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Abstract
Aim: The	species	abundance	distribution	(SAD)	is	a	fundamental	pattern	in	macroe‐
cology.	Understanding	how	SADs	vary	 spatially,	 and	 identifying	 the	variables	 that	
drive	 any	 change,	 is	 important	 from	 a	 theoretical	 perspective	 because	 it	 enables	
greater	understanding	of	the	factors	that	underpin	the	relative	abundance	of	species.	
However,	precise	knowledge	on	how	the	form	of	SADs	varies	across	large	(continen‐
tal)	scales	is	limited.	Here,	we	use	the	shape	parameter	of	the	gambin	distribution	to	
assess	how	meta‐community‐scale	SAD	shape	varies	spatially	as	a	function	of	vari‐
ous climatic variables and dataset characteristics.
Location: Eastern	North	America	(ENA).
Time period: Present day.
Major taxa studied: Trees.
Methods: Using	an	extensive	continental‐scale	dataset	of	863,930	individual	trees	in	
plots	across	ENA	sampled	using	a	standardized	method,	we	use	a	spatial	regression	
framework	to	examine	the	effect	of	temperature	and	precipitation	on	the	form	of	the	
SAD.	We	also	assess	whether	the	prevalence	of	multimodality	in	the	SAD	varies	spa‐
tially	across	ENA	as	a	function	of	temperature	and	precipitation,	in	addition	to	other	
sample	characteristics.
Results: We	found	that	temperature,	precipitation	and	species	richness	can	explain	
two‐thirds	of	the	variation	in	tree	SAD	form	across	ENA.	Temperature	had	the	largest	
effect	on	SAD	shape,	and	it	was	found	that	increasing	temperature	resulted	in	more	
logseries‐like	SAD	shapes	(i.e.	SADs	with	a	relatively	higher	proportion	of	rarer	spe‐
cies).	We	also	found	spatial	variation	in	SAD	multimodality	as	a	function	of	tempera‐
ture	and	species	richness.
Main conclusions: Our	 results	 indicate	 that	 temperature	 is	 a	 key	 environmental	
driver	governing	the	form	of	ENA	tree	meta‐community‐scale	SADs.	This	finding	has	
implications	 for	 our	 understanding	 of	 local‐scale	 variation	 in	 tree	 abundance	 and	
suggests	that	niche	factors	and	environmental	filtering	are	important	in	the	structur‐
ing	of	ENA	tree	communities	at	larger	scales.
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1  | INTRODUC TION

The	species	abundance	distribution	(SAD)	describes	how	the	num‐
ber	 of	 individuals	 is	 distributed	 across	 all	 species	 in	 a	 sample	 or	
community	and	 is	one	of	the	fundamental	patterns	 in	macroecol‐
ogy	 (Gaston	&	Blackburn,	2000;	May,	1975;	McGill,	2011;	McGill	
et	al.,	2007).	Although	a	multitude	of	different	SAD	models	have	
been	proposed	(see	McGill	et	al.,	2007),	SADs	can	be	grouped	into	
two	 main	 classes:	 logseries‐	 and	 lognormal‐like‐shaped	 distribu‐
tions	 (Ulrich,	Kusumoto,	 Shiono,	&	Kubota,	 2016;	Ulrich,	Ollik,	&	
Ugland,	 2010).	 The	 logseries	 distribution	 itself	 results	 from	 the	
Poisson	 sampling	of	 a	γ‐distribution after a certain relevant limit 
is	taken,	and	it	is	characterized	by	a	right‐hand‐skewed	curve	with	
a	modal	value	of	one	 (Fisher,	Corbet,	&	Williams,	1943).	The	 log‐
normal	distribution	represents	a	situation	in	which	the	logarithms	
of	abundances	 follow	a	Gaussian	distribution,	and	 it	 is	character‐
ized	by	a	community	 in	which	species	of	 intermediate	abundance	
are	most	prevalent	(May,	1975;	Preston,	1948).	Both	the	logseries	
and	lognormal	distributions	are	unimodal	models,	which	have	been	
the	 focus	of	many	 studies	until	 recently	 (but	 see	Ugland	&	Gray,	
1982).	However,	recent	work	has	indicated	that	a	small	proportion	
of	 empirical	 SADs	 are,	 in	 fact,	 multimodal	 (e.g.	 Antão,	 Connolly,	
Magurran,	Soares,	&	Dornelas,	2017;	Dornelas	&	Connolly,	2008;	
Matthews	&	Whittaker,	2015;	Vergnon,	van	Nes,	&	Scheffer,	2012).	
For	example,	a	recent	synthesis	of	117	datasets	found	significant	
evidence of multimodality in c.	20%	of	cases	 (Antão	et	al.,	2017).	
A	number	of	potential	causes	of	multimodality	in	SADs	have	been	
put	forward,	such	as	the	amalgamation	of	different	types	of	species	
within	a	single	sample	(e.g.	core	and	satellite	species;	Magurran	&	
Henderson,	2003;	Matthews	&	Whittaker,	2015)	and	the	increas‐
ing	 taxonomic	breadth,	 sampling	 variation	 and	 spatial	 extent	 (i.e.	
increasing	ecological	heterogeneity;	Antão	et	al.,	2017)	of	a	study.	
However,	variation	in	the	prevalence	of	SAD	multimodality	at	large	
scales and across ecological gradients is largely unknown.

Although	a	large	proportion	of	previous	(unimodal)	SAD	stud‐
ies has focused either on finding the best‐fitting model given a 
set	 of	 local‐scale	 ecological	 data	 (e.g.	 Ulrich	 et	 al.,	 2010)	 or	 on	
using	 the	SAD	 to	 test	 the	performance	of	a	particular	 theory	or	
model	(e.g.	Volkov,	Banavar,	Hubbell,	&	Maritan,	2003),	there	has	
been	 increasing	 recognition	of	 the	 importance	of	 assessing	how	
different	SAD	properties	change	across	ecological	gradients,	such	
as	 climate,	 succession	 and	 disturbance	 gradients	 (e.g.	 Dornelas,	
Soykan,	&	Ugland,	2011;	Matthews	et	al.,	2014;	Matthews,	Borges,	
de	Azevedo,	&	Whittaker,	2017;	Ulrich	et	al.,	2016).	Traditionally,	
these	SAD	gradient	studies	have	mostly	been	undertaken	at	 rel‐
atively	 local	 scales	 (e.g.	 Bazzaz,	 1975;	 Matthews	 et	 al.,	 2014).	
However,	 probably	 owing	 to	 the	 increased	 availability	 of	 open‐
source	SAD	datasets,	in	combination	with	an	increase	in	computer	
processing	power,	there	has	been	an	increase	in	the	number	of	SAD	
studies	 focusing	 on	 larger,	 macroecological,	 scales	 (e.g.	 Kubota,	
Kusumoto,	Shiono,	Ulrich,	&	Jabot,	2015;	Ulrich	et	al.,	2010,	2016;	
White,	Thibault,	&	Xiao,	2012).	Generally	speaking,	macroecologi‐
cal‐scale	analyses	are	characterized	by	a	trade‐off	between	global	

coverage	and	local/regional	resolution;	that	is,	studies	that	analyse	
datasets	from	across	multiple	continents	 (e.g.	Ulrich	et	al.,	2016)	
tend	not	to	have	very	high	coverage	in	any	particular	region/con‐
tinent,	and	vice	versa.	Thus,	most	global‐scale	SAD	analyses	have	
large	gaps	within	any	given	region.	Although	this	is	not	a	criticism	
of	global	SAD	analyses,	which	are	able	to	identify	broad‐scale	pat‐
terns,	 it	 often	 involves	 analysing	 datasets	 from	multiple	 studies	
that	use	different	sampling	methods	and	have	varying	aims,	which	
may	result	in	some	patterns	of	interest	being	obscured.	A	different	
and	more	 effective	 approach	 involves	 extensively	 sampling	 one	
large	region	using	a	standardized	sampling	protocol.	This	approach	
is	arguably	better	at	identifying	spatial	variation	in	SAD	properties	
because	 it	allows	for	more	variables	to	be	controlled,	but,	owing	
to	the	resources	required	to	undertake	the	standardized	sampling,	
it	has	been	used	less	frequently	in	SAD	studies	(but	see	Locey	&	
White,	2013;	White	et	al.,	2012).

Understanding	how	SADs	vary	spatially	is	important	from	a	the‐
oretical	 perspective	 because	 it	 enables	 greater	 understanding	 of:	
(a)	what	 underpins	 the	 relative	 abundance	 of	 species	 (MacArthur,	
1960,	1972;	Matthews	et	al.,	2017;	May,	1975);	and	 (b)	 large‐scale	
species	 richness	gradients	 (Currie	et	al.,	2004;	Rosenzweig,	1995).	
However,	precise	knowledge	on	how	the	form	of	SADs	varies	across	
large	scales,	and	the	role	of	different	processes	driving	this	change,	
is	 limited	 (Ulrich	et	 al.,	 2016).	 It	 can	be	 theorized	 that	variation	 in	
climate	 across	 space	will	 be	 important	 in	 driving	 variation	 in	 SAD	
form.	Climatic	variables	are	known	to	be	important	drivers	of	species	
richness	gradients	at	macroecological	scales	(Brown,	Gillooly,	Allen,	
Savage,	&	West,	2004;	Currie	&	Paquin,	1987;	Field	et	al.,	2009).	In	
particular,	 temperature	and	precipitation	are	known	 to	be	 the	pri‐
mary	limiting	drivers	of	richness	variation	in	North	American	trees	
(Allen,	Brown,	&	Gillooly,	2002;	Currie	&	Paquin,	1987;	Whittaker,	
Willis,	&	Field,	2003).	The	effect	of	variation	in	climate	on	the	shape	
of	the	SAD	is	largely	unknown,	but	based	on	the	findings	of	previous	
studies	 on	 species	 richness	 gradients	 (e.g.	 Currie	&	 Paquin,	 1987;	
Currie	 et	 al.,	 2004),	we	 predict	 logseries	 SAD	 shapes	 to	 be	more	
prevalent	 with	 increasing	 temperature	 and	 precipitation.	 Primary	
productivity	correlates	strongly	with	climatic	variables,	and	higher	
energy	and	productivity	is	known	to:	(a)	result	in	finer‐scale	divisions	
of	niche	space	(Whittaker	et	al.,	2003);	and	(b)	enable	areas	to	sup‐
port	more	 individuals	 (Currie	et	al.,	2004)	at	smaller	minimum	via‐
ble	population	sizes	(Hawkins	et	al.,	2003).	 In	addition,	 it	has	been	
argued	 that,	 in	 contrast	 to	 the	 theoretical	 predictions	 of	 the	 spe‐
cies–energy	hypothesis,	populations	of	species	are	smaller	in	more	
productive	 environments	 (Currie	 et	 al.,	 2004).	 These	 factors	 have	
been	postulated	to	result	in	greater	richness	in	productive	environ‐
ments,	but	 together	would	also	mean	a	higher	proportion	of	 rarer	
species	and	thus	logseries	SAD	shapes.	The	role	of	climatic	variables	
in	 driving	multimodality	 in	 SADs	has	not,	 to	our	 knowledge,	 been	
assessed	previously	at	this	scale.

Macroecological	 SAD	 studies	 have	 tended	 to	 compare	 the	 fit	
of	different	models,	and	then	assessed	spatial	variation	in	the	best‐
fitting	model	(e.g.	Ulrich	et	al.,	2016).	However,	this	approach	does	
not	necessarily	provide	accurate	information	about	the	shape	of	the	
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SAD,	because	certain	SAD	models	are	relatively	flexible	and	can	fit	
a	 range	of	SAD	forms,	and	choosing	a	best‐fitting	model	does	not	
necessarily mean that it fits the data well (i.e. none of the models 
in	the	comparison	might	provide	an	accurate	representation	of	the	
SAD	shape).	An	alternative	approach	focuses	on	a	single	value	that	
characterizes	 the	shape	of	 the	SAD	 (Ulrich,	Nakadai,	Matthews,	&	
Kubota,	2018),	 such	as	 the	 shape	parameter	of	 the	gambin	model	
(Ugland	et	al.,	2007).	Gambin	is	a	stochastic	model,	which	combines	
the γ‐distribution	with	a	binomial	 sampling	method.	The	unimodal	
gambin	model	has	a	single	 free	parameter	 (α),	which	characterizes	
the	distribution	shape:	low	values	indicate	logseries‐shaped	curves,	
whereas	higher	values	 indicate	more	lognormal‐shaped	curves	(for	
an	example,	see	Figure	1).	Gambin	has	been	shown	to	provide	good	
fits	to	a	wide	variety	of	empirical	datasets,	and	α has been found to 
represent	a	useful	metric	 that	can	be	used	 to	assess	 the	effect	of	
different	variables	on	SAD	shapes	 (Arellano	et	al.,	2017;	Dornelas	
et	al.,	2011;	Matthews	et	al.,	2014).	Recent	methodological	develop‐
ments	(Matthews	et	al.,	2018)	have	derived	the	likelihood	functions	
for multimodal gambin models (multimodality also being a measure 
of	the	shape	of	the	SAD),	thus	providing	a	means	of	easily	assessing	
multimodality	in	SAD	datasets.

Here,	 we	 analyse	 an	 extensive	 dataset	 of	 863,930	 individual	
trees	in	33,282	plots	across	Eastern	North	America	(ENA),	sampled	
using	a	standardized	method,	to	examine	the	effect	of	climate	on	
the	 form	of	ENA	tree	SADs	across	broad	spatial	 scales.	We	com‐
bined	 adjacent	 plots	 (within	 grid	 squares	 of	 c. 44 km × 44 km) to 
create	coarse‐scale	SADs;	thus,	we	are	analysing	SADs	at	the	meta‐
community scale. We use gambin's α	to	assess	how	SAD	shape	var‐
ies	spatially	as	a	function	of	various	climatic	variables	and	dataset	
characteristics.	We	hypothesized	that,	owing	to	the	arguments	out‐
lined	above,	we	would	observe	a	shift	from	lognormal‐	to	logseries‐
shaped	 SADs	 with	 increasing	 temperature	 and	 precipitation.	We	

also	 assessed	 the	 prevalence	 of	 SAD	multimodality	 and	whether	
SAD	multimodality	varies	spatially	as	a	function	of	temperature	and	
precipitation.

2  | MATERIAL S AND METHODS

2.1 | Data and sampling methodology

Our	analyses	were	based	on	publicly	available	plot‐level	data	pro‐
duced	 by	 the	 U.S.	 Department	 of	 Agriculture,	 Forest	 Service's	
Forest	 Inventory	 and	Analysis	 Program	 (FIA;	 http://fia.fs.fed.us/).	
The	FIA	Program	conducts	a	 systematic	and	consistent	 inventory	
of	all	forest	land	in	the	USA,	with	a	comprehensive	summary	of	the	
associated	data	and	sampling	methodology	provided	by	O'Connell	
et	al.	(2017).	Briefly,	inventory	plots	are	systematically	distributed	
across	 the	entire	USA,	with	 remotely	 sensed	 information	used	 to	
identify	plots	 that	 are	 located	 in	 a	 forest	 land	use.	 Each	FIA	plot	
comprises	 four	 circular	 subplots	 of	 area	 0.017	ha,	 each	 located	
within	a	circular	0.10	ha	macroplot.	All	free‐standing	woody	stems	
(live	and	dead)	with	a	diameter	≥	12.7	cm	are	sampled	within	each	
subplot.	Within	each	subplot,	 there	 is	a	circular	0.001	ha	microp‐
lot	 in	which	all	 live	 stems	with	a	diameter	≥	2.54	cm	are	 sampled	
(O'Connell	 et	 al.,	 2017).	The	 full	 dataset	 contained	 sampling	data	
from	two	time	periods;	that	is,	each	plot	was	re‐sampled	a	second	
time	on	average	5	years	later.	For	the	present	study,	we	used	only	
the	data	from	the	first	sampling	period.	The	location	of	the	plots	is	
illustrated in Figure 2.

Annual	mean	temperature	and	annual	mean	precipitation	data	for	
each	plot	were	sourced	from	the	WorldClim	database	(version	2.0;	
2.5	min	resolution;	Fick	&	Hijmans,	2017)	using	averages	based	on	
annual	means	(1970–2000)	and	extracted	using	the	“raster”	R	pack‐
age	 (Hijmans,	2017;	 for	 further	details,	 see	Appendix	S1).	Climatic	

F I G U R E  1  The	two	most	commonly	observed	species	abundance	distribution	(SAD)	shapes:	(a)	logseries‐like	distributions,	and	(b)	
lognormal‐like	distributions.	In	both	(a)	and	(b),	the	gambin	model	(black	circles)	has	been	fitted	to	the	data	binned	into	logarithmic	octaves	
(grey	bars).	The	data	were	simulated	by	sampling	random	values	from	gambin	distributions	with	α	parameters	of	0.5	(a)	and	4	(b);	in	both	
plots,	the	number	of	species	was	set	to	200

http://fia.fs.fed.us/
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seasonality	variables	were	also	extracted	but	not	used	further	owing	
to multicollinearity issues (based on variance inflation factors).

2.2 | Dataset format and fitting the gambin model

Although	the	full	dataset	had	a	very	high	spatial	resolution	(i.e.	cov‐
erage	of	plots	within	ENA),	the	individual	plots	did	not	contain	suf‐
ficient	individuals	to	fit	SAD	models	confidently	(see	McGill,	2011).	
Thus,	we	 pooled	 all	 plots	within	 a	 given	 distance	 to	 create	meta‐
community‐scale	SADs.	To	achieve	this,	we	divided	the	ENA	into	a	
grid of squares of x1 × x2.	For	each	grid	square,	we	then	pooled	all	
plots	with	centre	points	within	 the	boundaries,	 thus	creating	 indi‐
vidual	meta‐community	samples	of	individuals	(hereafter,	“samples”)	
for	each	grid	square.	For	the	main	analyses,	we	used	0.4°	of	latitude	
(i.e. x1	=	0.4°).	Given	 that	 the	 length	of	a	degree	of	 longitude	var‐
ies	with	latitude,	we	varied	the	selected	degrees	of	longitude	(x2) at 
different latitudinal bands to ensure that the grid squares were all 
approximately	the	same	size	(c. 44 km × 44 km).

Given	that	SAD	model	parameters	are	known	to	be	biased	when	
sample	 size	 is	 small	 (Matthews	 et	 al.,	 2014;	McGill,	 2011),	we	 re‐
moved	all	 samples	with	<	500	 individuals.	 For	 the	 remaining	 sam‐
ples,	we	fitted	the	one‐component	(unimodal)	gambin	model	to	each	
sample	using	 the	gambin	R	package	 (version	2.4;	Matthews	et	 al.,	
2014).	Given	that	SAD	model	parameters	are	sensitive	to	variations	
in	sample	size	(McGill,	2011),	we	used	a	procedure	where,	for	each	
sample,	we	subsampled	500	individuals,	fitted	the	unimodal	gambin	
model	 to	 this	 subsample	and	 stored	 the	α	 parameter	value.	Given	
that	 this	 subsampling	 procedure	 is	 stochastic,	 we	 repeated	 the	

process	100	times	for	each	sample	and	took	the	mean	α	value.	The	
100	subsamples	were	also	used	to	create	estimates	of	the	SE of the 
mean	 value.	 Given	 that	 comparing	 SAD	model	 parameters	makes	
sense	only	if	the	model	provides	a	reasonable	fit	to	the	data,	for	each	
model	we	fitted,	we	also	stored	the	χ2 goodness‐of‐fit statistic and 
its associated p‐value;	the	mean	values	of	the	100	subsamples	were	
then	calculated.	We	then	discarded	all	samples	where	the	mean	p‐
value	was	<	.05.	Occasionally,	the	model	did	not	converge	fully,	and	
the fit generated unrealistically high values of α (e.g. 100). Following 
previous	work	and	earlier	versions	of	the	gambin	package	(Matthews	
et	al.,	2014),	we	discarded	all	samples	that	had	a	mean	α	value	>	15.	
Species	identities	were	taken	from	O'Connell	et	al.	(2017;	see	their	
appendix	F).

2.3 | Spatial regression analyses

To	determine	whether	temperature	and	precipitation	could	explain	
any	of	the	variation	in	SAD	form	across	our	samples,	we	used	a	spa‐
tial	linear	regression	modelling	approach.	For	the	response	variable,	
we used the α values from the fits of the unimodal gambin model 
to	the	samples.	The	distribution	of	α	values	was	skewed;	therefore,	
it was loge‐transformed to enable use of standard Gaussian linear 
models.	We	 included	 three	 predictor	 variables	 (temperature,	 pre‐
cipitation	and	species	richness	of	the	sample),	and	all	predictor	vari‐
ables	were	standardized	to	have	a	mean	of	zero	and	a	SD of one to 
enable	comparison	of	effect	sizes.	Species	richness	was	simply	the	
number	of	 species	 in	a	 sample,	and	precipitation	and	 temperature	
were	 taken	 as	 the	mean	 values	 of	 the	 plots	within	 a	 sample.	 The	

F I G U R E  2   (a)	The	distribution	of	33,282	Forest	Inventory	and	Analysis	(FIA)	Program	tree	plots	(blue	dots)	across	Eastern	North	
America,	overlaid	on	a	heat	map	of	temperature	values.	Temperature	data	were	sourced	from	the	WorldClim	database	and	represent	the	
annual	mean	temperature	at	2.5	min	resolution	(temperature	data	are	in	the	form	°C	×	10).	(b)	A	heat	map	showing	spatial	variation	in	the	α 
parameter	(loge‐transformed) of the gambin model; α	values	were	grouped	into	30	bins	and	the	median	value	displayed.	Lower	values	of	α 
correspond	to	logseries‐like	SAD	shapes,	whereas	higher	values	correspond	to	more	lognormal‐like	SAD	shapes	(see	Figure	1).	The	α values 
were	generated	from	fitting	the	gambin	SAD	model	to	tree	data	from	737	coarse‐scale	samples,	where	a	sample	is	a	collection	of	FIA	tree	
monitoring	plots	within	a	c. 44 km × 44 km grid [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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variance	 inflation	 factors	 of	 all	 predictors	 were	 below	 three.	 The	
number	of	individuals	was	not	included	as	a	predictor	because	this	
was	standardized	before	 fitting	 the	gambin	model.	We	then	fitted	
a	 standard	 linear	model	using	 all	 predictors.	We	 tested	 for	 spatial	
autocorrelation	 in	 the	 residuals	of	 this	model	 fit	 using	 a	permuta‐
tion	test	(999	permutations)	for	Moran‘s	I	statistic	and	the	“spdep”	
R	package	 (Bivand,	2017);	 spatial	weights	 for	neighbour	 lists	were	
calculated	 using	 the	 “knearneigh”	 (k	=	4)	 and	 “nb2listw”	 functions	
and	row	standardized	weights.	This	test	revealed	strong	spatial	au‐
tocorrelation	in	the	residuals	(Moran‘s	I	=	.38,	p = .001).	To	account	
for	this,	we	used	a	spatial	regression	framework	(Bivand,	2017;	Ward	
&	Gleditsch,	2008).	We	fitted	both	a	spatial	lag	model	(i.e.	a	spatial	
simultaneous	autoregressive	lag	model)	and	a	spatial	error	model	(i.e.	
a	spatial	simultaneous	autoregressive	error	model)	using	the	“spdep”	
R	package	and	compared	the	models	using	Akaike‘s	information	cri‐
terion	 (AIC).	Owing	to	 the	 large	number	of	data	points,	 it	was	not	
necessary	to	use	a	corrected	AIC.	Using	the	best‐fitting	spatial	re‐
gression	model,	we	fitted	the	global	model	 (i.e.	with	all	predictors)	
and	models	with	 all	 possible	predictor	 combinations	 that	 included	
species	richness;	species	richness	was	included	in	all	models	because	
it	was	 a	 predictor	we	wanted	 to	 control	 for.	We	 also	 fitted	 a	 null	
model	(only	an	intercept	term;	Mac	Nally,	Duncan,	Thomson,	&	Yen,	
2018).	Model	comparisons	used	an	information	theoretic	approach	
(Burnham	 &	 Anderson,	 2002).	 All	 global	 and	 best‐fitting	 models	
were	 rechecked	 for	 residual	 spatial	 autocorrelation,	 and	 we	 also	
calculated	Nagelkerke‘s	pseudo‐R2	 to	assess	model	 fit.	To	validate	
models,	we	extracted	 the	 fitted	values	and	 the	 residuals	 from	the	
spatial	regression	model	fit	object,	and	then	constructed	Q–Q	plots	
to	check	for	residual	normality	and	plotted	the	fitted	values	against	
the	residuals	to	check	for	homoscedasticity.	We	constructed	partial	
regression	plots	to	assess	the	effect	of	each	variable	after	taking	into	
account	the	effect	of	the	other	predictors.

2.4 | Assessing multimodality using multiple‐
component gambin models

To	assess	whether	the	prevalence	of	multimodality	in	the	SAD	var‐
ied	as	a	function	of	the	predictor	variables,	for	each	sample	 (from	
the	0.4°	of	 latitude	grid)	we	 fitted	both	one‐component	and	two‐
component	 gambin	 models	 using	 the	 gambin	 R	 package	 (version	
2.4;	Matthews	et	 al.,	 2018)	 and	derived	 the	Bayesian	 information	
criterion	 (BIC)	values.	We	used	BIC	here	 rather	 than	AIC	because	
the	former	is	known	to	penalize	more	complex	models	more	strictly	
than	 AIC	 (Burnham	 &	 Anderson,	 2004),	 and	 this	 is	 a	 desirable	
property	in	this	context,	because	arguably,	a	test	of	multimodality	
should	be	conservative.	The	two‐component	model	was	considered	
the best‐fit model if it had a ΔBIC value lower than the one‐com‐
ponent	model	 (Burnham	&	Anderson,	2002,	2004).	Given	that	we	
were	not	interested	in	comparing	parameter	values	across	samples	
in	this	part	of	the	analysis,	we	fitted	the	models	without	standard‐
izing	for	the	number	of	individuals	in	the	samples.	We	excluded	all	
samples	where	neither	the	one‐component	or	the	two‐component	
model had a χ2 p‐value	>	.05.	We	converted	the	number	of	times	the	

two‐component	model	was	 the	best‐fitting	model	 into	 a	 binomial	
variable	to	be	used	as	a	response	variable	in	a	binomial	generalized	
linear	model	(GLM),	using	temperature	and	precipitation	as	predic‐
tor	variables.	Given	that	we	did	not	standardize	by	sample	size,	we	
also	included	the	number	of	individuals	and	the	number	of	species	
in	a	sample	as	predictors.	All	predictors	were	standardized	to	have	
a	mean	of	zero	and	a	SD	of	one.	The	variance	inflation	factors	of	all	
parameters	were	below	five.	To	deal	with	spatial	autocorrelation,	we	
created	an	autocovariate	to	be	used	in	autologistic	regression,	using	
the	 “autocov_dist”	 function	 (type	 =	 “inverse”;	 style	 =	 “W”)	 in	 the	
spdep	R	package.	We	set	the	neighbourhood	radius	to	50	km	to	en‐
sure	that	there	were	few	regions	that	included	points	with	zero	links	
to	other	points	 (.04%	of	 regions;	 average	number	of	 links	=	2.61).	
We	used	the	MuMIn	R	package	(Bartoń,	2012)	to	fit	a	complete	set	
of	models,	considering	all	predictors;	the	autocovariate	was	set	as	
fixed.	As	with	the	unimodal	model	selection	analysis,	we	used	AIC	
to	 compare	 regression	models.	Weight	 of	 evidence	 (WoE)	 values	
for	 each	 predictor	 variable	 were	 calculated	 by	 summing	 the	 AIC	
weights	for	all	models	in	which	a	variable	was	present	(Burnham	&	
Anderson,	2002;	Giam	&	Olden,	2016).	McFadden's	pseudo‐R2 was 
calculated	for	each	model	using	the	formula:	1	−	(residual	deviance/
null deviance).

2.5 | Sensitivity analyses

In order to determine whether our results were influenced by the 
location	and	size	of	the	grid	squares,	by	the	pooling	of	data	within	
grid	squares	in	general,	and	to	test	the	effect	of	potentially	including	
managed	plots	on	our	results,	we	ran	a	number	of	sensitivity	analy‐
ses	 to	account	 for	 these	 factors	 (the	 full	methods	are	provided	 in	
Supporting	Information	Appendix	S1).

Inspection	of	plots	of	the	SEM α values (the mean of the α val‐
ues	from	the	100	subsamples)	indicated	that	the	SE increased with 
increasing mean α	 (Supporting	 Information	 Appendix	 S2,	 Figure	
S1).	Thus,	to	ensure	that	this	did	not	bias	our	results:	(a)	we	re‐ran	
the	main	analyses	using	unstandardized	α values (i.e. the gambin 
model	was	 fitted	without	any	subsampling);	and	 (b)	we	used	 the	
SEs	as	weights	in	a	linear	regression	model	selection.	The	SEs were 
normalized	 between	 zero	 and	 one,	 and	 we	 used	 the	 inverse	 of	
these values as the weights. It was necessary to use a standard lin‐
ear	model	because	it	was	not	possible	to	add	weights	to	our	spatial	
regression	models.	Re‐running	the	analyses	using	unstandardized	
α	 values	 also	 enabled	 us	 to	 check	 that	 our	 random	 subsampling	
did	not	affect	the	results.	For	example,	this	could	happen	because	
our	subsampling	procedure	randomly	sampled	 individuals	from	a	
plot,	which	disregards	the	possibility	that	individuals	of	a	species	
are	 spatially	 aggregated	 rather	 than	 randomly	distributed	within	
a	plot.

In	addition,	when	the	number	of	species	in	a	sample	is	low,	the	
shape	 of	 the	 SAD	 is	 constrained	 (Locey	&	White,	 2013).	 Thus,	 to	
test	whether	 our	 results	 are	 simply	 an	 artefact	 of	 low	 richness	 in	
certain	 samples	we	 ran	 an	 additional	 simulation	 analysis,	 in	which	
we	assessed	the	effect	of	the	number	of	species	in	a	sample	on	the	
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α value of the unimodal gambin model (full details can be found in 
Supporting	Information	Appendix	S1).

All	analyses	were	undertaken	in	R	(version	3.5.1;	R	Core	Team,	
2017).	 The	 R	 code	 is	 provided	 in	 an	 online	 repository	 on	 GitHub	
(txm676/NEA_SADs).

3  | RESULTS

Across	 the	33,282	plots	 there	were	863,930	 individual	 trees,	 rep‐
resenting	214	species.	Using	a	c. 44 km × 44 km grid square and a 
minimum	number	of	 individuals	 threshold	of	500,	 there	were	763	
coarse‐scale	SAD	samples.	After	 the	 removal	of	 samples	 to	which	
the	 one‐component	 gambin	model	 did	 not	 provide	 a	 good	 fit	 (ac‐
cording to the χ2 statistic or an unreasonably high α	value),	we	were	
left	 with	 737	 samples	 distributed	 across	 ENA.	 The	 mean	 species	
richness	of	 the	samples	was	30	 (SD	=	8),	 and	 the	mean	number	of	
individuals was 904 (SD	=	343,	although	the	number	of	individuals	in	
each	sample	was	standardized	before	model	fitting).

3.1 | Variation in gambin's α along 
macroecological gradients

When	 all	 predictors	 were	 considered,	 the	 spatial	 error	 model	
(AIC	=	644.8)	 had	 a	 lower	 AIC	 value	 than	 the	 spatial	 lag	 model	
(AIC	=	647.8)	and	the	standard	non‐spatial	linear	model	(AIC	=	822.8),	
and	 the	 residuals	were	no	 longer	 autocorrelated	 (Moran‘s	 I of the 
global	model	=	−.03,	p = .91).	Thus,	the	spatial	error	model	was	used	
in subsequent analyses.

There	was	substantial	spatial	variation	in	α	(see	Figure	2).	The	
best	spatial	error	model	(i.e.	the	model	with	the	lowest	AIC)	con‐
tained	 temperature	 and	 species	 richness	 (Table	 1);	 temperature	
had the largest effect on α (i.e. this variable had the largest coef‐
ficient),	followed	by	species	richness.	A	second	model	containing	
all	 three	predictors	was	also	within	two	ΔAIC	values	of	the	best	
model	 (Table	1).	The	model	with	 the	 lowest	AIC	value	explained	
a	 large	 amount	 of	 the	 variance	 in	 SAD	 form	 (pseudo‐R2	 =	 .65).	
The	ΔAIC	 value	 of	 the	 null	model	was	 132.5	 (Table	 1),	meaning	
that	 the	 best	 model	 provided	 a	 substantially	 better	 fit	 than	 an	

Rank Temperature Precipitation Species richness AIC ΔAIC Z‐value

1 −0.39	(0.03) – −0.12	(0.02) 643.4 0.0 14.64*

2 −0.36	(0.04) −0.04	(0.04) −0.12	(0.02) 644.8 1.4 14.85*

3 – −0.27	(0.04) −0.14	(0.02) 694.6 51.2 22.80*

4 – – −0.15	(0.02) 730.0 86.6 29.57*

5 – – – 775.8 132.5 32.96*

Note.	The	response	variable	 in	all	models	was	 the	α	parameter	of	 the	gambin	species	abundance	
distribution model (loge‐transformed).	The	three	predictors	(temperature,	precipitation	and	species	
richness)	were	standardized	to	have	a	mean	of	zero	and	SD	of	one.	The	data	were	pooled	samples	
(n	=	737)	of	North	American	tree	monitoring	plots.	The	abundance	data	of	each	sample	were	stand‐
ardized	to	ensure	that	all	samples	contained	500	individuals.	For	each	model,	the	variable	coefficient	
estimate is given with the SE	in	parentheses.	The	Akaike	information	criterion	(AIC),	ΔAIC	and	the	
Z‐value	of	each	model	are	also	provided.
*Significant Z‐value at the p	≤	.001	level.	

TA B L E  1  Spatial	error	model	selection	
results

F I G U R E  3  Partial	residual	plots	showing	the	effect	of	temperature	(a),	precipitation	(b)	and	species	richness	(c)	on	the	α	parameter	of	the	
gambin	SAD	model	(loge‐transformed),	after	taking	into	account	the	effect	of	the	other	independent	variables	in	the	global	model	(i.e.	the	
model	containing	all	three	predictors).	The	red	continuous	line	in	each	plot	represents	the	best‐fitting	linear	model	to	the	partial	residual	
data.	The	α	values	were	generated	from	fitting	the	gambin	SAD	model	to	tree	data	from	737	coarse‐scale	samples,	where	a	sample	is	a	
collection	of	FIA	tree	monitoring	plots	within	a	c. 44 km × 44 km grid [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  607MATTHEWS ET Al.

intercept‐only	model.	The	partial	regression	plots	(Figure	3)	of	the	
global	model	 (i.e.	 the	model	with	 all	 three	 predictors)	 showed	 a	
stronger	negative	effect	of	temperature	on	α (Figure 3a) relative 
to	 the	 effects	 of	 species	 richness	 (Figure	 3c)	 and	 precipitation	
(Figure	3b).	The	residuals	of	the	best	spatial	error	model	were	not	
significantly	 autocorrelated	 (Moran‘s	 I	 =	 −.03,	 p = .91) and were 
observed	 to	be	normally	 distributed	 according	 to	both	 the	Q–Q	
plot	and	the	histogram	(Shapiro–Wilk	normality	test	on	the	resid‐
uals: w	=	1.00,	p = .15).

3.2 | Multimodal model results

After	 filtering	 out	 samples	 according	 to	 our	 acceptance	 criteria	
(i.e. number of individuals and χ2	 goodness‐of‐fit	 test),	we	were	
left	with	653	samples.	Across	these,	the	two‐component	(bimodal)	
gambin	model	had	the	lowest	BIC	value	in	65	cases	(10%).	Examples	
of	 unimodal	 and	 bimodal	 SADs	 are	 provided	 in	 Figure	 4a,b.	 A	
heat	map	 of	 the	 bimodal	 BIC	weights	 is	 provided	 as	 Supporting	
Information	(Appendix	S2,	Figure	S2).	The	best	binomial	GLM	con‐
tained	temperature,	number	of	species	and	number	of	individuals,	
in	addition	to	the	spatial	autocovariate	(Table	2).	The	pseudo‐R2 of 
the	best	model	was	low	(.09),	and	there	was	no	residual	spatial	au‐
tocorrelation	(Moran‘s	I	=	.03,	p	=	.10).	There	were	two	additional	
models with ΔAIC	values	less	than	two;	temperature	and	species	
richness	were	included	in	both	(Table	2).	Temperature	had	a	WoE	
value	of	one,	whereas	precipitation	and	the	number	of	individuals	
and	species	had	values	of	.34,	.60	and	.98,	respectively	(Table	2).	
The	fit	of	a	simple	non‐spatial	logistic	regression	model	using	only	
temperature	as	a	predictor	is	shown	in	Figure	4c;	 it	shows	an	in‐
creasing	probability	of	a	one‐component	model	providing	the	best	
fit	with	increasing	temperature.

3.3 | Sensitivity analyses

Removing	the	potentially	managed	plots	or	re‐running	the	analy‐
ses	 from	different	starting	points	 to	create	 the	grid	cells	or	with	
smaller	 grid	 squares	 did	 not	 affect	 the	 overall	 results;	 the	 spa‐
tial	model	 selection	 results,	partial	 regression	plots	and	binomial	
GLM	 selection	 analyses	 produced	 largely	 similar	 outcomes	 (see	
Supporting	 Information	 Appendix	 S2).	 The	 main	 difference	 was	
the	performance	of	 the	precipitation	 variable,	which	had	 a	 posi‐
tive effect in some of the models with smaller grid squares (in both 
the unimodal and multimodal model selection analyses) and in two 
of	the	analyses	with	shifted	grid	squares	(Supporting	Information	
Appendix	S2).

Re‐running	the	spatial	error	model	selection	using	α values gen‐
erated	from	fitting	gambin	to	the	raw	plot	data	also	did	not	affect	the	
overall results. Regardless of the threshold used for the number of 
individuals	(i.e.	25	or	50;	which	resulted	in	9,669	and	633	plots,	re‐
spectively),	the	model	selection	results	were	very	similar	(Supporting	
Information	Appendix	S2,	Tables	S6	and	S7).	Again,	the	main	differ‐
ence	was	the	performance	of	the	precipitation	variable,	which	was	
included	in	the	best	model	and	had	a	positive	effect,	in	both	cases.	
Re‐running	 the	 spatial	error	model	 selection	using	unstandardized	
α	values	did	not	change	the	overall	results	(Supporting	Information	
Appendix	S2,	Table	S8	and	Figure	S5).	 In	addition,	using	the	SE (of 
mean α) values as weights in a standard linear model resulted in a 
very	 similar	 global	 model	 (Supporting	 Information	 Appendix	 S2,	
Table	S9).

The	species	richness	simulations	indicated	that	the	α	parameter	
of	a	sample	is	an	accurate	estimate	of	the	population	α value when 
the	number	of	species	is	>	10	(see	Supporting	Information	Appendix	
S2,	Figure	S6).	When	the	number	of	species	is	<	10,	the	α value tends 

F I G U R E  4  An	example	of	a	unimodal	(a)	and	bimodal	(b)	SAD	(grey	bars),	generated	using	samples	of	North	East	American	trees,	where	
a	sample	is	a	collection	of	FIA	tree	plots.	In	(a),	the	fit	of	the	one‐component	gambin	model	(blue	circles),	and	in	(b),	the	fit	of	the	two‐
component	gambin	model	(red	triangles),	are	shown.	The	sample	in	(a)	comprises	26	species	and	1,902	individuals,	and	in	(b)	46	species	
and	1,456	individuals.	In	(c),	the	results	of	a	logistic	regression	are	displayed;	the	red	line	represents	the	curve	of	the	predicted	values	from	
the	model,	and	the	grey	bars	are	the	observed	data	points	displayed	as	a	histogram.	The	predictor	variable	in	the	model	was	(standardized)	
temperature.	The	response	variable	in	the	model	was	a	binary	variable	indicating	whether	a	two‐component	gambin	model	provided	a	better	
fit	than	a	one‐component	gambin	model	to	a	given	sample;	we	used	one	minus	this	value	for	illustrative	purposes,	and	thus	the	curve	shows	
an	increasing	probability	of	a	one‐component	model	providing	the	best	fit	with	increasing	temperature.	The	data	are	653	meta‐community‐
scale	samples	of	Eastern	North	American	trees	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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to	be	inflated.	Given	that	only	one	of	our	samples	in	the	main	analy‐
sis	had	fewer	species	than	10	(nine),	we	are	confident	that	our	results	
are	not	an	artefact	of	low	richness	in	our	samples.

4  | DISCUSSION

The	majority	 of	 SAD	 analyses	 are	 undertaken	 at	 local	 scales,	 and	
thus	less	is	known	about	SADs	at	larger	meta‐community	scales.	In	
addition,	the	use	of	standardized	plot	data	avoids	the	biases	intro‐
duced	 in	many	macroecological	 studies,	whereby	data	 from	multi‐
ple	studies	that	use	different	sampling	methods	are	combined.	We	
found	that	our	global	model	(the	two	climatic	variables	and	species	
richness)	explained	around	two‐thirds	of	the	variation	in	meta‐com‐
munity	SAD	shape	across	ENA.	This	 is	 a	 significant	 amount;	 a	 re‐
cent	global	synthetic	analysis	 (i.e.	combining	multiple	 independent	
studies)	of	SADs	was	able	to	explain	c.	20%	of	variation	in	SAD	form	
(Ulrich	 et	 al.,	 2016).	We	 also	 found	 some	 spatial	 variation	 in	 SAD	
multimodality	as	a	function	of	temperature,	species	richness	and,	to	
a	lesser	extent,	the	number	of	individuals.

Model	 selection	 indicated	 that	 temperature	was	 the	most	 im‐
portant	variable	driving	variation	in	α; it had the largest effect in all 
ΔAIC	<	2	models	(Table	1).	Our	findings	show	that,	in	line	with	our	
prediction,	 the	effect	of	 temperature	was	negative	 (see	Figure	3);	
increasing	temperature	resulted	in	lower	α and thus more logseries‐
like	SADs.	This	finding	suggests	that	temperature	is	more	important	
than	water	in	structuring	ENA	tree	SADs.	Allen	et	al.	(2002)	reported	
a	similar	 finding	for	 the	species	richness	of	North	American	trees.	
However,	although	precipitation	had	a	smaller	effect	than	tempera‐
ture,	 it	was	still	 retained	 in	a	model	with	ΔAIC	<	2.	 It	 is	 likely	that	
at	 some	extremes,	precipitation	has	a	greater	effect	on	SAD	form	
(e.g.	 highly	 arid	 areas),	 and	 that	our	dataset	did	not	 cover	 enough	
of	these	extreme	environments	(see	also	Hawkins	et	al.,	2003).	It	is	
also	possible	that	other	variables	(e.g.	potential	evapotranspiration;	
Currie	et	al.,	2004)	might	be	more	accurate	measures	of	water	avail‐
ability	 and	water	 deficit	 than	mean	precipitation	 (Anderegg	 et	 al.,	
2015).	A	more	in‐depth	analysis	of	the	role	of	different	productivity	
metrics	on	SAD	form	would	be	an	interesting	future	step,	although	
such an analysis is reliant on the availability of suitable data at large 
scales. It should be noted that in some of the sensitivity tests the 

effect	of	precipitation	on	α	was	positive	(rather	than	negative	as	in	
the	main	analysis;	compare,	for	example,	Figure	3	with	Supporting	
Information	Appendix	S2,	Figure	S4).	However,	the	effect	was	often	
close	to	zero,	and	the	SE	of	the	effect	often	overlapped	zero	(e.g.	see	
Supporting	Information	Appendix	S2,	Table	S3).	 In	addition,	within	
the	 same	 model	 selection	 analysis	 (e.g.	 Supporting	 Information	
Appendix	S2,	Tables	S3	and	S7),	the	effect	of	precipitation	on	α was 
found	to	switch	between	positive	and	negative	for	different	models.	
Thus,	the	effect	of	precipitation	on	α,	based	on	these	data	at	least,	
can be considered negligible.

The	strong	role	of	temperature	and	thus	energy	availability	im‐
plies	that	niche	processes	(e.g.	niche	division)	leave	an	imprint	on	the	
SAD.	Previous	climate‐richness	gradient	studies	have	shown	that	di‐
versity	is	positively	correlated	with	productivity,	owing	in	part	to	the	
fact	 that	more	 individuals	can	be	supported	 in	productive	ecosys‐
tems,	and	the	minimum	viable	population	sizes	of	individual	species	
are	often	smaller;	thus,	a	larger	number	of	species,	with	smaller	pop‐
ulation	sizes,	can	be	supported	in	a	given	unit	of	area	than	in	less	pro‐
ductive	systems	(Allen	et	al.,	2002;	Brown	et	al.,	2004;	Hawkins	et	al.,	
2003).	For	example,	the	average	population	densities	and	population	
sizes	of	tree	species	have	both	been	shown	to	decrease	with	increas‐
ing	temperature	(Allen	et	al.,	2002)	and	decreasing	latitude	(Currie	et	
al.,	2004).	A	separate	but	linked	idea	is	the	theory	that	greater	niche	
division	in	more	productive	environments	enables	more	species	to	
coexist	 in	a	given	area	(Rosenzweig,	1995;	Whittaker	et	al.,	2003).	
If	abundance	is	linked	to	niche	size	(MacArthur,	1972),	then	greater	
niche	division	would	result	in	a	higher	proportion	of	relatively	rare	
species	being	found	in	more	productive	environments,	which	would	
also	explain	our	findings.	The	negative	effect	of	species	richness	on	
α,	 although	 less	 than	 the	effect	of	 temperature	 (Table	1),	 also	 fits	
into	this	rationale;	more	productive	environments,	 in	general,	sup‐
port	larger	numbers	of	species	(Hawkins	et	al.,	2003).	A	novel	find‐
ing of our study is that abundance is distributed across these larger 
numbers	of	species	in	a	less	even	way	than	in	cooler	environments.	
These	observations	could	also	be	attributable	to	the	filtering	out	of	
rarer	species	 (i.e.	species	with	small	populations)	 in	colder	regions,	
which	in	turn	could	be	linked	to	tropical	niche	conservatism	(Wiens	
et	 al.,	 2010);	 fewer	 lineages	 are	 adapted	 to	 colder	 temperatures,	
and	thus	there	 is	 less	competition,	and	a	 larger	proportion	of	spe‐
cies	 is	 able	 to	have	higher	 relative	 abundance.	Another	possibility	

TA B L E  2  Binomial	generalized	linear	model	selection	results

Rank AutCov n Precipitation Species richness Temperature AIC ΔAIC

1 −0.21	(0.12) −0.22	(0.14) – 0.53	(0.17) −1.05	(0.23) 395.52 0.00

2 −0.22	(0.12) – – 0.51	(0.17) −0.91	(0.20) 396.21 0.69

3 −0.19	(0.12) −0.24	(0.14) 0.19 (0.21) 0.50	(0.17) −1.21	(0.29) 396.74 1.22

WoE 1.00 .60 .34 .98 1.00

Note.	Models	were	compared	using	the	Akaike	information	criterion	(AIC).	All	models	with	a	ΔAIC	≤	2	are	shown.	The	response	variable	in	all	models	
was	a	binary	variable	describing	whether	a	two‐component	gambin	model	provided	a	better	fit	than	a	one‐component	gambin	model.	The	five	predic‐
tors	were	as	follows:	temperature,	precipitation,	number	of	individuals	in	a	sample	(n),	a	spatial	autocovariate	(AutCov)	and	species	richness.	All	predic‐
tors	were	standardized	to	have	a	mean	of	zero	and	SD	of	one.	The	data	were	pooled	samples	of	North	American	tree	monitoring	plots	(n	=	653).	For	
each	model,	the	variable	coefficient	estimate	is	given	with	the	SE	in	parentheses.	The	AIC	and	ΔAIC	of	each	model	are	also	provided.
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is	that	increasing	temperature	results	in	a	higher	rate	of	speciation	
(Allen,	Gillooly,	Savage,	&	Brown,	2006),	leading	to	a	larger	number	
of	young	species	with	relatively	small	population	sizes	and	thus	more	
logseries‐like	SADs.	These	different	explanations	are	not	necessarily	
mutually	exclusive.

An	alternative	explanation	is	the	possible	constraining	influence	
of	 community	 richness	 on	 the	 shape	 of	 the	 SAD	 (Locey	&	White,	
2013).	A	meta‐analysis	by	White	et	al.	(2012),	who	included	in	their	
analysis	a	subset	of	the	plots	we	have	analysed,	has	shown	that	the	
maximum	entropy	theory	of	ecology	(see	Harte,	2011)	can	success‐
fully	 capture	 a	 large	 proportion	 of	 the	 variation	 in	 SADs.	 In	 addi‐
tion,	Locey	and	White	(2013)	found	that	the	form	of	SADs	in	many	
cases is not different from the central tendency of the feasible set 
of	 possible	 distributions.	 However,	 our	 results	 do	 not	 contradict	
those of White et al. (2012) or Locey and White (2013). Both these 
studies	found	that	the	application	of	a	maximum	entropy	model	and	
the	feasible	set	framework	to	empirical	data	does	not	capture	all	of	
the	 variation	 in	 SAD	 form,	 particularly	 in	 cases	where	 the	 SAD	 is	
exceptionally	even	or	uneven	(see	Locey	&	White,	2013).	More	im‐
portantly,	as	the	authors	state,	 the	results	of	these	studies	do	not	
imply	that	ecological	processes	are	unimportant.	Instead,	ecological	
processes	are	likely	to	be	important	indirectly,	through	their	impacts	
on the state variables and constraints considered (e.g. the total num‐
ber	of	 individuals	or	the	number	of	species;	see	Harte,	2011).	Our	
results,	alongside	the	many	studies	of	large‐scale	richness	gradients	
(e.g.	Currie	&	Paquin,	1987;	Field	et	al.,	2009;	Hawkins	et	al.,	2003),	
indicate	that	temperature,	in	particular,	is	a	key	variable	of	interest	
in this regard.

Although	 the	 unimodal	 gambin	 model	 provided	 a	 better	 fit,	
according	to	BIC,	 in	 the	majority	of	cases,	 the	bimodal	model	was	
the	 best‐fitting	 model	 to	 a	 small	 proportion	 of	 samples	 (10%).	
Multimodality	is	also	a	measure	of	the	shape	of	a	SAD,	and	our	mul‐
timodal	SAD	model	selection	results	 (Table	2)	provide	 further	evi‐
dence	 in	support	of	 the	 role	of	 temperature	 in	driving	variation	 in	
SAD	shape.	However,	it	should	be	noted	that	the	amount	of	variation	
explained	by	the	best	model	in	this	case	(pseudo‐R2 = .09) was much 
lower than in the unimodal gambin α	analyses	(Table	2),	and	it	is	thus	
hard to draw any general conclusions on the variables driving this 
pattern.	That	being	said,	one	interesting	result	is	that	the	effect	of	
temperature	 and	 species	 richness	 (in	 the	models	 in	which	 species	
richness	was	included;	see	Table	2)	have	opposite	signs;	temperature	
has	a	negative	effect	(see	Figure	4c)	and	species	richness	a	positive	
effect	on	the	log	odds	prevalence	of	bimodality	in	the	analysed	SADs	
(Table	 2).	 The	 reasons	 for	 contrasting	 effects	 of	 temperature	 and	
richness	are	unclear.	One	potential	explanation	might	be	that	an	ad‐
ditional variable not included in our analysis covaries with either or 
both	temperature	and	species	richness,	such	as	topographical	relief	
or	human	disturbance.	Another	potential	explanation	for	the	pres‐
ence	of	multimodal	SADs	more	generally	is	the	possible	presence	of	
strong fine‐scale climatic gradients within some of our coarse‐scale 
grid squares; the fact that our sensitivity analysis using a smaller grid 
square	size	provided	evidence	for	a	relatively	larger	(compared	with	
the	 larger	 grid	 square	 analysis)	 positive	 effect	 of	 precipitation	 on	

the	prevalence	of	multimodality	provides	evidence	supporting	this	
explanation.	 Further	work	 is	 needed	 to	 explore	 these	 possibilities	
and	to	identify	additional	covariates	that	explain	more	variation	than	
those analysed here.

Forest	management	provides	another	potential	confounding	fac‐
tor	 in	our	 interpretation.	Due	 to	 the	 systematic	nature	of	 the	FIA	
inventory,	some	of	the	plots	 included	 in	the	study	dataset	were	 in	
managed	forest	(see	O‘Connell	et	al.,	2017).	The	inclusion	of	these	
forests	 could	potentially	 have	biased	our	 results	 if	 there	 is	 strong	
spatial	 variation	 in	 the	 location	 of	 managed	 forest	 plots	 in	 rela‐
tionship	 to	 the	 other	 covariates.	 For	 example,	 there	 are	 currently	
known	to	be	large	tracts	of	managed	forests	(e.g.	aspen	and	birch,	
and	spruce	and	fir	plantations)	in	northern	USA.	However,	although	
management	was	not	 explicitly	 recorded	during	 sampling,	 each	of	
the	plots	(and	individual	trees)	included	in	our	analysis	has	been	sur‐
veyed	at	multiple	points	 in	 time,	 and	when	an	 individual	 tree	was	
found	to	have	died	between	time	periods,	a	cause	of	death	was	in‐
ferred.	 This	 allowed	 us	 to	 remove	 all	 plots	 that	 contained	 several	
trees that were listed as having died as a result of management‐re‐
lated activities and to re‐run the analyses (which did not affect the 
overall	results;	see	Supporting	Information	Appendix	S2).	Although	
this	is	not	a	perfect	metric	of	management	and	human	disturbance,	
we	are	confident	that	our	overall	results	are	not	simply	an	artefact	
attributable to the inclusion of managed forests.

In	a	previous	study	of	the	SADs	of	North	American	trees	using	
a	 functional	 trait‐based	maximum	 entropy	model,	 Xing,	 Swenson,	
Weiser,	and	Hao	(2014)	found	that	broad‐scale	SADs	were	import‐
ant	drivers	of	 local‐scale	abundance,	arguing	 that	 it	was	 thus	nec‐
essary	 to	 discern	 the	 underlying	 mechanisms	 of	 North	 American	
tree	SADs	across	broader	scales.	The	results	of	our	study	 indicate	
that	 temperature	 is	 a	 (perhaps	 the)	 key	environmental	 driver	 gov‐
erning	the	form	of	ENA	tree	SADs	at	large	meta‐community	scales,	
which should thus aid in our understanding of the local‐scale vari‐
ation	 in	 tree	 abundance.	 This,	 in	 turn,	 suggests	 that	 niche	 factors	
and	 environmental	 filtering	 are	 important	 in	 structuring	ENA	 tree	
communities.
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