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Abstract
Effective monitoring of native bee populations requires accurate estimates of popu‐
lation size and relative abundance among habitats. Current bee survey methods, such 
as netting or pan trapping, may be adequate for a variety of study objectives but are 
limited by a failure to account for imperfect detection. Biases due to imperfect de‐
tection could result in inaccurate abundance estimates or erroneous insights about 
the response of bees to different environments. To gauge the potential biases of cur‐
rently employed survey methods, we compared abundance estimates of bumblebees 
(Bombus spp.) derived from hierarchical distance sampling models (HDS) to bumble‐
bee counts collected from fixed‐area net surveys (“net counts”) and fixed‐width tran‐
sect counts (“transect counts”) at 47 early‐successional forest patches in Pennsylvania. 
Our HDS models indicated that detection probabilities of Bombus spp. were imper‐
fect and varied with survey‐ and site‐covariates. Despite being conspicuous, Bombus 
spp. were not reliably detected beyond 5 m. Habitat associations of Bombus spp. den‐
sity were similar across methods, but the strength of association with shrub cover 
differed between HDS and net counts. Additionally, net counts suggested sites with 
more grass hosted higher Bombus spp. densities whereas HDS suggested that grass 
cover was associated with higher detection probability but not Bombus spp. density. 
Density estimates generated from net counts and transect counts were 80%–89% 
lower than estimates generated from distance sampling. Our findings suggest that 
distance modelling provides a reliable method to assess Bombus spp. density and 
habitat associations, while accounting for imperfect detection caused by distance 
from observer, vegetation structure, and survey covariates. However, detection/
non‐detection data collected via point‐counts, line‐transects and distance sampling 
for Bombus spp. are unlikely to yield species‐specific density estimates unless indi‐
viduals can be identified by sight, without capture. Our results will be useful for in‐
forming the design of monitoring programs for Bombus spp. and other pollinators.
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1  | INTRODUC TION

Native bees in North America are important pollinators of both 
crops and wild plants (Ashman et al., 2004; Garibaldi et al., 2013; 
Kremen, Williams, & Thorp, 2002). Indeed, bees, along with other 
pollinators, are considered keystone species that facilitate sexual 
reproduction for 85% of angiosperms worldwide (Allen‐Wardell et 
al., 1998; Kevan, 1990). In agricultural portions of the United States, 
pollination services provided by native bees are valued at $3 billion 
USD, annually (Calderone, 2012). Even as the ecological and eco‐
nomic importance of native bees is recognized, there is a mount‐
ing evidence that many bee species are declining (Cameron et al., 
2011; Goulson, Lye, & Darvill, 2008). These declines include not only 
managed species like Apis mellifera but also North American native 
taxa like bumblebees (Bombus spp.) and others (Cameron et al., 2011; 
Goulson, Nicholls, Botías, & Rotheray, 2015; Potts et al., 2010). For 
example, the rusty patched bumblebee (Bombus affinis) was listed as 
Federally Endangered under the Endangered Species Act in 2017, 
and several other Bombus species have been proposed for listing 
(Jepsen, Evans, Thorp, Hatfield, & Black, 2013). Although the drivers 
responsible for population declines vary among species, threats in‐
clude pesticides, non‐native pathogens and habitat loss/degradation 
(Goulson et al., 2015; Persson, Rundlöf, Clough, & Smith, 2015).

Still, while evidence is fairly clear regarding bee declines for 
some regions and/or species, the status of many bee populations re‐
mains unknown (Tepedino, Durham, Cameron, & Goodell, 2015). In 
2015, the United States Pollinator Health Task Force proposed the 
development of national pollinator monitoring programs to estimate 
population trends and identify environmental stressors affecting 
native bees (Vilsack & McCarthy, 2015). Central to accomplishing 
these goals is the accurate estimation of bee population sizes across 
species, genera, morphospecies and functional groups to establish a 
reference benchmark for evaluating population trends, abundance 
across different habitats and assessing the outcomes of conserva‐
tion interventions.

Although a variety of methods have been commonly used to sam‐
ple wild bee populations (e.g., fixed‐area aerial netting, bee bowls, 
vane traps), each is limited by inherent methodological biases that 
make inference of true densities difficult. In particular, few methods 
account for the bias caused by imperfect detection (e.g., Loffland et 
al., 2017) in that only bees captured or otherwise detected by an ob‐
server are counted and subsequently modelled. Regardless of sam‐
pling method, only a fraction of the individuals present at a location 
will be detected (Kéry & Schmidt, 2008). Raw counts, which fail to 
account for detection probability, will invariably generate estimates 
of abundance that are biased low if some individuals are present but 
not detected (Kéry & Schmidt, 2008; MacKenzie et al., 2002, 2005 
). Though such methods have merit under many circumstances, ac‐
curate estimate of abundance, or changes in abundance over space 
and time, requires consideration of methodological biases like those 
caused by imperfect detection (MacKenzie et al., 2005). In addi‐
tion, failure to account for imperfect detection can obfuscate hab‐
itat associations, particularly when the habitat conditions that are 

attractive to the organism also make it more difficult for observers 
to detect the organism (MacKenzie, 2006). Consequently, research‐
ers might be led to believe that certain habitat conditions (associated 
with low bee counts) are low‐quality habitats while bees may, in real‐
ity, be of equal/greater abundance but less detectable or vice versa 
(MacKenzie, 2006).

Here, we demonstrate the utility of hierarchical distance sam‐
pling (HDS) for estimating habitat‐specific density (i.e., abundance 
per unit area) and detection probability of bumblebees in decidu‐
ous forest of central Pennsylvania. Hierarchical distance sampling 
is an analytical technique that allows researchers to model habitat‐
specific abundance and heterogeneity in species detection within a 
unified framework (Hedley & Buckland, 2004; Kéry & Royle, 2015; 
Royle, Dawson, & Bates, 2004). It builds upon standard distance 
sampling, which is a widely used method for estimating animal 
abundance while for accounting imperfect detection (Buckland, 
Anderson, Burnham, & Laake, 2005). However, HDS differs from 
standard distance sampling in that it allows for spatial variability in 
abundance and detection across multiple sites to be explained as a 
function of covariates (Kéry & Royle, 2015). Although other methods 
exist for estimating abundance while accounting for detection (e.g., 
occupancy, N‐mixture, etc.), most require multiple visits, with the 
assumption of population closure between surveys (Kéry & Royle, 
2015; MacKenzie et al., 2005). Distance sampling may be particu‐
larly useful for insect studies because it requires only a single site 
visit to estimate detection probability and many short‐lived insects 
(like some bee species) may not emerge long enough to allow mul‐
tiple visits per site. Distance sampling has been routinely used by 
wildlife researchers to model abundance and detection functions 
for multiple vertebrate taxa (Hammond et al., 2002; Karanth & 
Sunquist, 1995; Marques, Thomas, Fancy, & Buckland, 2007). To our 
knowledge, no previous research has demonstrated the use of dis‐
tance sampling to estimate bee abundance or habitat associations 
(Bendel, Hovick, Limb, & Harmon, 2018). Our goals were to: (a) use 
HDS to evaluate how Bombus spp. detection probability varies with 
distance, survey technique and habitat attributes; (b) compare abun‐
dance and density estimates generated from HDS to standard sam‐
pling approaches (fixed‐width transects and fixed‐radius net counts) 
that do not account for imperfect detection; and (c) identify site‐spe‐
cific habitat relationships for Bombus spp. across sampling methods.

2  | MATERIAL S AND METHODS

2.1 | Study area

We surveyed bees within the Pennsylvania Wilds region of north‐
central Pennsylvania, focusing on Centre and Clinton Counties 
(Figure 1). This region lies within the Appalachian Plateau of the 
northcentral Appalachian Mountains and is characterized by a rug‐
ged series of high‐elevation ridges (300–600 m.a.s.l.) punctuated 
by low valleys along the Allegheny Front (Shultz, 1999). Vegetation 
communities within the Pennsylvania Wilds are chiefly mature 
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deciduous‐ or mixed forest (80–100 years, post‐harvest; McCaskill 
et al., 2009) with oak (Quercus spp.), hickory (Carya spp.) and east‐
ern hemlock (Tsuga canadensis) among the most common species 
(Wherry, Fogg, & Wahl, 1979). We concentrated our efforts within 
deciduous forests of Sproul and Moshannon State Forests where 
oak silviculture aims to restore young forest age classes through 
timber harvest and regeneration. Because silvicultural practices 
within these two State Forests aim to restore habitat for forest wild‐
life, we focused our survey efforts within regenerating oak stands, 
0–9 years post‐management. During surveys, a variety of flowering 
plants were available to Bombus spp. including low‐growing shrubs 
like hillside blueberry (Vaccinium pallidum) as well as herbaceous 
forbs like eastern teaberry (Gaultheria procumbens) and common 
cow‐wheat (Mellampyrum linerare). Most tall woody plants were not 
flowering except for Devil’s walkingstick (Aralia spinosa), which we 
detected only within a few of our sites.

2.2 | Site selection and survey placement

We randomly selected 47 timber stands within Sproul and 
Moshannon State Forests that had been recently treated with 
overstory removal (basal area: 2.3–9.2 m2/ha). We attempted 
to maximize the distance between sites such that our average 
distance‐to‐nearest‐site was 1,110 m (SE: 107 m; range: 464–
4,516 m). This reduced the likelihood of individuals being detected 
at multiple sites (Redhead et al., 2016). Timber harvest units aver‐
aged 23.14 ha (SD: 18.62 ha; range: 2.54–103.92 ha) in size. A sin‐
gle survey point was located within each harvest using a random 
point generator tool in ArcGIS 10.2 (ESRI, 2011). We attempted 
to minimize edge effects by ensuring points were relatively con‐
sistent in their placement with respect to timber harvest edges; 
sampling was restricted to areas at least 80 m from the edge of 
timber harvests and our final sample of sites was a mean distance 
of 118.67 m (SE: 6.24 m).

2.3 | Transect surveys

At each point, we sampled Bombus spp. using three survey types: 
(a) distance transects; (b) transect counts; and (c) aerial netting 
counts. Both distance transects and fixed‐width transect counts 
occurred simultaneously along 66 m transects oriented north‐
to‐south and centred at each point location. Along each transect, 
observers walked forward at a constant rate (~1 m/min) such that 
the observer arrived at the transect end after 30 min. Prior to sur‐
veys, each observer (n = 2) was trained in distance estimation using 
dummy transects along which bees’ distances were physically meas‐
ured after each attempted estimate using a measuring tape. Once 
all observers were consistently estimating distances within ±0.25 m, 
field surveys were conducted with a 2 m long measuring stick for 
constant reference. While walking along each survey transect, the 
observer recorded Bombus spp. detections such that a final count (#) 
was generated for each survey coupled with the distances (±0.25 m) 
between each Bombus spp. and the transect. We did not attempt to 
identify species or sex for Bombus spp. detected in situ therefore 
counts were likely multiple species and sexes. Survey data for each 
point included a Bombus spp. count and their corresponding detec‐
tion distances. We discerned between Bombus spp. and Xylocopa 
virginica by abdomen pubescence (Michener, McGinley, & Danforth, 
1994). Distances were recorded as the perpendicular distance from 
the transect to each bee and noted as the distance at which the bee 
was first detected. While walking along each transect, observers at‐
tempted to keep track of previously detected Bombus spp. to avoid 
double‐counting individuals that might be moving among floral re‐
sources near the transect. We anecdotally observed this method 
largely avoided double‐counting, as Bombus spp. are generally 
large‐bodied, conspicuous insects and easily audible in flight. All raw 
counts and detection distances constituted our “distance transect” 
data (a) and raw counts within 2 m of the transect constituted our 
“transect count” data (b).

F I G U R E  1  Survey locations within 
the Pennsylvania Wilds where we 
conducted surveys for Bombus spp. within 
regenerating timber harvests
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We followed standard bee survey methods to avoid common 
causes of detection failure (Ward et al., 2014); Surveys were con‐
ducted only in bright light conditions, low wind, warm days (≥16°C), 
and only during late morning and afternoon (10:00–17:00). Though 
we attempted to use study design to reduce the potential impacts of 
these factors on Bombus spp. detectability, we also included them 
in detection modelling. At the time of each survey, we recorded: (a) 
surveyor ID; (b) cloud cover; (c) time of day; and (d) Beaufort Wind 
Index. Local temperature data were downloaded from Weather 
Underground from the KUNV weather station in State College, 
Pennsylvania (Weather Underground Inc., 2018). Cloud cover was 
estimated in the field to the nearest 25% (0%–100%). Beaufort Wind 
Index was measured on an incremental scale from 0 to 5 with 0 rep‐
resenting no wind at all (i.e., smoke would theoretically rise with‐
out drift) and 5 representing high winds such that entire trees sway 
in the wind (Hau & Von Renouard, 2006). We avoided surveying in 
wind indices > 3, and thus considered two categories of wind: 0–1: 
“low”, 2–3: “moderate” in our analyses. All surveys took place from 
10 to 25 July, 2017.

2.4 | Net counts

To measure Bombus spp. abundance within fixed‐radius net counts, 
we created 15 m radius count surveys centred around each point 
location (the centre of each distance transect). Netted bee counts 
took place immediately upon the conclusion of transect surveys (de‐
scribed above). Within each fixed‐radius plot, a single observer spent 
30 min seeking‐ and attempting to capture all Bombus spp. detected 
with a hand net. We chose fixed‐radius net sampling because it is a 
standard sampling technique for native bees (Persson et al., 2015; 
Potts, Vulliamy, Dafni, Ne’eman, & Willmer, 2003; Roulston, Smith, & 
Brewster, 2007) and would therefore serve as a basis for comparison 
to our abundance estimates generated from HDS. For each Bombus 
spp. detected, the observer attempted to capture each bee using a 
hand net (collapsible 15” diameter net, 17” handle, Bioquip Product 
#7115CP) and, once captured, all bees were held captive for the re‐
mainder of the survey. For each captured bee, the timer was stopped 
while the observer placed it into a plastic zipper bag and resumed 
immediately thereafter. This method prevented us from recaptur‐
ing and double‐counting bees within the same plot. After 30 min of 
survey time had elapsed, each Bombus spp. was removed from its 
bag with forceps, photographed for another project, and released 
unharmed. In the few occasions where Bombus spp. were observed 
but evaded capture, they were treated as all other Bombus spp. cap‐
tured for the purposes of this study (i.e., included).

2.5 | Habitat surveys

We surveyed regenerating vegetation structure within timber har‐
vest units from 15 June to 15 July 2017. Vegetation surveys shared 
their centroid with Bombus spp. surveys. Vegetation data quantified 
habitat structure of woody stems and herbaceous understory, rather 
than plant composition. All vegetation data were collected along 

three 50 m radial transects, each oriented at 0°, 120° and 240° from 
point centre. Along each transect, we recorded plant strata at 10 
“stops” (10 m apart; n = 30/net count location). Vegetation strata re‐
corded at each stop consisted of the presence/absence of sapling, 
shrub, forb and grass/sedge. Saplings were young trees <10 cm (in 
diameter breast height). This sampling regime gave us adequate res‐
olution to assess vegetation structure (15 stops/site) while remain‐
ing of comparable scale to our bee sampling transects (33 m). We 
found vegetation structure to be highly correlated across scales as 
large as 100 m and therefore believe our 50 m vegetation plots rep‐
resented site conditions reasonably well. Shrubs were woody plants 
with multiple primary stems (in contrast to single‐stemmed saplings). 
Forbs were broad‐leafed dicotyledonous plants (e.g., Solidago spp.). 
The plant category “grass” included any monocotyledonous plant 
(grasses, sedges, etc.). We recorded plant strata with an ocular tube 
such that only strata that intersected with crosshairs in the ocular 
tube were considered present (James & Shugart, 1970). While a 
single stop could include multiple strata types, each stratum could 
only be represented once per stop and thus each site could have a 
maximum of n = 15 occurrences for each stratum. We analyzed plant 
strata values as percentages. Prior to all analyses, we calculated 
Spearman’s rho (ρ) for all pairs of covariates to be modelled. Because 
none were strongly correlated (Spearman’s ρ < 0.60), no covariates 
were redundant and all were suitable for modelling.

2.6 | Hierarchical distance models

We analyzed distance transect data (bee counts and distances) using 
HDS models implemented in the R package “unmarked” (Fiske & 
Chandler, 2011; R Core & Team, 2018). The package unmarked fits 
linear models in a maximum likelihood framework and can be com‐
bined with an Information‐Theoretic approach (Anderson, 2007) 
for the purpose of model selection (e.g., using Akaike’s Information 
Criterion; AIC; Burnham & Anderson, 2002). Hierarchical distance 
models allowed us to create and rank candidate models, each of 
which contained independent model components for detection 
probability (p) and expected animal abundance (density; λ). HDS 
models assume (a) subjects are accurately identified (e.g., no false‐
presences); (b) that all subjects on the transect (distance = 0 m) are 
detected perfectly (p = 1.0); (c) subjects are detected at their original 
location (i.e., movement is not influenced by the observer); (d) dis‐
tances are accurately measured; and (e) detection of each individual 
is independent of the detection of all other individuals (Thomas et 
al., 2010). Bumblebees appear to constitute good candidates for dis‐
tance sampling as they can be easily identified (to genus) in the field 
(Michener et al., 1994), are easily approached by observers (Ward et 
al., 2014) and remain relatively still during pollination such that accu‐
rate distance estimations could be made for each worker. Although 
distances were measured in the field directly, we binned detec‐
tions as recommended by Buckland et al., (2005): 0–1, 1–2, 2–3, 
3–4 and 4–5 m. Moreover, to prepare distance‐based transect data, 
we truncated the outer 10% of our data such that analyses were 
conducted using only the closest 90% of Bombus spp. detections, 
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as recommended for distance analyses by Buckland et al. (2005). By 
truncating the data in this way, all detections were <5 m from the 
observer.

Distance models provide robust estimates of abundance by 
adjusting animal counts by the probability of detection for given 
distances (Buckland et al., 2005). This is accomplished by fitting 
detection distance data to a “detection function” that describes a 
decay in detection probability as subjects are further from the ob‐
server (Buckland et al., 2005; Kéry & Royle, 2015). To evaluate an 
appropriate detection function, we evaluated models, each fit using 
one of the following detection functions: (a) exponential; (b) hazard 
rate; or (c) half‐normal (Buckland et al., 2005). This was done prior to 
all covariate modelling. Each detection function is used to estimate 
the average probability of detection which is then used to adjust raw 
counts such that density predictions can be made (Buckland et al., 
2005). Once the most appropriate detection function was selected 
based on AICc rank, it was used to model detection probability and 
density in consecutive models. We modelled detection probability in 
two tiers: detection tier 1 (survey covariates on detection) and de‐
tection tier 2 (habitat covariates on detection). Because our sample 
size was modest, we used only single‐covariate detection models to 
avoid overfitting HDS models. Detection tier 1 included univariate 
models for (a) time of day; (b) surveyor; (c) temperature; (d) cloud 
cover; (e) wind index; and (f) a null (intercept‐only) model. Detection 
tier 2 (fit independently of detection tier 1) included univariate 
models for (a) sapling cover; (b) shrub cover; (c) forb cover; (d) grass 
cover; and (e) a null model. Within both model tiers, we used a global 
habitat model (i.e., sapling + shrub + forb + grass) for density to en‐
sure that variation in density was reasonably well explained while 
assessing detection probability. We considered covariates to be in‐
formative if they were both >2.0 AICc less than the null model and 
had β coefficient 95% confidence intervals that did not include zero. 
Using the informative covariates from detection tiers 1 and 2, we 
constructed a set of density models (habitat covariates on density) 
that accounted for imperfect detection: (a) sapling cover; (b) shrub 
cover; (c) forb cover; (d) grass cover; and (e) a null model. The null 
model contained only intercept terms and the informative parame‐
ters for detection. Prior to modelling, all continuous covariates were 
standardized using the scale function in base R. Model ranking was 
done using the “aictab” function of the package “AICcmodavg.” All 
models were fit assuming a Poisson distribution in “gdistsamp” and 
model fit was assessed by calculating a variance inflation factor (ĉ\
hat{c}\hat{c}\hat{c}) using the unmarked function “fitstats” (Kéry & 
Royle, 2015). We considered all models <2.0 AICc to be competing 
and equally supported by the data (Burnham & Anderson, 2002).

2.7 | Poisson generalized linear models

We used a Poisson generalized linear models in R (using the “glm” 
function) to model Bombus spp. abundance along fixed‐radius tran‐
sects and net counts. This allowed us to compare habitat‐abundance 
relationships generated from HDS models to those generated from 
methods that do not account for detection probability. As with our 

HDS models, Poisson regression models allowed us to model bee 
counts as a function of habitat covariates: (a) sapling cover; (b) shrub 
cover; (c) forb cover; (d) grass cover; and (e) a null (intercept‐only) 
model. We modelled our fixed‐radius transect counts by truncat‐
ing all HDS‐transect data by 2 m of the transect line and treating 
the data as a raw count (Hanley, Awbi, & Franco, 2014; Scheper et 
al., 2015), which is a standard technique when conducting visual 
encounter surveys. Net count data were modelled in a compara‐
ble manner such that raw counts were modelled as a function of 
habitat covariates. We did not account for imperfect detection in 
either of these models but rather modelled Bombus spp. count/
area interpreted as a density. We again used an information‐theo‐
retic approach (Anderson, 2007) with model ranking based on AICc 
considering models < 2.0 AICc to be equally supported by the data 
(Burnham & Anderson, 2002). We also used single‐covariate models 
to avoid overly complex models and the inclusion of uninformative 
parameters within top models (Arnold, 2010).

3  | RESULTS

We detected 194 individual Bombus spp. within 5 m, of which 136 
were within 2 m of the transect line. During aerial net counts, we 
captured n = 201 Bombus spp. workers. Of the bees captured during 
aerial net counts, over 50% were B. impatiens, with the remainder 
being a mixed community of less common species like B. bimaculatus 
and B. vagans.

3.1 | Detection probability

Of three detection function models we ran, the best‐ranked model 
included an exponential detection function where detection prob‐
ability > 5 m from the transect was ≈0 (Figure 2). Using an exponen‐
tial detection function, we found that detection probability varied 
as a function of time since 10:00 (the earliest possible start time) 

F I G U R E  2  Frequency of detections (grey bars; right axis) 
for Bombus spp. within regenerating timber harvests. Detection 
probability (left axis) declined as a function of distance from 
transect and was fit to an exponential detection function (black 
line). Bombus spp. were only rarely detected further than 5 m from 
the transect line
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and observer ID suggesting that the latest surveys of each day had 
the lowest detection probability and that observers were unequal 
in their ability to detect Bombus spp. (Table 1; Figure 3a). Among 
models investigating the relationship between habitat covariates 
and Bombus spp. detection, the model that included grass cover 
(%) was the only supported model and suggested that Bombus spp. 
were more readily detected at sites with more grass cover (Table 1; 
Figure 3b). All other covariates modelled in tiers 1 and 2 were >2.0 
AICc less than the null model and the β 95% confidence intervals 
overlapped zero.

3.2 | Habitat modelling

Models from all three analyses yielded discernable habitat asso‐
ciations with Bombus spp. abundance (Table 2; Figure 4). All three 
analyses indicated that Bombus spp. abundance during the survey 
period was negatively associated with per cent sapling cover and 
not associated with forb cover (Table 2; Figure 4). The importance 
of shrub cover and grass cover as predictors of Bombus spp. counts 
and estimated abundance varied across methods (Table 2); HDS and 
transect counts revealed support for shrub cover as an informative 
covariate being >2.0 AICc less than the null and having parameter 

95% confidence intervals that did not overlap zero (Table 2). Only 
net counts suggested that grass cover was positively associated 
with Bombus spp. abundance while HDS suggested that grass cover 
was instead correlated positively with detection probability but not 
abundance (Table 2; Figure 4). In contrast, our net count analysis 
suggested no effect of shrub cover on bee counts, with the “shrub” 
model ranked lower than the null model and the shrub parameter 
95% confidence intervals overlapping zero (Table 2). Our top‐ranked 
HDS model (“sapling”) showed evidence of minor overdispersion (ĉ\
hat{c}\hat{c}\hat{c} = 1.33) while most other models did not appear 
overdispersed (ĉ\hat{c}\hat{c}\hat{c} < 1.0; with a mean ĉ\hat{c}\
hat{c}\hat{c} = 1.01 across models in our final HDS model set). We 
considered this an acceptable level of overdispersion and did not 
use a variance inflation factor to adjust our parameter estimates 
(Burnham & Anderson, 2002).

3.3 | Density estimation

In addition to examining abundance as a function of habitat among 
the three methods, we compared their estimated mean densities 
of foraging Bombus spp. based on intercept‐only abundance mod‐
els (including detection covariates for HDS). Estimated Bombus spp. 

Model name K AICc ΔAICc AICc Wt. β estimate (95%CI)

Survey covariates on detection probability

p (observer) 7 348.93 0.00 0.78 0.58 (0.21 to 0.95)

p (time) 7 351.56 2.64 0.21 −0.23 (−0.38 to −0.08)

p (.) 6 358.29 9.36 0.01 ‐

p (wind) 7 359.87 10.94 0.00 −0.16 (−0.44 to 0.13)

p (temp.) 7 360.64 11.72 0.00 −0.05 (−0.19 to 0.09)

Site covariates on detection probability

p (grass) 7 352.67 0.00 0.85 0.35 (0.07 to 0.63)

p (forb) 7 358.27 5.61 0.05 0.17 (−0.04 to 0.37)

p (.) 6 358.29 5.62 0.05 ‐

p (shrub) 7 359.65 6.99 0.03 −0.13 (−0.35 to 0.09)

p (sapling) 7 360.48 7.82 0.02 0.10 (−0.16 to 0.36)

Note. Models are ranked in descending order of Akaike’s Information Criterion adjusted for small 
sample size (AICc). Survey covariates included time since survey start time (continuous; “time”); tem‐
perature (continuous); cloud cover (% overcast; continuous), observer (categorical), and wind index 
(categorical). Site covariates included per cent cover as measured by 50 m radius vegetation surveys 
for vegetation structure: saplings, shrubs, forbs and grass. Both candidate model sets are ranked 
against a null: intercept‐only model. Below, we report number of model parameters (k), ΔAICc, AICc 
weight (AICc Wt.) and β parameter estimates (95% confidence interval).

TA B L E  1  Hierarchical distance models 
of detection probability as a function of 
survey covariates (Tier 1; top) and site 
covariates (Tier 2; bottom)

F I G U R E  3  Models of Bombus spp. 
detection probability as a function of 
survey time (left), per cent grass cover 
(centre), and observer (right) while also 
being most detectable closest to the 
transect (all)
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forager density within timber harvests was highest for the HDS 
models (192 foraging workers/ha; 95% CI: 153–240) and lowest for 
net counts (21 foraging workers/ha; 95% CI: 19–23 Figure 5); an 89% 
difference between the two methods. Transect counts yielded in‐
termediate estimates of density (40 foraging workers/ha; 95% CI: 
34–47), and were 80% lower than density estimates from HDS. Site‐
specific HDS modelled densities and netting count raw densities 
were correlated (Pearson’s r = 0.31; p = 0.03). though the relation‐
ship was not 1:1 (Figure 5).

4  | DISCUSSION

Our study provides the first empirical evidence that detection prob‐
abilities of Bombus spp. vary in ways that can affect abundance esti‐
mates and inferences about habitat relationships. Observation error 
caused by imperfect detection is one of the central challenges of 
ecological monitoring programs (Thompson, 2002; Yoccoz, Nichols, 
& Boulinier, 2001) but has yet to be widely applied to monitoring 
of many invertebrates, including pollinators (but see Bendel et al., 
2018; Loffland et al., 2017; Mackenzie, 2003; Van Strien, Termaat, 
Groenendijk, Mensing, & Kery, 2010). Methods like distance sam‐
pling, while offering a potential solution to this challenge, are still 
under‐utilized in entomological research. Meanwhile, distance 

sampling and similar methods have been a staple of vertebrate wild‐
life research for decades (Buckland et al., 2005; Burnham, Anderson, 
& Laake, 1980; Seber, 1986; Thomas et al., 2002), and have been ex‐
panded to estimate population size, habitat‐specific abundance for 
individual species and communities (Sillett, Chandler, Royle, Kéry, & 
Morrison, 2012; Sollmann, Gardner, Williams, Gilbert, & Veit, 2016). 
Although our study is not the first estimate and account for detec‐
tion probability of bumblebees (Loffland et al., 2017), no study be‐
fore ours has described factors associated with detection probability 
and done so in a HDS framework.

We found that distance sampling transects were both a simple 
and effective survey method for estimating density and habitat re‐
lationships (Buckland et al., 2005). Hierarchical distance sampling 
models are one of the few available methods that allow researchers 
to model detection‐adjusted abundance with only a single visit to 
each site (Buckland et al., 2005; Kéry & Royle, 2015; MacKenzie et 
al., 2005). The method uses only non‐lethal sampling, unlike trap‐
ping/netting methods (Tepedino et al., 2015) which is especially de‐
sirable when sampling for species of conservation concern, or for 
common species in areas where capture‐based sampling is not al‐
lowed. Additionally, HDS models are also useful because the output 
is an easily interpreted latent state: density with units in “animals/
area”. In our study, HDS models generated estimates of foraging 
Bombus spp. worker density.

Model name K AICc ΔAICc AICc Wt. β estimate (95%CI)

Hierarchical distance sampling

λ (sapling) 6 337.69 0.00 0.98 −0.30 (−0.45 to −0.14)

λ (shrub) 6 345.83 8.13 0.02 0.21 (0.05 to 0.37)

λ (.) 5 350.2 12.51 0.00 –

λ (grass) 6 350.41 12.71 0.00 −0.17 (−0.38 to 0.05)

λ (forb) 6 352.82 15.13 0.00 −0.01 (−0.16 to 0.14)

Transect counts

λ (sapling) 2 277.63 0.00 0.96 −1.44 (−2.20 to −0.69)

λ (shrub) 2 284.48 6.85 0.03 0.85 (0.25 to 1.44)

λ (grass) 2 289.8 12.17 0.00 −0.93 (−2.14 to 0.28)

λ (.) 1 290.07 12.44 0.00 ‐

λ (forb) 2 292.16 14.54 0.00 0.133 (−0.74 to 1.01)

Net counts

λ (sapling) 2 360.71 0.00 1.00 −1.63 (−2.26 to −1.01)

λ (grass) 2 384.38 23.67 0.00 0.85 (0.03 to 1.67)

λ (shrub) 2 385.65 24.94 0.00 0.41 (−0.09 to 0.90)

λ (.) 1 386.08 25.37 0.00 –

λ (forb) 2 387.09 26.38 0.00 0.39 (−0.31 to 1.09)

Note. Models are ranked in descending order of Akaike’s Information Criterion adjusted for small 
sample size (AICc). Distance transect data included Bombus spp. detected from 0 to 5 m along 66 m 
transects. Transect counts included Bombus spp. detected from 0–2 m along 66 m transects. net 
count data were counts of Bombus spp. within 15 m radius plots. Site covariates included per cent 
cover as measured by 50 m radius vegetation surveys for vegetation structure: saplings, shrubs, 
forbs, and grass. Below we report number of model parameters (k), AICc, Δ AICc, AICc weight (AICc 
Wt.) and each covariate β parameter estimate and β parameter estimates (95% confidence interval).

TA B L E  2  Habitat models derived from 
hierarchical distance models (top), 
fixed‐width transect models (centre) and 
linear models of net count data (bottom), 
all fit using a Poisson distribution
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Despite being among the largest and most conspicuous of North 
American bees (Michener et al., 1994), we found that detection 
probability of Bombus spp. was imperfect and declined markedly 
with distance from the survey transect, with almost no detections 
beyond 5 m. Detection probabilities in our study were influenced by 
survey‐specific (e.g., time of day) and site‐specific (e.g., grass cover) 
variables, with detection probability highest in the morning in mid‐
summer and in habitats with abundant grass cover. Within regener‐
ating timber harvests in our study area, “grass” cover was typically 
low‐growing monocotyledons like Carex pennsylvanica. Abundant 
low‐growing sedge allowed observers to view Bombus spp. from 
greater distances than when sites were dominated by tall saplings, 
shrubs or forbs (e.g., Solidago). Consequently, studies within habi‐
tats dominated by low grass or other short vegetation might find de‐
tection probability for Bombus spp. to be reliable at distances >5 m. 
Although we are uncertain as to why Bombus spp. were less detect‐
able during surveys conducted later in the afternoon, one plausible 
explanation is that longer shadows cast by late afternoon light made 

Bombus spp. more difficult to detect when foraging in low vegeta‐
tion. Additional work exploring the drivers associated with Bombus 
spp. detection would prove valuable to monitoring regimes aimed at 
surveying bumblebees.

Though our study is not a comprehensive habitat assessment for 
Bombus spp. within regenerating timber harvests of eastern forests, 
our results provide a glimpse into the habitat dynamics of bumble‐
bees in regenerating forests during mid‐summer. Our findings that 
Bombus spp. were positively associated with shrubs and negatively 
associated with saplings can be explained primarily by flower phe‐
nology during our survey window. Regenerating saplings within 
the timber harvests we monitored were largely oaks, hickories, 
black cherry (Prunus serotina) and red maple (Acer rubrum; Wherry 
et al., 1979). These species do not flower as small saplings and do 
so in early spring as mature trees (i.e., outside the sampling period; 
Wherry et al., 1979). In contrast, several species of shrub were flow‐
ering during sampling including black huckleberry (Gaylussacia bac‐
cata), and hillside blueberry. In contrast, most forbs (e.g., goldenrod; 

F I G U R E  4  Modelled habitat 
associations between Bombus spp. and 
structural vegetation features within 
regenerating timber harvests as predicted 
by hierarchical distance models (top), 
fixed‐width (4 m) transect counts (centre) 
and net counts (bottom). Variables shown 
are sapling cover (left), shrub cover 
(centre) and grass cover (right). Solid 
lines represent model predictions with 
dashed lines as 95% confidence intervals. 
Relationships marked with an asterisk 
were those with model support (i.e., more 
informative than a null model and β 95% 
CI non‐overlapping zero)

F I G U R E  5  Left: Bombus spp. 
predicted mean density for models of 
net counts (“nc”), transect counts (“tc”), 
and hierarchical distance sampling 
models (“hds”). Right: Predicted density 
(workers/ha) generated from our top‐
ranked hierarchical distance model (p 
[observer + time + grass], λ [sapling]) 
regressed against count data from Bombus 
spp. net counts
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Solidago spp., snakeroot; Ageratina spp.) had not begun flowering yet. 
Future work should explore how Bombus spp. may track resources 
across a growing season to persist within eastern forest ecosystems.

Monitoring programs for Bombus spp. and other native polli‐
nators can be improved by incorporating study design and model‐
based approaches for minimizing detection error. Although we 
included several design‐based solutions for minimizing detection 
error (e.g., restricting survey times, only surveying in fair weather; 
Ward et al., 2014), detection probability remained imperfect 
and varied due to time of day, observer and vegetation cover. 
Consequently, methods that ignored detection probability gener‐
ated density estimates 80%–89% lower than HDS. Past studies 
have shown the importance of using design‐based approaches to 
minimize false negatives when sampling bees (Buchanan, Gibbs, 
Komondy, & Szendrei, 2017). Our study demonstrates the value of 
using both design‐ and model‐based approaches for reducing sam‐
pling errors caused by imperfect detection. Other study systems 
with thick vegetation cover, such as prairies and forested wet‐
lands, or obstructive objects, such as urban environments, are also 
likely to underestimate bee abundance even if multiple design‐
based approaches are used. While traditional sampling techniques 
that do not account for detection have numerous applications, 
our study highlights the importance of incorporating model‐based 
approaches for accounting for detection probability within native 
bee surveys, particularly when attempting to estimate bee abun‐
dance or density.

Although our results suggest that HDS represents a promising 
tool for monitoring bumblebees, researchers wishing to employ the 
method should recognize its associated limitations. For example, 
distance models assume that all animals on the transect line are de‐
tected perfectly. Although it is likely this assumption was met with a 
large insect like Bombus spp., this assumption might be violated with 
smaller insects. Moreover, subjects are assumed to be uniformly dis‐
tributed in a manner unaffected by the observer. While it is possible 
that Bombus spp. were frightened by observers, we took care to note 
the location of first detection for Bombus spp. apparently flushed 
and their loud flight made close detections almost certain. We note 
that this method would not work well for species‐level identifica‐
tion because observations are made from a distance and some bee 
genera are exceedingly difficult to identify, even with a microscope 
(Michener et al., 1994). Misidentification of species would consti‐
tute a false positive which would violate an assumption of distance 
sampling.

Another consideration of this study design, and many methods 
of abundance estimation, is that animals may violate the closure as‐
sumption. In the case of Bombus spp., this likely occurred as foragers 
flew in‐ and out‐ of the effective survey area (~5 m from the ob‐
server for HDS). While this may constitute a problem for some study 
objectives and methods, we have no reason to believe that Bombus 
spp. movement was nonrandom with respect to the observer and an 
accurate density could therefore still be made when passive counting 
was used. Closure violation may be a more important problem when 
attempting to calculate density from a netting plot where animals 

may enter the plot and be unable to leave as they are captured and 
held until the survey has finished. In such cases, movement would 
be biased by individuals immigrating into the monitored plot but un‐
able to emigrate and movement would be biased towards the plot. 
Although net‐based sampling is often preferable for investigating 
species‐specific habitat relationships, the potential for movement 
bias highlights the need for cautious interpretation of net‐based 
density estimates for bees. Similarly, researchers should consider the 
potential for double‐counting subjects. Although Bombus spp. in our 
study were apparently few enough and slow enough to avoid most 
double‐counting, this may be a more important problem to consider 
for more abundant insects with reduced detectability (e.g., Halictids).

We also advise caution with interpretation of habitat relation‐
ships reported here as our study should be interpreted as a small 
“snapshot” in time, and lacking species‐specific habitat relation‐
ships (Olesen, Bascompte, Elberling, & Jordano, 2008). Full‐season 
habitat associations are temporally dynamic for Bombus spp. and 
vary across species (Goulson, 1999; Jha & Kremen, 2013). Relative 
floral resource availability of different species changes across the 
season and future studies employing these methods at regular in‐
tervals from early spring when queens first emerge through late 
autumn would prove valuable. In fact, examination of queen bee 
densities would likely prove a better assessment of population 
density and habitat quality than worker density; when monitoring 
or researching colonial organisms such as bumblebees, estimating 
the true number of reproducing colonies is of more value than es‐
timating the number of foraging workers, as we have done here. 
Conducting HDS during the spring and early summer, when queens 
are the only active bumble bee foragers, may prove a useful and 
non‐lethal approach to estimating the abundance of reproductive 
individuals, and the expected number summer colonies for a given 
area. However, sampling queens would likely require additional 
sampling sites or repeat visit because counts would be much lower 
and HDS models may have trouble converging with relatively few 
sampling locations. Caution should also be exercised with inter‐
pretation of Bombus spp. density estimates reported here as our 
densities likely consist of multiple species of Bombus modelled and 
reported as one. We also recommend future studies explore how 
non‐Bombus genera (or morphospecies, functional groups) perform 
as the focus of HDS models. Although HDS is not without limita‐
tion, we believe our study highlights the utility of HDS models for 
estimating densities and elucidating habitat associations of bumble 
bees when individuals are detected imperfectly.
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