more	distantly	
or	extremely	closely	 related	 (Table	6,	Figure	2a).	Overall,	 the	host	
evolutionary	 history	 model	 for	 folivores	 had	 moderate	 predictive	
performance;	R2	=	0.43	(Figure	2a)	and	AUC	=	0.77	(Figure	3).

Among	 sap‐feeders,	 evolutionary	 divergence	 time	 between	
native	and	novel	hosts	had	greater	predictive	power.	As	with	fo‐
livores,	 there	 was	 a	 quadratic	 relationship	 between	 divergence	
time	and	 impact,	but	 the	probability	of	peak	 impact	occurred	at	
longer	divergence	times	for	sap‐feeders	 (~12–17	mya;	Figure	2b;	
Table	5;	p = .014 and p	=	.012	for	divergence	time	and	divergence	

time2,	 respectively).	 The	 host	 phylogeny	 evolutionary	 submodel	
for	sap‐feeders	had	an	R2	value	of	0.36	and	an	AUC	score	of	0.81	
(Figure	3).	Predicted	probabilities	of	high	impact	ranged	from	in‐
finitesimal	 (2.85	×	10−28)	 to	0.30	across	 the	 range	of	divergence	
times	for	sap‐feeders.	The	10th	to	90th	percentiles	had	an	approx‐
imate	257	million‐fold	 range	 in	probabilities,	with	 a	30%	chance	
that	 a	 sap‐feeder	will	 cause	 high	 impact	 on	 a	 novel	 conifer	 that	
diverged	from	the	insect's	native	host	about	16	mya;	the	probabil‐
ity	drops	to	one	in	over	500	million	if	the	hosts	are	either	closely	
or	distantly	related	(Figure	2b;	Table	6).

3.2 | Host shade and drought tolerance 
predict impact

Of	the	nearly	100	conifer	species	native	to	North	America,	49	were	
colonized	 by	 a	 non‐native	 conifer	 specialist,	with	 76%	 colonized	 by	
more	than	one	(x̄	=	4.44;	Table	A2).	The	confidence	set	predicting	high	
impact	as	a	function	of	host	traits	consisted	of	a	single	model:	shade	
tolerance	+	drought	tolerance	(Tables	3	and	7).	Other	traits	examined	
that	did	not	influence	impact	included	tree	growth	rate,	wood	density,	

F I G U R E  2  Predicted	probability	of	
high	impact	based	on	divergence	time	
between	native	and	novel	coniferous	
hosts.	For	the	49	cases	involving	folivores	
(a),	the	risk	of	high‐impact	invasions	
was	higher	[P(high	impact)	≈	0.75]	with	
divergence	times	of	1.5	to	5	mya.	For	the	
131	cases	involving	sap‐feeding	conifer	
specialists	(b),	the	risk	of	high	impact	was	
greatest	[P(High	Impact)	≈	0.30]	when	
the	North	American	host	tree	was	of	
intermediate	relatedness	to	the	native	
host	tree	(estimated	last	common	ancestor	
at	10	to	30	mya,	zenith	at	16	mya).	Dots	
represent	observed	impact	(1	=	high	
impact),	and	the	lines	represent	predicted	
impacts	based	on	models.	Points	have	
been	jittered	such	that	all	observations	
are	visible
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foliage	texture,	and	fire	tolerance.	The	time‐independent	(i.e.,	regard‐
less	of	time	since	introduction)	predicted	probabilities	of	high	impact	
ranged	from	0.014	to	0.259	across	hosts.	If	the	novel	host	was	both	
highly	 tolerant	 of	 shade	 and	had	 low	drought	 tolerance,	 life	 history	
traits	that	are	highly	associated	in	conifers	resulting	from	fundamental	
physiological	trade‐offs	(Rueda,	Godoy,	&	Hawkins,	2017),	there	was	a	
20%–26%	chance	it	would	experience	high	impact	from	a	non‐native	
insect	(Figure	4);	this	included	most	species	of	Abies,	Picea,	and	Tsuga. 
In	comparison,	novel	hosts	without	high	shade	and	low	drought	toler‐
ance	had	as	low	as	a	1.4%	chance	of	experiencing	a	high‐impact	inva‐
sion	(Figure	4).	Independently,	the	host	traits	model	had	a	moderate	
predictive	performance	with	an	R2	value	of	0.19.	In	addition,	a	10‐fold	
cross‐validation	analysis	determined	an	AUC	of	0.58	(Figure	3).

3.3 | Coevolved native insects predict impact

We	evaluated	the	evolutionary	relationship	between	the	non‐native	co‐
nifer	specialist	and	native	North	American	insects	that	coevolved	with	
the	shared	novel	conifer	host	by	determining	whether	they	belong	to	the	
same	genus	or	family.	The	presence	of	a	congener	feeding	on	the	host	
significantly	decreased	the	probability	that	the	conifer	specialist	causes	
high	 impact	 (p	=	 .043;	Figure	5,	Tables	4	and	8).	However,	 the	 insect	
evolutionary	 history	 model	 in	 isolation	 had	 relatively	 poor	 predictive	
performance,	with	an	R2	value	of	0.09	and	AUC	score	of	0.51	(Figure	3).

3.4 | Insect life history traits do not predict impact

None	of	the	insect	 life	history	traits	examined,	singly	or	 in	com‐
bination	 (Table	 2),	 had	 predictive	 value	 including	 feeding	 guild,	
native	 region,	 native	pest	 status,	 number	of	native	host	 genera,	
voltinism,	reproductive	strategy,	fecundity,	and/or	mechanism	of	
dispersal.	Although	 feeding	guild	was	not	a	significant	predictor	
of	 impact	directly,	we	did	report	quantitatively	different	models	
for	guilds	with	 respect	 to	 the	divergence	 times	of	 the	host	 spe‐
cies.	The	historical	challenge	predicting	 impacts	based	on	 insect	
traits	could	reflect	the	lack	of	variation	in	traits	among	high‐	and	
low‐impact	 invaders	 (i.e.,	 univoltinism	observed	 in	both	groups),	
further	 highlighting	 the	 importance	 of	 factors	 previously	 not	
considered.

3.5 | Composite model

The	magnitude	of	correlation	between	host	 traits	values	and	diver‐
gence	time	was	low	for	all	traits	(Blomberg's	K	ranged	from	0.008	to	
0.053;	Figure	A1),	indicating	that	the	independent	host	traits	and	host	
phylogeny	models	are	not	likely	to	compromise	the	predictive	power	
of	our	composite	model.	The	composite	model	(Equation	1)	describes	
variation	in	the	probability	of	high	impact	by	non‐native	conifer	spe‐
cialists	that	spans	an	approximate	443‐fold	variation	in	risk:	0.0003	to	
0.1549	for	the	10th	and	90th	percentile	of	the	221	novel	insect–host	
pairs	 (Table	6).	There	was	high	goodness	of	fit	between	predictions	
of	the	composite	model	and	observed	impacts	(R2	=	0.91;	Figure	6).	
In	addition,	the	AUC	score	of	0.91	(Figure	3)	indicates	that	combining	
submodels	increases	predictive	power.	For	more	than	half	of	the	221	
pairs,	the	predicted	risk	of	high	impact	was	<0.04,	with	no	observed	
cases	of	high	impact	among	the	130	pairs	with	the	lowest	predicted	
risks.	In	contrast,	87.5%	of	the	observed	high‐impact	cases	had	a	pre‐
dicted	risk	above	the	baseline	probability	(p	=	.072),	providing	further	
support	 for	model	 fit.	 The	 remaining	 observed	 high‐impact	 insect–
hosts	pairs	(n	=	2)	had	predicted	probabilities	above	the	overall	median	
with	an	average	predicted	risk	of	.048.

Our	composite	model	predicts	whether	a	non‐native	conifer	spe‐
cialist	will	have	a	one	in	6.5	to	a	one	in	2,858	chance	of	causing	high	
impact	on	a	North	American	conifer.	Although	all	three	submodels	con‐
tribute	to	these	predictions,	the	strength	of	influence	varied.	By	far,	the	
strongest	source	of	variation	was	the	effect	of	evolutionary	divergence	

TA B L E  5  Parameter	estimates	for	explaining	variability	in	
folivores	and	sap‐feeders	for	high‐impact	insect	invasions	as	a	
function	of	time	since	last	common	ancestor	of	the	novel	North	
American	host	and	the	most	closely	related	native	host

Parameter Estimate SE p‐Value

Folivores

Intercept −0.515 1.120 .646

Log10(DivergeTime) 8.073 5.086 .112

Log10(DivergeTime2) −9.495 5.271 .072b

Sap‐feeders

Intercept −51.824 21.149 .014a

Log10(DivergeTime) 84.472 34.739 .014a

Log10(DivergeTime2) −35.803 14.182 .012a

aSignificant	at	the	α = 0.05 level 
bSignificant	at	the	α = 0.10 level. 

TA B L E  6  Comparison	of	the	contributions	to	risk	of	high‐impact	invasions	from	individual	models	and	the	overall	composite	model

Predictor model of high‐impact risk
Number of insect–
host tree pairs

Variation in risk of high‐impact

Standard deviation 
(logits)

10th−90th percentile 
(logits)

10th−90th percentile 
(probabilities)

Host	Traits 218 1.03 −4.24	to	−1.33 0.014	to	0.209

Host	Evolutionary	History—Folivores 49 5.36 −10.71	to	−0.96 0.000	to	0.277

Host	Evolutionary	History—Sap‐feeder 131 12.02 −20.64	to	−0.95 0.000	to	0.279

Insect	Evolutionary	History 203 1.03 −4.30	to	−2.18 0.013	to	0.102

Composite 221 3.36 −7.96	to	−1.70 0.000	to	0.155
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time	between	novel	and	native	hosts	on	the	impact	of	sap‐feeders	and	
folivores	(Figure	2,	Table	1).	This	is	particularly	insightful	as	sap‐feeders	
accounted	for	a	disproportionate	share	of	the	non‐native	species	(57%	
of	conifer	specialists	and	69%	of	insect–host	pairs).	The	other	submod‐
els	had	smaller	effects	on	the	composite	risk	of	high	impact	(standard	
deviation	of	predicted	risk	≈	1	and	changes	in	relative	risk	from	the	10th	
to	the	90th	percentile	of	7‐fold	to	15‐fold;	Table	1).

4  | DISCUSSION

Only	six	of	the	58	non‐native	conifer	specialists	established	in	North	
America	historically	or	currently	are	causing	high	impacts:	(1)	Adelges 
piceae—Balsam	woolly	adelgid,	 (2)	Adelges tsugae—Hemlock	woolly	
adelgid,	(3)	Elatobium abietinum—Green	spruce	aphid,	(4)	Gilpinia her‐
cyniae—European	spruce	sawfly,	 (5)	Matsucoccus matsumurae—Red	
pine	 scale,	 and	 (6)	Pristiphora erichsonii—Larch	 sawfly.	 All	 high‐im‐
pact,	non‐native	conifer	specialists	in	North	America	belong	to	the	
orders	Hemiptera	or	Hymenoptera.

The	greatest	power	of	our	composite	model	for	predicting	high	im‐
pact	came	from	the	submodels	related	to	evolutionary	history	between	
native	and	novel	hosts.	Intimacy	of	host	association	has	been	proposed	
as	a	significant	factor	affecting	evolutionary	responses	of	plants	to	her‐
bivory	 (Mattson,	Lawrence,	Haack,	Herms,	&	Charles,	1988;	Walling,	
2000).	 This	may	 help	 explain	why	 the	 evolutionary	 divergence	 time	
between	native	and	novel	hosts	at	which	peak	 impact	occurred	was	
greater	for	sap‐feeders	than	for	folivores.	Sap‐feeders	are	considered	
to	have	a	more	intimate	association	with	their	hosts	than	folivores	be‐
cause	they	feed	with	their	mouthparts	embedded	within	specific	plant	

tissues	and	cells,	often	for	long	periods	of	time	(Walling,	2000).	This	can	
create	a	greater	opportunity	for	the	exchange	of	highly	specific	cues	
and	molecular	signals	that	can	elicit	precisely	targeted	host	defenses	
and	 insect	 responses	 (Stuart,	 2015;	Walling,	 2000;	 Yates	 &	Michel,	
2018;	Züst	&	Agrawal,	2016).	Indeed,	examples	of	coevolutionary	deme	
selection	in	which	insects	adapt	to	individual	host	plants	derive	almost	
exclusively	from	sap‐feeders	(Hanks	&	Denno,	1993).

A	meta‐analysis	found	that	sap‐feeders	can	decrease	the	growth,	
photosynthesis,	and	reproduction	of	conifers	(Zvereva,	Lanta,	&	Kozlov,	
2010),	which	should	select	for	targeted	defenses.	Novel	conifer	hosts	
that	 recently	 diverged	 from	 the	 native	 host	 of	 a	 non‐native	 conifer	
specialist	may	retain	defenses	evolved	during	past	interaction	with	the	
herbivore,	thus	contributing	to	lower	impact	of	non‐native	sap‐feeders	
on	the	novel	host.	As	host	divergence	times	increase,	herbivore	resis‐
tance	and/or	tolerance	of	the	novel	host	may	relax,	especially	if	there	
are	costly	physiological	and	ecological	trade‐offs	associated	with	main‐
taining	these	traits	(Herms	&	Mattson,	1992).	This	would	increase	the	
probability	that	an	invading	sap‐feeder	will	have	high	impact	on	a	novel	
host.	As	evolutionary	divergence	time	between	the	native	and	novel	
hosts	continues	to	increase,	the	conifers	may	have	diverged	genetically	
and	physiologically	to	the	point	that	sap‐feeders	have	limited	ability	to	
recognize	and	subsequently	impact	the	novel	host.

Conversely,	it	has	been	hypothesized	that	folivores	are	less	likely	
than	sap‐feeders	 to	select	 for	highly	specific	host	 recognition	and	
defense	responses	because	they	generally	have	a	less	intimate	rela‐
tionship	with	their	host	(Mattson	et	al.,	1988;	Walling,	2000).	Host	
pairs	that	diverged	very	recently	(<1	mya)	may	retain	effective	de‐
fenses	 in	 the	 absence	of	herbivory	until	 they	are	 selected	against	
because	their	costs	outweigh	their	benefits	 in	the	absence	of	her‐
bivory	(Herms	&	Mattson,	1992).	Consequently,	non‐native	folivores	
may	recognize,	consume,	and	thus	severely	impact	poorly	defended	
novel	hosts	as	they	continue	to	diverge	from	the	native	host	if	they	
retain	enough	similarity	traits	that	facilitate	host	finding	and	accep‐
tance.	As	 the	 time	of	evolutionary	divergence	between	the	native	
and	novel	hosts	becomes	more	distant,	traits	affecting	host	utiliza‐
tion	should	increasingly	diverge,	decreasing	the	ability	of	non‐native	
folivores	to	impact	or	even	recognize	novel	hosts.

F I G U R E  3  Receiving	operator	characteristic	plot	with	area	
under	the	curve	(AUC)	statistics	for	assessing	the	ability	of	the	
model	to	differentiate	high‐impact	novel	insect–host	pairs	from	
non‐high‐impact	pairs	at	different	probability	thresholds.	AUC	
curves	for	the	four	submodels	were	generated	on	independent	data	
via	10‐fold	cross‐validation,	while	the	AUC	curve	for	the	composite	
model	was	produced	with	the	full	dataset	used	to	parameterize	it

TA B L E  7  Parameter	estimates	for	the	best‐supported	model	for	
explaining	variability	in	high‐impact	insect	invasions	as	a	function	of	
host	tree	traits

Parameter Estimate SE z‐Value p‐Value

Intercept −3.656 1.423 −2.571 .010a

Shade	tolerance	
(moderate)

0.634 1.013 0.626 .531

Shade	tolerance	(high) 2.434 0.816 2.984 .003a

Drought	tolerance	(low) −0.108 1.297 −0.083 .934

Drought	tolerance	
(moderate)

0.171 1.354 0.126 .899

Drought	tolerance	(high) −0.582 1.504 −0.387 .699

Note: In	addition	to	parameter	estimates,	standard	errors	(SE),	z‐values,	
and p‐values	of	the	estimates	are	provided.
aSignificant	at	the	α = 0.05 level. 
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Shade	 and	drought	 tolerance	were	 the	only	host	 traits	we	ex‐
amined	 that	 predicted	 degree	 of	 host	 impact.	 Availability	 of	 light	
and	water	are	major	selection	pressures	shaping	the	life	history	of	
conifers	(Rueda	et	al.,	2017)	and	optimal	evolution	of	plant	defense	
strategies	(Coley,	Bryant,	&	Chapin,	1985;	Herms	&	Mattson,	1992).	
Shade	tolerance	 is	predicted	to	be	associated	with	strong	defense	
because	 it	may	be	more	difficult	 to	compensate	for	 tissues	 lost	 to	
herbivory	in	light‐limited	environments	due	to	low	rates	of	net	pho‐
tosynthesis	 (Coley	 et	 al.,	 1985;	 Strauss	&	Agrawal,	 1999).	 Indeed,	

shade‐tolerant	plants	have	been	 found	 to	be	better	defended	and	
experience	 less	 herbivory	 than	 shade‐intolerant	 plants	 (Coley,	
1983).	Yet,	our	results	found	that	novel	shade‐tolerant/drought‐in‐
tolerant	conifers	were	more	likely	to	experience	high	impacts	from	
non‐native	insects	(Figure	4).	This	could	indicate	that	if	shade‐toler‐
ant	conifers	have	limited	ability	to	tolerate	herbivory,	then	the	im‐
pact	of	non‐native	specialist	insects	preadapted	to	overcoming	host	
defenses	may	be	high.	We	are	not	aware	of	studies	of	interspecific	
variation	in	herbivore	tolerance	of	conifers	as	it	relates	to	their	shade	
tolerance.	Within	a	species,	however,	shade	has	been	shown	to	de‐
crease	the	ability	of	conifers	to	compensate	for	herbivory	(Baraza,	
Zamora,	&	Hódar,	2010;	Saunders	&	Puettmann,	1999).

The	presence	of	a	native	congener	feeding	on	the	novel	host	de‐
creased	the	probability	that	a	conifer	specialist	caused	high	impact,	
perhaps	due	to	biotic	resistance	resulting	from	one	or	a	combination	
of	factors	 (Nunez‐Mir	et	al.,	2017).	For	example,	host	defense	and	
tolerance	traits	selected	in	response	to	the	native	congener	could	be	
effective	against	the	closely	related	non‐native	conifer	specialist	(al‐
lopatric	resistance;	Harris,	1975).	In	addition,	the	non‐native	conifer	
specialist	could	be	susceptible	to	specialist	and/or	generalist	natural	

F I G U R E  4  Predicted	probability	of	high	impact	based	on	the	shade	and	drought	tolerance	of	the	novel	host.	Comparison	of	host	trait	
models	using	multimodel	inference	indicated	that	a	shade	tolerance	+	drought	tolerance	model	(solid	line)	received	~	79%	of	data	support	
(Table	3).	Each	point	represents	one	of	49	conifer	species	that	had	been	challenged	by	1	to	21	non‐native	conifer‐specialist	insects.	The	
y‐axis	indicates	the	proportion	of	non‐native	conifer	specialists	that	had	high	impact	on	that	host	species.	The	x‐axis	indicates	increasing	
predicted	risk	from	the	supported	host	traits	model.	Across	the	range	of	host	traits,	the	probability	of	high	impact	ranged	from	0.014	to	
0.259,	with	the	cluster	of	conifer	species	with	the	highest	risk	(open	circles)	having	high	shade	tolerance	(100%	of	species)	and	low	drought	
tolerance	(88%	of	species)

F I G U R E  5  Predicted	probability	of	high	impact	based	on	the	
presence	of	a	North	American	congener	insect	on	the	same	conifer	
species.	Model	comparisons	found	that	the	risk	of	a	non‐native	
conifer	specialist	producing	high	impacts	is	higher	when	there	is	no	
native	(North	American)	congener	that	feeds	on	the	shared	host	
[P(high	impact)	=	0.102	vs.	0.013].	This	model	received	~	89%	of	
the	data	support	(Table	4).	Of	the	203	insect–tree	pairs,	75	had	a	
congener	present	on	the	tree	and	128	did	not

TA B L E  8  Parameter	estimates	for	the	best‐supported	model	for	
explaining	variability	in	high‐impact	insect	invasions	as	a	function	of	
the	taxonomic	relationship	between	non‐native	conifer	specialists	
and	their	closest	North	American	insect	relative	on	the	same	host	
tree	species

Parameter Estimate SE z‐Value p‐Value

Intercept −2.180 0.293 −7.450 <.001a

Shared	Genus −2.124 1.048 −2.026 .043a

Note: In	addition	to	parameter	estimates,	standard	errors	(SE),	z‐values,	
and p‐values	of	the	estimates	are	provided.
aSignificant	at	the	α = 0.05. 
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enemies	of	the	congener	(Carlsson,	Sarnelle,	&	Strayer,	2009).	Finally,	
the	native	congener	could	be	better	adapted	to	a	shared	niche	and	
thus	be	a	stronger	competitor	than	the	evolutionarily	naïve	non‐na‐
tive	conifer	specialist	(Paini,	Funderburk,	&	Reitz,	2008).

5  | CONCLUSIONS

Understanding	what	factors	drive	the	impact	of	non‐native	species	
is	a	central	goal	in	invasion	biology,	yet	hypotheses	have	remained	
largely	untested.	Our	work	offers	quantitative	insight	 into	the	role	
that	 evolutionary	 history	 plays	 in	 predicting	which	 non‐native	 in‐
sects	will	 cause	 high	 impacts.	 Specifically,	we	 have	 demonstrated	
that	the	probability	of	high	impact	can	be	predicted	from	host	plant	
traits,	 the	 divergence	 time	 between	 the	 insect's	 native	 and	 novel	
hosts,	and	the	presence	or	absence	of	a	coevolved	congener	feeding	
on	the	same	host.	Importantly,	we	concluded	that	traits	of	the	invad‐
ing	insect	that	we	examined,	except	for	the	indirect	effect	of	feeding	
guild,	cannot	be	used	to	predict	the	insect's	impact	in	its	non‐native	
range.	Rather,	the	three	categories	of	factors	important	in	determin‐
ing	the	host	 impact	of	non‐native	conifer	specialists	all	directly,	or	
through	an	interaction,	 involve	the	novel	host.	These	findings	sug‐
gest	that	the	invaded	host	or	invaded	community,	including	the	his‐
tory	 of	 evolutionary	 relationships	 among	 community	members,	 is	
more	important	for	predicting	impact	than	life	history	traits	of	the	
invading	insect.

This	model	 can	 also	 be	 used	 to	 quantify,	with	 assigned	 statisti‐
cal	confidence,	the	probability	that	conifer	specialists	will	cause	high	
impacts	should	they	establish	in	North	America.	From	a	practical	per‐
spective,	 the	model	can	be	used	to	assess	 risk	posed	by	non‐native	
insects	and	allocate	scarce	management	resources.	It	is	worth	noting	
that	the	model	created	is	only	as	strong	as	the	data	available,	which	are	
reasonably	complete	for	the	most	economically	significant	insect–host	
pairs.	However,	false	positives	or	negatives	will	impact	the	probability	
of	risk	for	variables	where	data	are	incomplete,	which,	for	example,	is	

probable	for	insect–host	lists	in	both	the	native	and	introduced	range	
(e.g.,	Wagner	&	Todd,	2016).	A	positive	attribute	of	the	structure	of	the	
composite	model	(Equation	1)	is	that	it	is	an	adaptive	model	that	lends	
itself	to	continuing	evaluation	and	improvement	as	data	accumulate.	
It	 is	 an	unfortunate	 certainty	 that	non‐native	 conifer	 specialists	will	
continue	to	establish	in	North	America,	with	each	new	introduction	in‐
creasing	the	pool	of	novel	insect–host	interactions	that	can	be	evalu‐
ated.	Furthermore,	advances	in	the	understanding	of	invasion	ecology	
and	plant–herbivore	interactions	will	inform	hypotheses	about	causes	
of	high‐impact	invasions	that	we	did	not	evaluate.	Given	our	findings,	
evolutionary	history	is	central	to	understanding	and	predicting	interac‐
tions	between	non‐native	insects	and	their	novel	hosts.
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APPENDIX 1

(Continues)

TA B L E  A 1   Information	pertaining	to	non‐native	conifer	specialists	in	North	America

Conifer‐specialist species Insect order Insect family Native range Feeding guild Impact number High impact

Acantholyda erythrocephala Hymenoptera Pamphiliidae Europe Folivore 4 0

Adelges abietis Hemiptera Adelgidae Europe Gall 2 0

Adelges laricis Hemiptera Adelgidae Europe Sap 2 0

Adelges piceae Hemiptera Adelgidae Europe Sap 9 1

Adelges tsugae Hemiptera Adelgidae Asia Sap 9 1

Aethes rutilana Lepidoptera Cochylidae Europe Folivore 2 0

Aspidiotus cryptomeriae Hemiptera Diaspididae Asia Sap 2 0

Atractotomus magnicornis Hemiptera Miridae Europe Sap 1 0

Brachyderes incanus Coleoptera Curculionidae Europe Root 5 0
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Conifer‐specialist species Insect order Insect family Native range Feeding guild Impact number High impact

Callidiellum rufipenne Coleoptera Cerambycidae Asia Wood 2 0

Camptozygum aequale Hemiptera Miridae Europe Sap 1 0

Carulaspis juniperi Hemiptera Diaspididae Europe Sap 5 0

Carulaspis minima Hemiptera Diaspididae Europe Sap 5 0

Cinara cupressi Hemiptera Aphididae Europe Sap 2 0

Cinara pilicornis Hemiptera Aphididae Eurasia Sap 1 0

Cinara pinea Hemiptera Aphididae Eurasia Sap 1 0

Cinara tujafilina Hemiptera Aphididae Asia Sap 2 0

Coleophora laricella Lepidoptera Coleophoridae Europe Folivore 5 0

Contarinia baeri Diptera Cecidomyiidae Europe Folivore 2 0

Crypturgus pusillus Coleoptera Curculionidae Eurasia Wood 1 0

Dichomeris marginella Lepidoptera Gelechiidae Europe Folivore 2 0

Dichrooscytus rufipennis Hemiptera Miridae Europe Sap 1 0

Diprion similis Hymenoptera Diprionidae Eurasia Folivore 6 0

Dynaspidiotus pseudomeyeri Hemiptera Diaspididae Asia Sap 1 0

Dynaspidiotus tsugae Hemiptera Diaspididae Asia Sap 2 0

Elatobium abietinum Hemiptera Aphididae Europe Sap 6 1

Epinotia nanana Lepidoptera Tortricidae Europe Folivore 2 0

Eulachnus agilis Hemiptera Aphididae Europe Sap 2 0

Eulachnus brevipilosus Hemiptera Aphididae Europe Sap 2 0

Eulachnus rileyi Hemiptera Aphididae Europe Sap 2 0

Exoteleia dodecella Lepidoptera Gelechiidae Europe Folivore 2 0

Fiorinia externa Hemiptera Diaspididae Asia Sap 5 0

Gilpinia frutetorum Hymenoptera Diprionidae Eurasia Folivore 2 0

Gilpinia hercyniae Hymenoptera Diprionidae Europe Folivore 6 1

Grypotes puncticollis Hemiptera Cicadellidae Europe Sap 1 0

Hylastes opacus Coleoptera Curculionidae Eurasia Wood 3 0

Hylurgops palliatus Coleoptera Curculionidae Eurasia Wood 3 0

Hylurgus ligniperda Coleoptera Curculionidae Eurasia Wood 2 0

Matsucoccus matsumurae Hemiptera Matsucoccidae Asia Sap 7 1

Neodiprion sertifer Hymenoptera Diprionidae Eurasia Folivore 2 0

Ocnerostoma piniariella Lepidoptera Yponomeutidae Europe Folivore 2 0

Orthotomicus erosus Coleoptera Curculionidae Eurasia Wood 1 0

Phoenicocoris dissimilis Hemiptera Miridae Europe Sap 1 0

Phyllobius intrusus Coleoptera Curculionidae Asia Root 2 0

Physokermes hemicryphus Hemiptera Coccidae Europe Sap 2 0

Pinalitus rubricatus Hemiptera Miridae Europe Sap 1 0

Pineus boerneri Hemiptera Adelgidae Asia Sap 3 0

Pineus pineoides Hemiptera Adelgidae Europe Sap 1 0

Pineus pini Hemiptera Adelgidae Europe Sap 1 0

Pityogenes bidentatus Coleoptera Curculionidae Eurasia Wood 1 0

Plagiognathus vitellinus Hemiptera Miridae Eurasia Sap 1 0

Pristiphora erichsonii Hymenoptera Tenthredinidae Eurasia Folivore 6 1

Rhyacionia buoliana Lepidoptera Tortricidae Europe Folivore 2 0

Schizolachnus pineti Hemiptera Aphididae Europe Sap 1 0

Sirex noctilio Hymenoptera Siricidae Eurasia Wood 5 0

Spilonota lariciana Lepidoptera Tortricidae Europe Folivore 1 0

Thera juniperata Lepidoptera Geometridae Europe Folivore 2 0

Tomicus piniperda Coleoptera Curculionidae Eurasia Wood 3 0

Note: High‐impact	binomial	value:	1	=	yes,	0	=	no.

TA B L E  A 1   (Continued)
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TA B L E  A 2  North	American	conifer	hosts	fed	on	by	non‐native	conifer‐specialist	insects

North American conifer host species Number of non‐native conifer specialists Highest impact number High impact

Abies amabilis 1 6 1

Abies balsamea 6 8 1

Abies fraseri 4 9 1

Abies grandis 1 6 1

Abies lasiocarpa 1 8 1

Calocedrus decurrens 2 2 0

Chamaecyparis lawsoniana 2 2 0

Chamaecyparis thyoides 4 5 0

Cupressus arizonica 1 2 0

Hesperocyparis goveniana 1 2 0

Hesperocyparis macrocarpa 2 2 0

Juniperus communis 8 5 0

Juniperus horizontalis 2 2 0

Juniperus scopulorum 1 2 0

Juniperus virginiana 9 5 0

Larix laricina 8 6 1

Larix lyalii 1 2 0

Larix occidentalis 2 5 0

Picea breweriana 2 1 0

Picea engelmanni 4 6 1

Picea glauca 10 6 1

Picea mariana 5 6 1

Picea pungens 9 6 1

Picea rubens 7 6 1

Picea sitchensis 4 6 1

Pinus banksiana 11 3 0

Pinus contorta 7 2 0

Pinus coulteri 2 2 0

Pinus echinata 3 2 0

Pinus elliotti 1 2 0

Pinus glabra 1 2 0

Pinus monticola 2 2 0

Pinus palustris 1 2 0

Pinus ponderosa 8 2 0

Pinus pungens 2 2 0

Pinus radiata 6 2 0

Pinus resinosa 21 7 1

Pinus rigida 7 2 0

Pinus serotina 1 2 0

Pinus strobus 17 6 1

Pinus taeda 3 2 0

Pinus virginiana 5 2 0

Pseudotsuga menziesii 5 2 0

Sequoia sempervirens 2 2 0

Taxodium distichum 1 2 0

Thuja occidentalis 8 5 0

Tsuga canadensis 6 8 1

Tsuga caroliniana 3 9 1

Tsuga heterophylla 1 1 0

Note: High‐impact	binomial	value:	1	=	yes;	0	=	no.
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F I G U R E  A 1  Phylogenetic	signal	for	conifer	host	traits.	Trait	values	are	plotted	on	the	conifer	phylogeny	that	includes	only	species	for	
which	trait	values	were	available.	A	Blomberg's	K	value	of	zero	indicates	random	distribution	of	trait	values	on	the	phylogeny,	a	value	of	one	
indicates	that	trait	values	are	correlated	with	divergence	time.	p‐Values	result	from	significance	tests	against	the	null	hypothesis	of	random	
distribution	of	each	trait	on	the	phylogeny


