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Abstract
National greenhouse gas inventories often use variations of the gain–loss approach whereby 
emissions are estimated as the products of estimates of areas of land-use change character-
ized as activity data and estimates of emissions per unit area characterized as emission fac-
tors. Although the term emissions is often intuitively understood to mean release of greenhouse 
gases from terrestrial sources to the atmosphere, in fact, emission factors can also be negative, 
meaning removal of the gases from the atmosphere to terrestrial sinks. For remote and inac-
cessible forests for which ground sampling is difficult if not impossible, emission factors may 
be based on map-based estimates of biomass or biomass change obtained from regional maps. 
For the special case of complete deforestation, the emission factor for the aboveground biomass 
pool is simply mean aboveground, live-tree, biomass per unit area prior to the deforestation. 
If biomass maps are used for these purposes, estimates must still comply with the first IPCC 
good practice guideline regarding accuracy relative to the true value and the second guideline 
regarding uncertainty. Accuracy assessment for a map-based estimate entails comparison of 
the estimate to a second estimate obtained using independent reference data. Assuming ground 
sampling is not feasible, a map of greater quality than the regional map may be considered as a 
source of reference data where greater quality connotes attributes such as finer resolution and/
or greater accuracy. For a local, sub-regional study area in Minnesota in the USA, the accuracy 
of an estimate of mean aboveground, live-tree biomass per unit area (AGB, Mg/ha) obtained 
from a coarser resolution, regional, MODIS-based biomass map was assessed using reference 
data sampled from a finer resolution, local, airborne laser scanning (ALS)-based biomass map. 
The rationale for a local assessment of a regional map is that, although assessment of a regional 
map would be difficult for the entire extent of the map, it can likely be assessed for multiple 
local sub-regions in which case expected local regional accuracy for the entire map can perhaps 
be inferred. For this study, the local assessment was in the form of a test of the hypothesis that 
the local sub-regional estimate from the regional map did not deviate from the local true value. 
A hybrid approach to inference was used whereby design-based inferential techniques were 
used to estimate uncertainty due to sampling from the finer resolution map, and model-based 
inferential techniques were used to estimate uncertainty resulting from using the finer resolution 
map unit values which were subject to prediction error as reference data. The test revealed no 
statistically significant difference between the MODIS-based and ALS-based map estimates, 
thereby indicating that for the local sub-region, the regional, MODIS-based estimate complied 
with the first IPCC good practice guideline for accuracy.
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1  Introduction

National greenhouse gas (GHG) inventories assess the scale of emissions for multiple land 
uses including the Agriculture, Forestry and other land use sectors (IPCC 2006) and are 
typically implemented using either the stock-change or gain–loss approach (IPCC 2006, 
p. 4.11; GFOI 2016, p. 22). The stock-change approach, for which emissions are estimated 
as differences in stocks for two dates, is well suited for countries with established forest 
sampling programs such as national forest inventories (NFI). For countries with remote 
and inaccessible forests that are difficult to sample, the gain–loss approach is more often 
used. With the latter approach, emissions are estimated as products of land-use change area 
estimates, characterized as activity data, and estimates of emissions per unit area, char-
acterized as emission factors or removal factors. Although the term emissions is often 
intuitively understood to mean release of greenhouse gases from terrestrial sources to the 
atmosphere, in fact, emission factors can also be negative, meaning removal of the gases 
from the atmosphere to terrestrial sinks.

For purposes of estimating activity data, methods that address ground sampling dif-
ficulties for remote regions have been widely reported (e.g., Olofsson et  al. 2013, 2014; 
McRoberts et al. 2018b), but such is not case for estimating emission factors. One approach 
that circumvents ground sampling is to use global or regional emission factors (e.g., Pear-
son et al. 2017), but the adverse effects on bias and precision are mostly unknown (Pelle-
tier et al. 2012). Another approach is to convert estimates obtained from regional biomass 
maps to carbon estimates where the term regional could refer to a global map, a global 
map within latitude limits, a national map or simply a large area map (Saatchi et al. 2011; 
Baccini et al. 2012). For the special case of complete deforestation as the land-use change 
class, the emission factor for the aboveground biomass pool is simply mean aboveground, 
live-tree biomass per unit area (AGB, Mg/ha) prior to the deforestation. Regardless of the 
approach, the Intergovernmental Panel on Climate Change (IPCC) specifies two good prac-
tice guidelines for GHG inventories: (1) “neither over- nor underestimates so far as can be 
judged,” and (2) “uncertainties are reduced as far as is practicable” (GFOI 2016, p. 15). For 
the first guideline, the standard for assessing under- or over-estimation was assumed to be 
the true value; for the second guideline, the presupposition was that uncertainty must first 
be rigorously estimated before it can be reduced.

Multiple methods can be used to assess the degree to which an estimate from a regional 
map satisfies the first IPCC good practice guideline regarding accuracy relative to the true 
value. Generally, such methods entail comparing the regional map-based estimate to an 
estimate based on independent reference data of at least greater quality than the regional 
map data. For this study, an underlying assumption was that ground sampling was not a 
feasible source of reference data for reasons such as the remoteness and/or inaccessibil-
ity of the forests. For the latter situation, an alternative is a method analogous to that used 
for acquiring reference data for estimating activity data, i.e., reference data in the form of 
visual interpretations of aerial or satellite imagery, albeit subject to the constraint that the 
interpretations are of greater quality than the map data (Stehman 2009; GFOI 2016, p. 125; 
Olofsson et al. 2013; McRoberts et al. 2018b). Direct extension of this approach to visual 
assessment of biomass from interpreted imagery would likely fail to satisfy the criterion 
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that the reference data must be of greater quality than the map data. A potentially more 
viable approach would be to use a finer resolution biomass map as a source of reference 
data subject to the criterion that the finer resolution map data are of greater accuracy than 
the regional map data. However, even if reference data from a finer resolution map are of 
greater quality than the regional map unit values, they are still subject to uncertainty.

The study objective was to illustrate a statistically rigorous method for testing the 
hypothesis that an estimate of mean AGB from a regional map for a sub-regional study 
area complies with the first IPCC good practice guideline, i.e., the estimate does not devi-
ate from the true value. Although ground reference data were, in fact, available for the 
study area, for illustrative purposes the analyses assumed such data were not available such 
as could be the case for tropical forest countries lacking sufficiently extensive ground plot 
networks. Thus, the test took the form of a comparison of the regional map-based estimate 
for the sub-region to an estimate based on a sample from a finer resolution map.

2 � Data

2.1 � Study Area

The 7583-km2 study area consisted of the entirety of Itasca County in north central Min-
nesota in the USA (Fig. 1). Land cover includes water, wetlands and approximately 80% 
forest consisting of uplands with deciduous mixtures of pines (Pinus spp.), spruce (Picea 
spp.) and balsam fir (Abies balsamea (L.) Mill.) and lowlands with spruce (Picea spp.), 
tamarack (Larix laricina (Du Roi) K. Koch), white cedar (Thuja occidentalis (L.)) and 
black ash (Fraxinus nigra Marsh.). Forest stands in the study area are typically naturally 
regenerated, uneven-aged, and mixed species.

Fig. 1   Study area in Itasca County, Minnesota, USA
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2.2 � Maps

2.2.1 � Coarser Resolution (CR) Regional Map

The 250-m × 250-m coarse resolution (CR) regional map used for this study was con-
structed by the Forest Inventory and Analysis (FIA) program of the US Forest Service 
which conducts the NFI of the USA (McRoberts et  al. 2010). The map was based on 
regression trees, AGB for FIA plots measured between 1990 and 2003, and predictor vari-
ables from multiple sources including 2001 Moderate Resolution Imaging Spectrometer 
(MODIS) image products (Hansen et al. 2003; Huete et al. 2002; Vermote and Vermueulen 
1999), the 1992 National Land Cover Dataset (Vogelmann et al. 2001), and topographic 
and climatic variables (Blackard et  al. 2008). Validation techniques included pixel-level 
comparisons and comparisons of mean plot-level AGB and mean model AGB predictions 
for polygons of various sizes. In general, the map tended to over-predict for areas of small 
AGB and under-predict for areas of large AGB. Reported correlations between aggrega-
tions of FIA plot AGB values and map values ranged from 0.31 to 0.73, depending on the 
region of the country; for the region that included the study area the correlation was 0.46. 
Blackard et al. (2008) provide more details regarding the regional CR map.

2.2.2 � Finer Resolution (FR) Map

A 13-m × 13-m, local, finer resolution (FR) AGB map was constructed using 2012 air-
borne laser scanning (ALS) data and FIA plot data obtained for an equal probability sam-
ple. Allometric models were used to predict AGB for the central, circular, 7.32-m (24-ft) 
radius subplots for 541 FIA plots measured between 2010 and 2014. For this study, uncer-
tainty in the allometric model predictions was considered negligible relative to the effects 
of sampling variability (McRoberts et al. 2016). The forest inventory data are described in 
greater detail in McRoberts et al. (2018a). Wall-to-wall airborne laser scanning (ALS) data 
were acquired in April 2012 with a nominal pulse density of 0.67 pulses/m2. Distributions 
of all first return heights were constructed for the 168.3-m2 circular plots and the 169-m2 
square cells that tessellated the study area and served as FR map units. Standard ALS met-
rics included the mean, quadratic mean, standard deviation, skewness, kurtosis of the ALS 
height distributions and deciles of the height and canopy density distributions. The ALS 
data are described in greater detail in McRoberts et al. (2018a).

A model of the relationship between plot-level AGB as the dependent variable and the 
ALS metrics as independent variables was formulated as

where i indexes plots, xji is an ALS metric, �j ∈ � is a parameter to be estimated and εi is 
a residual assumed to be distributed N(0,Σ). The model was fit to the data using weighted 
nonlinear least squares where �̂

−1 was used to weight the observations. A forward selec-
tion procedure was used to select independent variables for inclusion in the model if they 
statistically significantly increased the quality of fit of the model to the data at a nominal 
α = 0.05 level. The resulting model was used to predict AGB for all 13-m × 13-m cells in 
the study area, thereby producing the FR map. For illustrative purposes for this study, the 
FR map was henceforth considered to be the only available source of reference data for 

(1)
AGBi = f

(
xi; �

)
+ �i

= �0 ⋅ x
�1
1i
⋅ exp

(
�2 ⋅ x2i +⋯ + �p ⋅ xpi

)
+ �i
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assessing the accuracy of the regional, CR map-based estimate of mean AGB. Although 
the local FR map was constructed using ground plot data acquired from within the study 
area, this is not a necessary condition (McRoberts et al. 2014).

Heteroscedastic (nonconstant) residual variance as required for the weight matrix, �̂
−1 , 

was estimated using a 4-step procedure (McRoberts et  al. 2016): (1) for 𝜀̂i = yi − ŷi , the 
sample pairs 

(
ŷi, 𝜀̂i

)
 were ordered with respect to ŷi , (2) the pairs were aggregated into 

groups of size 15; (3) within each group, g, the mean of the predictions, ̄̂yg , and the stand-
ard deviation, 𝜎̂g , of the estimated residuals, 𝜀̂i , were calculated; and (4) the relationship 
between the group standard deviations and the group prediction means was represented 
using a model of the form

where γ is a parameter to be estimated. To accommodate heteroscedasticity when fitting the 
model, the ith diagonal element of �̂ was 𝜎̂2

i
=
(
𝛾̂ ⋅ ŷi

)2 from Eq. (2) where ŷi is the model 
prediction for the ith plot. Because distances between plot locations mostly exceeded the 
range of spatial correlation, the off-diagonal elements of �̂ were set to 0.

3 � Methods

3.1 � The Test

Three assumptions underlay the study: (1) the only information available for the local por-
tion of the regional CR map was the map unit values, (2) ground sampling as a source of 
reference data for the study area was not feasible, and (3) the FR map included sufficient 
meta-data to estimate mean AGB and the uncertainty of the estimate.

The objective was to test the hypothesis that the regional CR map-based estimate of 
mean AGB for the local sub-region complies with the first IPCC good practice guideline. 
In particular, the test focused on the accuracy of the CR map-based estimate where accu-
racy is related to bias and refers to agreement between the true value and the average of 
repeated independent estimates (IPCC, 2006, p. 3.7). Because the true value is not known, 
the best alternative is an estimate obtained using reference data that are at least of greater 
quality than the CR map data (Stehman 2009; GFOI 2016, p. 125). Further, because typi-
cally only a single sample of model calibration data is available, the test result can only be 
expressed probabilistically, i.e., as an inference. An intuitive test statistic is

where the uncertainties associated with the CR and FR map-based estimates of the mean 
are expressed in terms of mean square error (MSE) rather than variance because the map-
based estimators of the means are not necessarily unbiased as a result of possible system-
atic map error (Cochran 1977, p. 15). The exact forms of the two M̂SEs are described in the 
sections that follow. Under the assumption that the data used to construct the FR map are 
independent of the data used to construct the CR map, no covariance term in the denomi-
nator of Eq. (3) is necessary.

A crucial issue is that reference data acquired from any map, regardless of map accu-
racy, cannot be assumed to be without error. Mowrer and Congalton (2000) characterize 

(2)𝜎̂g = 𝛾 ⋅ ̄̂yg,

(3)t =
𝜇̂CR − 𝜇̂FR

√
�MSE

(
𝜇̂CR

)
+ �MSE

(
𝜇̂FR

) .
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reference data subject to non-negligible error as imperfect reference data. In the event 
of imperfect reference data, compliance with the IPCC good practice guidelines requires 
incorporation of the effects of this source of uncertainty into M̂SE s. In particular, the M̂SE 
must incorporate uncertainty due to sampling from the map used as the source of reference 
data and uncertainty due to the imperfect nature of the sample reference data, i.e., the FR 
map unit values are subject to error.

The term hybrid inference characterizes recently developed methods that combine design-
based inferential techniques for assessing the effects of sampling variability and model-based 
inferential techniques for assessing the effects of imperfect reference data (Fattorini 2012; 
Corona et al. 2014; McRoberts et al. 2016; Ståhl et al. 2016). Hybrid inference has four key 
features: (1) A probability sample of population units for which only auxiliary information is 
available; (2) a prediction technique that uses the auxiliary information to predict the refer-
ence data values for the sample units; (3) a design-based estimator of the population param-
eter using the reference data predictions for the sample units; and (4) estimation of uncer-
tainty using a design-based estimator to accommodate the effects of sampling variability and 
a model-based estimator to accommodate the effects of uncertainty in the reference data.

For this study, hybrid inference entailed sampling from the FR map, using design-based 
estimators with the FR sample map reference data to estimate the mean and the compo-
nent of M̂SE due to sampling variability (Sect. 3.2), and using model-based estimators to 
estimate the component of M̂SE due to the effects of the imperfect FR map reference data 
(Sect. 3.3). The hybrid M̂SE is then expressed additively as,

where the design-based (DB) component, �MSE
DB(

𝜇̂FR
)
 , estimates the effects of sampling 

from the FR map and the model-based (MB) component, �MSE
MB(

𝜇̂FR
)
 estimates the 

effects of uncertainty in the imperfect FR map reference data. �MSE
Hyb(

𝜇̂FR
)
 then replaces 

�MSE
(
𝜇̂FR

)
 in Eq. (3). The technical objectives in Sects. 3.2 and 3.3 were to address 𝜇̂FR , 

�MSE
DB(

𝜇̂FR
)
 and �MSE

MB(
𝜇̂FR

)
 with 𝜇̂CR and �MSE

(
𝜇̂CR

)
 addressed in Sect. 3.4.

3.2 � Design‑Based Component of Hybrid Inference

Three primary assumptions underlie design-based inference, also characterized as proba-
bility-based inference (Hansen et al. 1983). First, the basis for validity is a probability sam-
ple that incorporates some form of randomization. Second, each population unit is assumed 
to have one and only one possible value, apart from negligible observation or measure-
ment error. Third, the probability of selection for each population unit into the sample is 
positive and known. Much of the effort for design-based inference involves selecting an 
appropriate combination of sampling design and corresponding estimator. Familiar sam-
pling designs include simple random, systematic, stratified, multi-phase and multi-stage 
sampling designs. Estimators corresponding to these designs are generally unbiased or 
at least approximately unbiased, and uncertainty estimation typically entails comparing 
observations to their corresponding means or model predictions. All design-based estima-
tors assume that observations or measurements of the response variable have at most negli-
gible uncertainty (Snedecor and Cochran 1967, p. 164).

(4)�MSE
Hyb(

𝜇̂FR
)
= �MSE

DB(
𝜇̂FR

)
+ �MSE

MB(
𝜇̂FR

)
,
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A relatively simple sampling design used for the current study entailed selecting the 
central FR map unit within each CR map unit. Cochran (1997, Sect. 8.13) characterizes 
this design as a systematic aligned sampling design. The FR map-based estimate of the 
mean and the corresponding M̂SE were calculated using the simple expansion (Exp) esti-
mators (Royall and Herson 1973),

and

where i indexes the CR map units, ŷFR
i

 is the value for the central FR map unit within the 
ith CR map unit and NCR is the FR sample size. Because the FR map units are consid-
erably smaller than the CR map units, the total number of CR map units, NCR , is much 
larger than the total number of FR map units; thus, NCR and NFR are not interchangeable. In 
particular, with the systematic aligned sampling design with one FR sample unit for each 
CR sample unit, the FR sample size is exactly equal to the total number of CR map units, 
NCR. Although when used with systematic sample data, M̂SE for the Exp estimator may be 
biased, it tends to be conservatively biased in the sense that M̂SEs may be slightly too large 
(Särndal et al. 1992, p. 83). Other sampling designs were considered, but preliminary anal-
yses indicated that the resulting M̂SEs were larger than for the systematic design. In addi-
tion, post-stratified (McRoberts et al. 2013) and model-assisted difference estimators (Ståhl 
et al. 2016) were also investigated for use with the systematic sample data, but preliminary 
analyses again indicated there was little to be gained relative to the Exp estimators.

Overall, the advantages of the Exp estimators are that they are simple, intuitive and 
easy to implement. A disadvantage is that variances are frequently large, particularly for 
small sample sizes and/or populations with large variability among population unit values. 
Because 𝜇̂FR is an independent estimate of the sub-regional population mean, it can serve 
as the independent estimate required for comparison to 𝜇̂CR using Eq. (3).

3.3 � Model‑Based Component of Hybrid Inference

Assumptions underlying model-based inference, also characterized as model-dependent 
inference, differ considerably from the more familiar design-based inference. First, the basis 
for validity is correct specification of the model, not a probability sample. Second, model-
based inference assumes an entire distribution of possible values for each population unit, 
not just a single value. Third, randomization occurs via realization of observations from the 
distributions characterizing the population units selected for the sample, not via the sam-
pling design.

Despite being considered observations without error for the design-based component of 
hybrid inference (Sect. 3.2), the FR map unit values are model predictions (Sect. 3.2), and 
the uncertainty of these predictions must be incorporated into the final hybrid M̂SE . For 
regression models, the form of the model-based component of M̂SE can be formulated as

(5a)𝜇̂FR =
1

NCR

NCR∑

i=1

ŷFR
i
,

(5b)�MSE
DB(

𝜇̂FR
)
=

1

NCR ⋅

(
NCR − 1

)
NCR∑

i=1

(
ŷFR
i

− 𝜇̂FR
)2
,
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where NCR is again the number of CR map units,

is the first-order Taylor’s series estimator of the covariance matrix for the model parameter 
estimates, �̂ is the covariance matrix for the model prediction residuals, �̂i , �̂i

2 is the esti-
mate of the heteroscedastic residual variance for the FR map from Sect. 2.2.2 and �̂i1i2 is 
the estimate of spatial correlation for the FR map residuals.

The first term of Eq. (6a) is further denoted

and estimates the effect on model predictions (pre) of variability in the sample data used 
to construct the model, i.e., each model calibration sample would produce different model 
parameter estimates and, therefore, different model predictions. The computational inten-
sity associated with the double sums in Eq. (6d) can be reduced, using the alternate form,

where J is the number of model parameters, j1 and j2 index the parameters, vj1j2 ∈
���̂ , 

zj =
1

NCR

∑NCR

i=1
zij and zij is defined by Eq. (6b) (Saarela et al. 2015; McRoberts et al. 2018c). 

For nonparametric prediction techniques such as Random Forests, Monte Carlo bootstrap 

procedures can be used to estimate �MSE
MB

Pre

(
𝜇̂FR

)
 (Efron and Tibshirani 1994, pp. 47–48, 

113; McRoberts et al. 2018c).
The second term of Eq. (6a) is further denoted

and is the result of residual (res) variability of observations around their model predictions 
where 𝜎̂2

i
 is estimated as described in Sect. 2.2 The third term of Eq. (6a) is denoted

and is the result of spatial (spa) correlation among residuals. Spatial correlation, ρ, is often 
estimated via a correlogram using the model prediction residuals obtained when fitting the 

(6a)

�MSE
MB(

𝜇̂FR
)
=

1

N2
CR

NCR∑

i1=1

NCR∑

i2=1

z
�

i1
⋅
���̂ ⋅ zi2

+
1

N2
CR

NCR∑

i=1

𝜎̂2
i
+

1

N2
CR

NCR∑

i1≠

NCR∑

i2

𝜎̂i1 ⋅ 𝜎̂i2 ⋅ 𝜌̂i1i2

(6b)zij =
𝜕f
(
xi; �̂

)

𝜕𝛽j
,

(6c)��
�̂
=
(
�
�
⋅ �̂

−1
⋅ �

)−1

(6d)�MSE
MB

pre

(
𝜇̂FR

)
=

1

N2
CR

NCR∑

i1=1

NCR∑

i2=1

z
�

i1
⋅
�V�̂ ⋅ zi2

,

(6e)�MSE
MB

pre

(
𝜇̂FR

)
=

J∑

j1=1

J∑

j2=1

zj1 ⋅ vj1j2 ⋅ z̄j2 ,

(6f)�MSE
MB

pre

(
𝜇̂FR

)
=

1

N2
CR

NCR∑

i=1

�𝜎i
2
,

(6g)�MSE
MB

spa

(
𝜇̂FR

)
=

1

N2
CR

NCR∑

i1≠

NCR∑

i2

𝜎̂i1 ⋅ 𝜎̂i2 ⋅ 𝜌̂i1i2
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model. However, when plot separation distances exceed the range of spatial correlation 
which is usually the case for efficient sampling designs, construction of the correlogram 
for small distances and estimation of the range are not possible. For this study, an estimate 
of the range of spatial correlation was selected as 200 m, the maximum of values reported 
in the literature for similar studies (Breidenbach et al. 2008, 2016; McRoberts et al. 2007; 
Mauro et al. 2017). An exponential correlogram of the form � = exp (� ⋅ d) was assumed 
for which d is distance and � =

ln (0.05)

�
 where ν is the range of spatial correlation defined to 

be the distance for which ρ = 0.05.

3.4 � Implementing the Statistical Test

In addition to 𝜇̂FR and �MSE
Hyb(

𝜇̂FR
)
 , the test statistic of Eq.  (3) requires 𝜇̂CR and 

�MSE
(
𝜇̂CR

)
 . The CR map-based estimate, 𝜇̂CR , is easily calculated using the synthetic esti-

mator as

where i indexes CR map units, NCR is the number of CR map units and ŷCR
i

 is the value for 
the ith CR map unit. �MSE

(
𝜇̂CR

)
 is obtained using Eq. (6a), albeit with local meta-data pro-

vided by the regional map authors, and replaces �MSE
(
𝜇̂CR

)
 in Eq. (3).

The test corresponding to the first IPCC guideline was that the CR map-based estimate, 
𝜇̂CR , was neither an over- nor under-estimate relative to the true value and took the form 
of a comparison of 𝜇̂CR to the independent FR map-based estimate, 𝜇̂FR . The exact form of 
the test depends on how the CR map is considered. If the CR map values and their mean 
are considered constants without inherent uncertainty apart from being correct or incorrect, 
then �MSE

MB(
𝜇̂CR

)
= 0 in which case Eq. (3) reduces to

If the CR map values are considered predictions with inherent uncertainty, then 
�MSE

MB(
𝜇̂CR

)
≠ 0 in which case the test statistic expressed by Eq. (3) must be used.

Because map authors have access to the original data used to construct the map, they 
can readily calculate �MSE

MB(
𝜇̂CR

)
 for the entire regional map or any local sub-regional 

portion of it. However, for map users to calculate �MSE
MB(

𝜇̂CR
)
 for only a local sub-region, 

the regional map authors must provide the meta-data specific to the sub-region of the CR 
map of interest. For a CR map consisting of NCR units, the number of covariance values 
necessary to calculate �MSE

MB(
𝜇̂CR

)
 is on the order of N2

CR
 . Expecting map authors to pro-

vide this many values in an easily accessible manner is impractical. A solution would be a 
method for expressing the local meta-data required for calculating �MSE

MB(
𝜇̂CR

)
 in a sum-

marized form or as functions of the map values. Although such summaries or functions 
have been proposed for �MSE

MB

res

(
𝜇̂CR

)
 and �MSE

MB

spa

(
𝜇̂CR

)
 (McRoberts et al. 2018c), such is 

(7a)𝜇̂CR =
1

NCR

NCR∑

i=1

�yCR
i
,

(7b)t =
𝜇̂CR − 𝜇̂FR

√
�MSE

Hyb(
𝜇̂FR

) .
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not the case for �MSE
MB

pre

(
𝜇̂CR

)
 . Until such summaries or functions are developed, accurate 

calculation of �MSE
MB

pre

(
𝜇̂CR

)
 for a sub-region of a regional CR map is not possible.

In lieu of �MSE
MB(

𝜇̂CR
)
 , two alternatives may be considered. First, the test statistic 

can be calculated using �MSE
MB(

𝜇̂CR
)
= 0 which yields the same test statistic as Eq. (7a). 

Second, if the FR map is of greater quality than the CR map, then it is reasonable to 
assume that �MSE

MB(
𝜇̂FR

)
≤ �MSE

MB(
𝜇̂CR

)
 . If so, then substituting �MSE

MB(
𝜇̂FR

)
 for 

�MSE
MB(

𝜇̂CR
)
 in Eq. (3) yields

If �̂CR is not statistically significantly different from �̂FR using either Eqs. (7b) or (7c) to 
calculate the test statistic, then it will also likely not be statistically significantly different 
when using Eq. (3), because use of �MSE

MB(
𝜇̂CR

)
 rather than �MSE

MB(
𝜇̂FR

)
 in the denomi-

nator would presumably produce an even smaller and less statistically significant |t| . How-
ever, if �̂CR is statistically significantly different from �̂FR using either Eqs.  (7b) or  (7c), 
then the statistical significance of the difference between �̂CR and �̂FR is undetermined 
because the degree to which use of �MSE

MB(
𝜇̂CR

)
 rather than �MSE

MB(
𝜇̂FR

)
 alters |t| and 

therefore alters the significance is unknown.

4 � Results and Discussion

4.1 � The Fine Resolution (FR) Map

The model on which the FR map was based was fit to the FIA plot AGB data using 
weighted nonlinear least squares techniques where the weighting matrix was �̂−1 
(Sect. 2.2). Following selection of mean ALS height as the metric for the first power com-
ponent of the model, no other metric statistically significantly improved the fit. Quality 
of fit of the model to the data was assessed using unweighted pseudo-R2 = 0.72 and mean 
weighted residual of 0.004.

4.2 � Estimates

The CR map consisted of 121,236 map units. The synthetic estimate of mean AGB for  
the CR map was �̂CR = 53.77 Mg∕ha. The hybrid estimate of the mean using reference  

data sampled from the FR map was �̂FR = 51.49 Mg∕ha with standard error, SE
(
�̂FR

)
=√

M̂SE
Hyb(

�̂FR
)
= 1.34 Mg∕ha . The individual M̂SE component contributions to SE

(
�̂FR

)
 

expressed as square roots of the respective M̂SE s were 
√

M̂SE
DB(

�̂FR
)
 = 0.15  Mg/ha, 

√
�MSE

MB

pre

(
𝜇̂FR

)
 = 1.33 Mg/ha, 

√(
�MSE

MB

res

(
𝜇̂FR

))
 = 0.09 Mg/ha, 

√
�MSE

MB

spa

(
𝜇̂FR

)
 < 0.01 Mg/ha 

(7c)t =
�𝜇CR − �𝜇FR

√
�MSE

MB(
𝜇̂FR

)
+ �MSE

Hyb(
𝜇̂FR

) .
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with 
√

�MSE
MB(

𝜇̂FR
)
=

√
�MSE

MB

pre

(
𝜇̂FR

)
+ �MSE

MB

res

(
𝜇̂FR

)
+ �MSE

MB

spa

(
𝜇̂FR

)
 = 1.33 Mg/ha. 

Using the Eq. (7b) form of the test statistic, t = 1.70, and using the Eq. (7c) form, t = 1.21. Assum-
ing a t-distribution for the test statistic and that |t| < 2.0 indicates a nonsignificant difference, the 
hypothesis that �̂CR complies with the first IPCC good practice guideline for the sub-region cannot 
be rejected, regardless of which form of the test statistic was used and regardless of whether the 
CR map units were considered to have or not have inherent uncertainty.

Among all M̂SE components, �MSE
MB

pre

(
𝜇̂FR

)
 was dominant. One consequence for this 

study was that although post-stratified and model-assisted regression estimators would tend 
to reduce the �MSE

DB(
𝜇̂FR

)
 component, neither estimator would have had more than a neg-

ligible effect on SE
(
𝜇̂FR

)
 . A second consequence was that the uncertainty in the FR map 

reference data, expressed by �MSE
MB(

𝜇̂FR
)
 and dominated by �MSE

MB

pre

(
𝜇̂FR

)
 , was a greater 

contributor to the uncertainty of 𝜇̂FR than was �MSE
DB(

𝜇̂FR
)
 . The small relative value of 

�MSE
DB(

𝜇̂FR
)
 can be attributed to the very large FR map sample size of NCR = 121,236. 

Small relative values of �MSE
MB

res

(
𝜇̂FR

)
 have been reported previously (Ståhl et  al. 2016; 

McRoberts et  al. 2018c), as have negligible values of �MSE
MB

spa

(
𝜇̂FR

)
 (McRoberts et  al. 

2018c). In particular, �MSE
MB

spa

(
𝜇̂FR

)
 will always be small when the proportion of pairs of 

sample units separated by distances less than the range of spatial correlation is small rela-
tive to the total number of pairs of sample units.

Caution should be exercised when extrapolating these results to situations for which the 
map accuracies and relative sizes of the CR and FR map units may be substantially differ-
ent than for this study. Nevertheless, for study areas with very large numbers of CR map 
units, the systematic aligned sampling design should work well. In addition, SE

(
𝜇̂FR

)
 will 

likely be dominated by �MSE
MB

pre

(
𝜇̂FR

)
.

4.3 � Additional Considerations

Consideration should be given to the effects of different sources of remotely sensed aux-
iliary information used to construct the CR and FR maps. For example, for this study, the 
underlying ALS data used to construct the FR map were filtered to remove returns from 
man-made objects such as buildings, water towers and utility poles. In addition, because 
water absorbs ALS pulses, no ALS returns were available for lakes. For the Itasca study 
area, water area is substantial at approximately 9% of the total county area. Missing ALS 
metrics for water and man-made objects were set to 0.

As previously noted, reference data acquired from a map, regardless of map accuracy, 
are subject to error. The hybrid M̂SE accommodates the effects of this reference data error 
via �MSE

MB(
𝜇̂FR

)
 . However, there is no accommodation for the effects of map error on 𝜇̂FR . 

Thus, regardless of quality of the FR map, design-based estimators such as Eq. (5a) cannot 
be assumed to be unbiased when used with reference data subject to error. The effects of this 
bias on significance levels for tests of hypothesis are generally unknown but likely small.

An assumption underlying the analyses is the availability of meta-data that can be used 
to calculate at least �MSE

MB

pre

(
𝜇̂FR

)
 as the dominant component of �MSE

MB(
𝜇̂FR

)
 for the 
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sub-regional portion of the regional CR map. For an FR map constructed using a regres-
sion model, �MSE

MB

pre

(
𝜇̂FR

)
 can be readily calculated using the covariance matrix for the 

model parameter estimates and the map unit values for the model predictor variables. For 
nonparametric prediction techniques such as Random Forests, Monte Carlo bootstrap tech-
niques can be considered (Efron and Tibshirani 1994, pp. 47–48, 113; McRoberts et  al. 
2018c). However, the exact form of the resampling for these techniques must mimic the 
sampling design used to acquire the data used to construct the FR map.

As noted, accurate calculation of �MSE
MB(

𝜇̂CR
)
 requires the meta-data necessary to 

calculate at least �MSE
MB

pre

(
𝜇̂FR

)
 for the local sub-region portion of the CR map. Although 

the map authors could provide the meta-data, the number of required data elements 
makes this an impractical option. Alternatively, the map authors could provide the 
meta-data in a summarized form, but methods for doing so in a simple and straightfor-
ward manner are currently not available.

Supplementary clarification on the IPCC good practice guidelines would be beneficial. For 
example, the first guideline refers to neither over- nor under-estimation, but what is the standard 
for comparison? For this study, the standard was assumed to be the true value, but true values 
are seldom known. As a second example, how should uncertainty as expressed in the second 
guideline be interpreted? Should it be in terms of the deviation between an estimate and the true 
value, or should it relate to a concept such as precision? As a third example, should the regional 
map be considered a stand-alone constant product whose map unit values have no inherent 
uncertainty apart from being correct or incorrect, or should the unit values be considered the 
mean of an entire distribution of possible values? Resolution of the three issues expressed by 
these examples is important, if not also crucial, but is beyond the scope of this study.

Finally, accuracy assessment for the entirety of a regional CR biomass map is likely 
not feasible, if for no other reason than that reference data that span the entire CR map 
are likely neither available nor feasible to acquire. The best that can be achieved is likely 
independent local accuracy assessments for each of a set of individual sub-regional sites 
for which reference data are available or can be acquired (Duncanson et al., in review). 
Ideally, these sites would be systematically distributed across the CR map such as via 
the global hexagon-based approach proposed by White et al. (1992). Regardless of how 
the sub-regional sites are distributed, methods for aggregating their individual accuracy 
assessments based on potentially quite different site-specific reference data into a com-
prehensive inference for the entire CR map require attention.

5 � Conclusions

Four conclusions were drawn from the study, all based on the assumption that ground 
reference data cannot be acquired. First, when reference data for assessing the accu-
racy of a map-based estimate are imperfect, such as when they are obtained from a sec-
ond map, even if it is of greater quality, hybrid inferential techniques must be used to 
accommodate both sampling variability and non-negligible errors in the reference data. 
Second, for this study, the spatially aligned systematic sample consisting of the central 
fine resolution map unit in each coarse resolution map unit worked well. The design 
was easy to implement, the expansion estimators were easy to apply, and the M̂SE 
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component was dominated by a single component, the model-based prediction compo-
nent. Third, for this study, the regional, coarse resolution map-based estimate of mean 
biomass per unit area complied with the first IPCC good practice guideline for the local, 
Itasca County sub-region. Fourth, future research priorities include developing methods 
for estimating the model-based component of MSE for only a local portion of a regional 
map and developing methods for extending inferences from individual sub-regions to 
the entirety of the regional map.

The methods developed and illustrated for this study are important for tropical for-
est countries whose ground plot networks are so limited as to preclude plot-based, IPCC 
compliant estimation, particularly with respect to uncertainty. In addition, they are impor-
tant for biomass map authors who wish to convey to users general information regarding 
accuracies of map-based estimates that can be expected for local areas of their regional 
maps.
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