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Abstract
In addition to their unusually long life cycle, periodical cicadas, Magicicada spp.,
provide an exceptional example of spatially synchronized life stage phenology in
nature. Within regions (“broods”) spanning 50,000–500,000 km2, adults emerge syn-
chronously every 13 or 17 years. While satiation of avian predators is believed to be a
key component of the ability of these populations to reach high densities, it is not clear
why populations at a single location remain entirely synchronized. We develop non-
linear Leslie matrix-type models of periodical cicadas that include predation-driven
Allee effects and competition in addition to reproduction and survival. Using both
analytical and numerical techniques, we demonstrate the observed presence of a sin-
gle brood critically depends on the relationship between fecundity, competition and
predation. We analyze the single-brood, two-brood and all-brood equilibria in the
large life span limit using a tractable hybrid approximation to the Leslie matrix model
with continuous time competition in between discrete reproduction events. Within the
hybrid model, we prove that the single-brood equilibrium is the only stable equilib-
rium. This hybrid model allows us to quantitatively predict population sizes and the
range of parameters for which the stable single-brood and unstable two-brood and all-
brood equilibria exist. The hybrid model yields a good approximation to the numerical
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results for the Leslie matrix model for the biologically relevant case of a 17-year life
span.

Keywords Periodical cicada · Allee effects · Leslie matrix

1 Introduction

Periodical cicadas, Magicicada spp., are remarkable insects in many ways. These
species are characterized by exceptionally long life cycles (either 13 or 17 years),
their body size is large, and they exist at very high densities, sometimes exceeding
500/m2 (Williams and Simon 1995). Another fascinating aspect of these species is that
the developmental timing of populations is entirely synchronized; at any one location,
periodical cicadas live the majority of their lives underground as nymphs feeding on
roots and then emerge as adults in a single year (Leonard 1964;White and Lloyd 1975;
Williams andSimon1995). The timing of adult emergence is synchronized across large
geographical areas ranging from 50,000 to 500,000 km2. Cohorts of developmentally
synchronized individuals are called “broods,” andwhile their synchronized emergence
is believed to be related to predator satiation, it is not clear why only a single brood is
normally present in a given spatial location (Lloyd and Dybas 1966; Dybas and Lloyd
1974; Williams and Simon 1995). Here we use a Leslie matrix model together with a
novel hybrid approximation to explore the cause of synchronized cicada emergence.

Though periodical cicadas are exceptional in many ways, aspects of their life cycle
are shared by a larger category of periodical insects. A species is “periodical” if its
life cycle has a fixed length of several years with adults appearing synchronously
in a single year (Bulmer 1977). Though the causes of developmental synchrony of
periodical insects are often unclear, it has been hypothesized to result either from the
impact of predators that numerically respond to variation in prey abundance among
years or from asymmetrical competition among individuals of varying age (Heliövaara
et al. 1994).

While several previous studies have used mathematical models to understand the
evolution of the long generation time and prime-numbered life cycle lengths (namely
13 and 17 years) (e.g., Webb 2001; Tanaka et al. 2009; Yoshimura et al. 2009), few
studies have focused on identifying mechanisms generating developmental synchrony
(e.g., Hoppensteadt andKeller 1976). Given that periodical cicadas are semelparous—
only adults reproduce and then die immediately after—Leslie matrix models are an
appropriate framework to mathematically describe their population dynamics. How-
ever, Leslie matrix models of periodical cicadas require a 13× 13 or 17× 17 matrix.
Additionally, there are several nonlinearities associated with the population dynam-
ics. For example, inter- and intra-brood competition as well as predation-driven Allee
effects (that is, lower densities suffer higher per capita mortality from predation) are
important properties of cicada life cycles (Karban 1982; Williams et al. 1993; Gas-
ciogne and Lipcius 2004; Koenig and Liebhold 2013). Though there are general results
for matrix models of arbitrary dimension (Davydova et al. 2005; Mjølhus et al. 2005;
Cushing and Henson 2012), the analytic tractability of these models is limited by high
dimensionality, especially in the presence of nonlinearities in the population dynamics.
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1124 J. Machta et al.

We develop a nonlinear Leslie matrix model of the dynamics of periodical cicadas
with a finite number, q of age classes. To make the analysis tractable, we consider the
model in the limit of large q and approximate the Leslie matrix model by a hybrid
model in which juveniles evolve in continuous time but adult reproduction is a discrete
event [see Chap. 10 of de Roos and Persson (2013)]. The hybrid model allows us to
replace high-dimensional matrix multiplication in the Leslie matrix model by much
simpler differential equation(s). Within the hybrid model, we first prove the general
result that the only stable equilibrium is the single-brood equilibrium.We then analyze
in detail three equilibria: the stable single-brood equilibrium, the unstable two-brood
equilibrium and the unstable all-brood equilibrium. An analysis of the solutions allows
us to identify conditions under which these equilibria exist. Finally, we numerically
compare our findings to simulations of the model with a finite number of age classes.

2 Mathematical Models

2.1 Leslie Matrix Model

We construct a model of periodical cicadas using a nonlinear Leslie matrix model
that incorporates competition and predation-driven Allee effects. Although periodical
cicadas are known to have 13- or 17-year life spans, we generalize so that the life span
is q ∈ N years where q is large. The population density of age cohort i at year t is
given by xit where i = 0, . . . , q − 1. Hereafter, we refer to all classes x0t , . . . , x

q−1
t as

juvenile age classes and xet as the adult age class. Newly hatched first instar nymphs
have density x0t , and hereafter, we refer to individuals in this age class simply as “first
instars.” The general structure of a Leslie matrix model of cicada populations with a
maximum life span of q years is therefore given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0t+1

x1t+1

x2t+1

...

xq−1
t+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 R(xet )sq−1(xt )

s0(xt ) 0 . . . 0 0

0 s1(xt ) . . . 0 0
...

...
. . .

...
...

0 0 . . . sq−2(xt ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0t
x1t
x2t
...

xq−1
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Here, si (xt ) captures the survivorship of individuals of age i to age i + 1 where xt is
a vector of the population densities for each age class. We assume that survivorship
depends on both density-independent (mortality) and density-dependent (competition)
processes. We also assume that competition occurs among all juvenile age classes
and for analytic tractability we assume the functional form of competition is linear.
Additionally, R(xet ) is the overall fecundity of the adult population in the presence
of Allee effects. We assume that competition occurs prior to the emergence of adults;
therefore, xet = sq−1(xt )x

q−1
t . Now, for each age cohort 0 ≤ i < q − 1, the yearly

survivorship is
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si (xt ) = max

[
0,

(
1 − σ

q

)⎛
⎝1 − β

q

q−1∑
j=0

x j
t

⎞
⎠

]
, (2)

where σ determines mortality and β controls the competition of juveniles. The maxi-
mum ensures nonnegative population values. For simplicity, we assume that σ and β

do not vary across age classes. Note that both parameters σ and β are divided by q
to ensure that the large q limit is well defined while holding these parameters fixed.
Also, for fixed q we require that σ < q.

The population dynamics described by this Leslie matrix model can alternatively
be written as q + 1 equations, one equation describing reproduction,

x0t+1 = R(xet )x
e
t , (3)

where x0t+1 is the number of offspring produced by xet at time t + 1, and q equations
describing survival,

xi+1
t+1 = max

[
0, xit

(
1 − σ

q

)(
1 − β

q

q−1∑
j=0

x j
t

)]
, (4)

for 0 ≤ i ≤ q − 1 where here xqt+1 = xet+1. A given age cohort of individuals is
referred to as a brood; more precisely, a brood is a group of individuals that all emerge
during the same year and brood k reaches adulthood at times t ≡ k (mod q). The
term “brood” is used throughout the periodical cicada literature though “year class”
is sometimes used to describe such cohorts in other semelparous organisms.

The reproduction factor R accounts for fecundity and predation-driven Allee
effects. We assume that predation occurs during the time interval in which cicadas
mate and produce eggs. Additionally, predator satiation occurs at sufficiently high den-
sities of cicadas. Therefore, the functional response mimics that of a Type II Holling
response in discrete time:

R(xet ) = max

[
0,m

(
1 − Pmax

Ahalf + xet

)]
, (5)

where Pmax/Ahalf > 0 is the maximum density of cicadas predated per year and
Ahalf > 0 is the population density atwhich half of themaximumpredation is achieved.
The reproduction factor incorporates positive density dependence, i.e., R′(x) ≥ 0. We
assume that Pmax ≥ Ahalf so that sufficiently low adult population densities do not
survive to reproduce. Note that m also includes adult survivorship.

2.2 The Hybrid Model

In this section, we present a hybrid model, formally derived from the Leslie matrix
model, Eqs. (3)–(4) by taking the limit of large q assuming the effect of background
mortality and competition is small in a single year. For large q holding σ and β fixed,
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we can ignore higher order terms in 1/q and the difference equations (Eq. (4)) become
differential equations for the density x( j, τ ) of brood j as a function of a scaled real-
time variable τ = t/q. The q differential equations describing the dynamics of the
broods between reproductions are

∂x( j, τ )

∂τ
= −σ x( j, τ ) − βx( j, τ )�(τ), (6)

where �(τ) is the total juvenile population at time τ :

�(τ) =
q−1∑
k=0

x(k, τ ). (7)

In the hybrid model, reproduction is taken to be an instantaneous event occurring
simultaneously for every individual in a brood so the population density variable,
x( j, τ ) is discontinuous at the reproduction times τ j of brood j . We define τ j to be
any of the reproduction times of brood j , which satisfy

τ j − �τ j� = j/q. (8)

For any τ j , x(k, τ
−
j ) is the population density of adults, while x(k, τ+

j ) is the first
instar population density of brood j at times τ j . Equation (3) becomes, for brood j at
any of its reproduction times τ j ,

x( j, τ+
j ) = R[

x( j, τ−
j )

]
x( j, τ−

j ). (9)

Finally, these equations must be supplemented with absorbing-state conditions repre-
sented by the zero in Eq. (4) so that if x( j, τ ) becomes zero or negative at any time it
is thereafter always zero.

3 General Properties of Steady States

Let ui j (τ ) be the ratio of the population densities of broods i and j at time τ , ui j (τ ) =
x(i, τ )/x( j, τ ). It is straightforward to show from Eq. (6) that

dui j (τ )

dτ
= 0,

so that ui j (τ ) is stepwise constant and changes only at times when broods i or j
reproduce. This stepwise constant feature holds also for the original Leslie model and
follows from the simplification that all broods experience the same net competition and
the same mortality independent of their age class. The discontinuity at a reproduction
time, τi in ui j (τi ) is given by

ui j (τ
+
i ) = R[

x(i, τ−
i )

]
ui j (τ

−
i ), (10)
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and a similar expression holds for the jump at τ j in ui j (τ j ) except that the reproduction
factor appears in the denominator. Thus, the change in ui j from one generation to the
next is given by

ui j (τ + 1) = R[
x(i, τ−

i )
]

R[
x( j, τ−

j )
]ui j (τ ), (11)

with both reproduction times τi and τ j chosen to be in the range τ to τ + 1. For any
steady state and for all pairs i and j , we require that ui j (τ + 1) = ui j (τ ) so, for
extant pairs of broods, the ratio of their reproduction factors must be equal. Since R
is single-valued, we have the following result.

Theorem 1 In all steady states, all broods with nonzero population density have the
same population density as first instars or, equivalently, as adults.

We now show that steady states with more than one extant brood are linearly
unstable. Let x̄( j, τ ) be the steady-state population density of brood j at time τ ,
and let x̄± = x̄( j, τ±

j ) be the (brood-independent) steady-state adult (−) and first
instar (+) population densities, respectively. Suppose that at some time, τin, broods
are perturbed by a small amounts ε( j, τin) relative to their steady-state values at τin
and that generally for τ ≥ τin we define ε( j, τ ) from the following:

x( j, τ ) = x̄( j, τ )(1 + ε( j, τ )). (12)

Furthermore, suppose that at τin at least one brood has a population density greater
than its steady-state value and at least one brood has a population density less than its
steady-state value. Let λ(τ) be the difference in the relative perturbation of the most
positively and most negatively perturbed brood at time τ :

λ(τ) = εmax(τ ) − εmin(τ ), (13)

where εmax(τ ) = max j [ε( j, τ )] and εmin(τ ) = min j [ε( j, τ )]. The maximum pertur-
bation magnitude, ε∗(τ ) is defined as

ε∗(τ ) = max[εmax(τ ), |εmin(τ )|].

In the case that τ is a reproduction time, εmax(τ ) and εmin(τ ) could be discontinuous
and it may be necessary to specify τ+ or τ−.

Theorem 2 If εmax(τin) > 0 and εmin(τin) < 0 then, to linear order in ε∗(τ ) and for
τ > τin, λ(τ) is a stepwise increasing function of τ and λ(τ + 1) > λ(τ).

The linearized equation of motion for ε( j, τ ) between reproduction events follows
immediately from Eq. (6) and takes the brood-independent form:

∂ε( j, τ )

∂τ
= −βδ�(τ), (14)
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where,

δ�(τ) =
q−1∑
i=0

x̄(i, τ )ε(i, τ ). (15)

Since all perturbations evolve in the same way, between reproduction events λ(τ) is
constant.

Next, we show that εmax(τ ) > 0 and εmin(τ ) < 0 for all τ > τin. First, consider
times for which there are no reproduction events. Since there are q broods, x̄+ >

x̄(i, τ ) and εmax(τ ) ≥ ε(i, τ ), we have from the definition (15) that qx̄+εmax(τ ) ≥
δ�(τ) so that

dεmax(τ )

dτ
≥ −βqx̄+εmax(τ )

If this inequality is replaced by an equality, then the solution is an exponential and is
always positive. Thus, εmax(τ ) is always positive. Similarly qx̄+εmin(τ ) ≤ −δ�(τ)

and εmin(τ ) is always negative.
When a brood reproduces, the relativemagnitude of its perturbation from the steady

state increases but does not change sign. To see this, expand the reproduction equation
(9) to linear order in |ε( j, τ−

j )| ≤ ε∗(τ−
j ), with the result that

ε( j, τ+
j ) = 
ε( j, τ−

j ), (16)

where


 = 1 + x̄−R′(x̄−)/R(x̄−). (17)

From positive density dependence, 
 > 1 so that ε( j, τ+
j )/ε( j, τ−

j ) > 1. Since
εmax(τ ) and εmin(τ ) are, respectively, the maximum and minimum values of ε( j, τ ),
it is also the case that εmax and εmin do not change sign at the reproduction times of any
broods. Thus, εmax and εmin retain their original signs for all times. Furthermore, in the
generation from τ to τ + 1 both εmax and |εmin| must increase. If the brood associated
with εmax does not change during the generation, then its reproduction event causes
an increase in εmax. If a new brood takes over the lead during the generation, it occurs
at its time of reproduction and εmax increases at that time. A similar argument holds
for |εmin|. Thus, λ is stepwise increasing and must increase during a generation (one
unit of scaled time). The conclusion is that all multi-brood steady states are linearly
unstable.

It is noteworthy that the results in this section depend only on positive density
dependence and on competition and juvenile mortality that are the same for all age
classes. Thus, Theorems1 and2 apply to a broad range of competition and reproduction
laws. The linear instability ofmulti-brood states has been recently proved under certain
conditions for the original Leslie matrix model (Diekmann and Planque 2018).

In the sections that follow, we develop the hybrid description and explicitly solve
the model for several steady states. Based on these findings, we perform numerical
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tests to determine how well the hybrid model approximates Leslie matrix model for
the realistic case, q = 17.

4 Single-Brood Equilibria for Large q

In this section,we analytically determine the single-brood stationary state for themodel
described in Eqs. (6)–(9). The differential equation describing the age-dependent
dynamics of the population density of the single extant brood, x(τ ), is

dx(τ )

dτ
= −σ x(τ ) − βx(τ )2. (18)

Let the extant brood be brood zero, and let x̄+ = x̄(0, τ+
0 ) be the equilibrium first

instar density, x̄− = x̄(0, τ−
0 ) the equilibrium adult density, and x̄(τ ) = x̄(0, τ ) the

equilibrium population density at scaled times τ between reproduction events. The
solution to the differential equation (18) is

1

x̄(τ )
= eστ

x̄+
+ β

σ
(eστ − 1), (19)

and the adult density can be found explicitly as

x̄− =
(
eσ

x̄+
+ β

σ
(eσ − 1)

)−1

. (20)

The adult and first instar population densities are also be related by the reproduction
equation (3),

x̄+ = R[
x̄−

]
x̄−. (21)

Inverting Eq. (20) to obtain the first instar density as a function of the future adult
density and combining the result with (21) yields a difference equation for the adult
density from one generation to the next. In a steady state these must be equal, yielding
an equation of the equilibrium adult population density,

(
e−σ

x̄−
− β

σ
(1 − e−σ )

)−1

= R[
x̄−

]
x̄−. (22)

Since x , Pmax and Ahalf inR (Eq. 5) are in units of number of cicadas per area while
β is in units of the inverse of cicadas per area, it is convenient to non-dimensionalize
the equations by defining the dimensionless equilibrium adult population,

χ = β x̄−, (23)
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and dimensionless parameters,

α = Ahalfβ, and δ = (Pmax − Ahalf)β. (24)

In terms of the dimensionless adult population, χ , we can obtain the population
density of each age class using Eq. (19). In particular, the first instar density is given
by

x̄+ = eσ

β

(
1

χ
− r

)−1

, (25)

where r is defined as

r = (eσ − 1)/σ. (26)

Note that when σ is small, r is close to and slightly larger than unity. The effect of
mortality can be absorbed in the other parameters by defining an effective fecundity
m̃,

m̃ = me−σ , (27)

and scaling the other parameters and the adult population density by r ,

χ̃ = rχ, (28)

α̃ = rα, (29)

δ̃ = rδ. (30)

Note that the positivity of Ahalf implies that α̃ > 0 and our assumption that
Pmax ≥ Ahalf implies that δ̃ ≥ 0. In terms of the dimensionless adult population
and dimensionless parameters, the steady-state condition, Eq. (22) together with the
reproduction equation (5), yields the following equation:

(
1

χ̃
− 1

)−1

= m̃χ̃

(
χ̃ − δ̃

χ̃ + α̃

)
, (31)

or, written in the standard form of a quadratic equation,

m̃2χ̃2 + m̃
(
1 − m̃(1 + δ̃)

)
χ̃ + m̃(α̃ + m̃δ̃) = 0. (32)

The explicit equilibrium solutions are χ̃ = 0, and the two non-trivial solutions χ̃± are
given by,

χ̃± = 1

2

[
1 + δ̃ − 1/m̃ ±

√
(1 + δ̃ − 1/m̃)2 − 4(α̃/m̃ + δ̃)

]
. (33)
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5 Existence, Stability and Properties of the Single-Brood Solutions

Single-brood solutions χ̃± are real if the discriminant, D, in Eq. (33) is nonnegative,

D = (1 + δ̃ − 1/m̃)2 − 4(α̃/m̃ + δ̃) ≥ 0. (34)

Since D is quadratic in δ̃, opens upward and is negative if δ̃ = (m + 1)/m, there are
two separated regions where the discriminant is nonnegative. We first consider the
biologically relevant case where α̃ ≤ m̃ − 1 in which case the two regions where
D ≥ 0 are given by

δ̃ ≤ m̃ + 1

m̃
− 2

√
α̃ + 1

m̃
, (35)

δ̃ ≥ m̃ + 1

m̃
+ 2

√
α̃ + 1

m̃
. (36)

Equation (31) can be interpreted as a dynamical map from the adult population at one
generation, χ̃ on the RHS of the equation, to the next generation, χ̃ on the LHS. Linear
stability of the steady-state solutions is determined by linearizing this dynamical map.
Letting χ̃ = χ̃± + ε, then to linear order in ε we find that

ε′ = (1 − χ̃±)2m̃

[
1 − α̃(α̃ + δ̃)

(χ̃± + α̃)2

]
ε ≡ 
±ε, (37)

where ε′ is the size of the perturbation after one generation. The factor (1− χ̃±)2 is the
linearization of the mapping from first instar to adult population, while the remaining
factors are the linearization of the reproduction equation. Plugging in the equilibrium
solutions (Eq. 33), the eigenvalues 
± of the two linearizations are, respectively,


± = 1 −
±√D

[
2α̃ + δ̃(−δ̃m̃ + m̃ + 1)

]
− δ̃m̃D

2(α̃ + δ̃)
. (38)

After some complicated algebra carried out byMathematica (see supplementarymate-
rials), one sees that in the lower region, Eq. (35), that 
+ < 1 so that χ̃+ is the stable
solution while χ̃− is unstable. The proof of the stability of the “+” solution and insta-
bility of the “−” solution is much simpler in the case δ̃ = 0, a value that is always
in the lower region. In this case 
± = 1 ∓ √D so 
+ is less than unity and vice
versa. By contrast, in the upper region, Eq. (36), the − solution is stable. However,
the analysis thus far does not incorporate the possibility that the zero is invoked in
reproduction equation (Eq. 5 ). At the edge of stability of the solutions (D = 0), we
see from Eq. (33) that

χ̃± = χ̃c = 1 + δ̃ − 1/m̃

2
. (39)

123



1132 J. Machta et al.

Furthermore, for a given value of δ̃ and m̃, χ̃− ≤ χ̃c. Given a dimensionless adult
population, χ̃ , the first instar population is proportional to m̃χ̃ (χ̃ − δ̃)/(α̃ + χ̃).
Combined with the upper region bound (Eq. 36), we see that the first instar population
is always negative so that the zero in Eq. (5) must be invoked and the population is
extinct.

A similar analysis can be given for the α̃ ≥ m̃ − 1 though this regime is not likely
to be biologically relevant. In this regime, the upper region is again given by Eq. (36)
but the lower region is given by δ̃ ≤ −α̃/m̃. As before, the upper region corresponds
to extinction and, in the lower region, it is the + solution that is stable.

Thus, the stable steady-state solution is always χ̃+ and, for a fixed value of δ̃ and
m̃, χ̃+ ≥ χ̃c. Furthermore, if δ̃ is nonnegative, χ̃+ < 2χ̃c. As χ̃ approaches χ̃c and
the limit of linear stability is approached, the single-brood steady state is increasingly
susceptible to extinction from finite perturbations since the “+” and “−” solutions
of the quadratic equation become closer and if the population falls below the “−”
solution, the flow is toward extinction.

To summarize, a stable single-brood steady state given by χ̃+ exists whenever the
discriminant is nonnegative, D ≥ 0, and the bounds m̃ > 1, 0 < α̃ ≤ m̃ − 1 and
−α̃ ≤ δ̃ ≤ (m̃ + 1)/m̃ − 2

√
(α̃ + 1)/m̃ are all satisfied. Since δ̃ ≤ 1, the steady-

state dimensionless adult population size, χ̃+, is less than one. Of course, the actual
equilibrium adult population density x̄− may be large if competition is weak since
x̄− = χ̃+/βr .

6 Simplified Functional Response

In addition to considering aType IIHolling response for predation, Eq. (5),we consider
a limiting case that simplifies the solutions for χ̃ . In particular, we consider a functional
response such that the reproductive rate of the population increases linearly as the
population density of cicadas increases, thus imposing a weak predation-driven Allee
effect. This is achieved by letting δ̃ = 0, with both m̃ → ∞ and α̃ → ∞ while
holding κ̃ = α̃/m̃ fixed. In this regime, the total number of offspring is of the form
R[x]x = (m/Ahalf)x2 = (βeσ /κ̃)x2. Here, the stable solution simplifies to the form

χ̃ = 1

2

(
1 +

√
1 − 4κ̃

)
. (40)

Note that the single-brood solution exists only for

κ̃ ≤ 1/4. (41)

In contrast, only the extinct solution, χ̃ = 0, exists for κ̃ > 1/4. If κ̃ = 1/4 then
χ̃ = 1/2 or x̄− = 1/(2βr)whereas the first instar population is given by x̄+ = eσ /βr
(from Eq. 25). Therefore, there is a discontinuous transition to the single-brood state
at κ̃ = 1/4. Finally, for small κ̃ we find that x̄− → 1/βr and x̄+ ∼ eσ /κ̃βr . As we
shall see, the simplified functional response analyzed in this section yields results for
the single-brood equilibria that are qualitatively similar to the more general situation
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when m̃, α̃ and δ̃ are all finite. In Sects. 8 and 9.1, we also make use of the related
parameter κ = α/m̃.

7 Two-Brood Equilibria

In this section, we investigate the existence and stability of two-brood equilibria in the
setting of the hybrid model. Let x(τ ) and y(τ ) be the populations of the two broods at
scaled time τ = t/q. If we assume that inter- and intra-brood competition are equal,
then the generalization of Eq. (18) to two broods is the pair of equations,

dx(τ )

dτ
= −σ x(τ ) − βx(τ ) [x(τ ) + y(τ )] , (42)

dy(τ )

dτ
= −σ y(τ ) − β y(τ ) [y(τ ) + x(τ )] . (43)

Though we assume that the two broods compete with one another as juveniles under-
ground, they emerge at separate times so that the reproduction equation, Eq. (21) with
R defined in Eq. (5), applies independently to each brood. Equations (42) and (43)
together with the reproduction events at two times present mathematical challenges.
However, the situation that the two broods emerge at nearly the same time can be
addressed using similar methods to the single-brood case. This symmetric limit where
the time between emergences goes to zero should be approximately correct for the
case that the two broods are separated by only a few years.We conjecture that this limit
also gives qualitatively correct results even when the time difference between brood
emergences is not small. It should be stressed that the symmetric limit still includes
the assumption that the two broods emerge and reproduce independently.

The symmetric limit is invariant with respect to the exchange of x and y so the
natural variables for analyzing the problem are sum and difference variables. Let
z(τ ) = x(τ ) + y(τ ) and w(τ) = x(τ ) − y(τ ). The equations for z and w are

dz(τ )

dτ
= −σ z(τ ) − βz(τ )2, (44)

dw(τ)

dτ
= −σw(τ) − βz(τ )w(τ). (45)

The equation for the sum variable z is identical to Eq. (18) for a single brood. Theo-
rem 1 shows that the two-brood equilibriummust have x = y = z/2 andw = 0. Let ψ̃
be the dimensionless total equilibrium adult population, ψ̃ = βr z̄+. The equilibrium
equation for either brood takes a form similar to the single-brood equilibrium equation
(Eq. 31),

1

2

(
1

ψ̃
− 1

)−1

= m̃
ψ̃

2

(
ψ̃/2 − δ̃

ψ̃/2 + α̃

)
. (46)
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After manipulating factors of two, we see that this equation is identical to the single-
brood equilibrium equation (Eq. 31) except that α̃ → 2α̃ and δ̃ → 2δ̃ so that

ψ̃(m̃, α̃, δ̃) = χ̃+(m̃, 2α̃, 2δ̃), (47)

where χ̃+ is the dimensionless adult population in the single-brood equilibrium
(Eq. 33). An interesting conclusion is that if all the parameters but the competition
are held fixed, then the adult population density of either of the two broods is exactly
1/4 of what it would be if there was only a single brood and the competition was dou-
bled. The limit of existence of the two-brood equilibrium also extends to only half the
competition level as the one-brood equilibrium. Theorem 2 shows that the two-brood
equilibrium is unstable.

8 All-Brood Equilibria

Wehave seen in the previous sections that for some range of parameters, it is possible to
have stable single-brood equilibria and unstable two-brood equilibria. In this section,
we consider all-brood equilibria. In these equilibria, all age cohorts are present and
it is a corollary to Theorem 1 that each brood’s size is the same function of age.
We again assume that inter- and intra-brood competition are equal. We give a general
equation for these equilibria.

In the symmetric all-brood steady state, for q → ∞, the total juvenile population
density � (Eq. 52) does not fluctuate in time, �(τ) → � a constant. The differential
equation for the population density x(τ ) of any of the equivalent broods is

dx(τ )

dτ
= −(

σ + β�
)
x(τ ). (48)

For the case of a brood that reproduces at time zero, the solution to this equation is

x̄(τ ) = x̄+e−(σ+β�)τ . (49)

In the large q limit, the sum defining� can be replaced by an integral of the population
of a single brood over one generation between reproduction events,

� = q
∫ 1

0
x̄(τ )dτ, (50)

and, combining Eqs. (49) and (50), we find an integral equation for the stationary
solution for �,

� = qx̄+
∫ 1

0
e−(σ+β�)τdτ. (51)
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Carrying out the integral and using (49) to replace x̄+ by x̄− yields the following
equation,

qx̄−
(
eσ+β� − 1

) = (σ + β�)�. (52)

or, in terms of dimensionless variables,

qχ
(
eσ+γ − 1

) = (σ + γ )γ, (53)

where γ = β� and, as before, χ = β x̄−.
Setting τ = 1 in Eq. (49) and combining it with the reproduction equation yields

the steady-state condition for the dimensionless adult population of a single brood,

χe(σ+γ ) = χR[
χ/β]. (54)

Using Eqs. (5), (53), (54) and the previously defined dimensionless variables, we find
a transcendental equation for γ ,

eσ+γ = m

[
γ (σ + γ ) − q(eσ+γ − 1)δ

γ (σ + γ ) + q(eσ+γ − 1)α

]
. (55)

We do not undertake the full analysis of Eq. (55) but, instead, consider the simplified
functional response introduced in Sect. 6, δ = 0 and m̃ → ∞, α → ∞with κ = α/m̃
fixed, for which (55) reduces to the following equation:

κqeγ (eσ+γ − 1) = γ (σ + γ ). (56)

We note that combining this equation with Eq. (53) yields the relation that

χ = κeγ , (57)

valid for the simplified functional response.
If we make the further simplification that σ = 0, we obtain the following equation:

κqeγ (eγ − 1) = γ 2. (58)

We find numerically that Eq. (58) has a non-vanishing solution for κ � 0.244/q
and, at κ ≈ 0.244/q, γ ≈ .63. For κ < 0.244/q, γ increases as κ decreases.
Furthermore, we find that as σ increases, the range of κ decreases for which a non-
vanishing solution exists. Because of the extra factor of q in the bound for κ for the all-
brood equilibrium compared to the bound κ = 0.25 for the single-brood equilibrium,
the range of parameters is far narrower and the population of individual broods far
smaller for the all-brood equilibria compared to the single-brood equilibrium. Indeed,
in the limitq → ∞ this equilibriumdoes not exist. Comparing the range of existence of
the one-, two- and all-brood equilibria, we conjecture that generally, k-brood equilibria
exist for a parameter range that scales as 1/k.
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Note that in the continuum limit, the same calculation applies to a many-brood
equilibrium with k extant broods, 1 � k < q, such that these broods are uniformly
distributed between 1 and q. The only difference is that the population in each extant
brood is a factor q/k larger than it would be if all broods were present.

9 Simulation Results for Single-Brood Equilibria

We performed numerical simulations to assess the agreement between the analytic
results of the model in the limit as q → ∞ and the behavior of the original Leslie
matrix model for 17-year periodical cicadas (i.e., q = 17). The simulations were
carried out by iterating the dynamics of the system in the single-brood state, Eqs. (3)
and (4), until the adult population in successive generations is unchanged within a
small tolerance. The initial condition must be chosen in the basin of attraction of
the stable single-brood equilibrium solution. If the initial population is less than the
unstable solution, the population will go extinct.

In the sections that follow, we first consider the simpler form of the reproduction
equation described in Sect. 6 and Eq. (40) followed by results from the full model with
a Type II Holling response, Eqs. (5) and (33).

9.1 Simplified Functional Response

We first consider the simplified functional response discussed in Sect. 6. Figure 1
shows the dimensionless adult population χ = β x̄− as a function of κ = α/m̃ where
κ is related to the strength of competition and predation relative to fecundity. Note that
the simulations are carried out with σ = 0 so that r = 1, κ = κ̃ and χ = χ̃ . As seen in

Fig. 1 Dimensionless adult population, χ versus the parameter, κ̃ for the single-brood stationary state when
m � 1. The blue curve (top for small κ̃) is the q → ∞ theoretical result (Eq. 40) with σ = 0, δ = 0 and
m → ∞ (the simplified functional response). The red and green curves correspond to the equilibria using
q = 17, σ = 0 and m = 1000. The red curve (bottom for small κ̃) represents linear competition (Eq. 4),
while the green curve (middle for small κ̃) represents exponential competition (Eq. 59). Period doubling,
chaos and extinction for the q = 17 simulations for small κ̃ are not shown (color figure online)
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Fig. 1, the behavior of χ as a function of κ obtained analytically in the limit q → ∞,
Eq. (40) (blue curve), is in reasonable agreement with numerical simulations of the
Leslie matrix model for q = 17 and m = 1000 (red curve) as long as κ is sufficiently
large. For small κ , however, the q = 17 simulation result falls below the q → ∞
solution and then undergoes a period-doubling cascade to chaos (not shown in the
figure) within a small range of κ before going extinct (Wikan 2012). At κ ≈ .044 the
simulations show that there is a bifurcation to a single-brood two-cycle. In the range
0.0036 � κ � 0.0049, the behavior is chaotic, and for κ � 0.0035, only the extinct
state exists for q = 17.

For q = 17 and κ small, better agreement with the q → ∞ theory is obtained using
exponential competition,

xi+1
t+1 = xit

(
1 − σ

q

)
exp

(
− β

q

q−1∑
j=0

x j
t

)
, (59)

which is, in any case, more ecologically realistic but less tractable theoretically. The
green curve in Fig. 1 shows the q = 17, m = 1000, σ = 0 simulation with exponen-
tial competition. The q = 17 single-brood steady state undergoes a period-doubling
transition to chaos in a very narrow range of κ . Numerical simulations show that the
bifurcation to the two-cycle occurs at κ ≈ .0113. In the range 0.038 � κ � 0.040,
the behavior is chaotic, and for κ � 0.038, only the extinct state exists. Note that for
the q → ∞ the solution exists as κ → 0 where χ = 1 and period doubling does
not occur. The extinction transition at small κ for finite q is the result of a population
overshoot leading to strong competition in the first instar population and a subsequent
crash.

9.2 Type II Holling Response

Given that the full version of the model has many parameters, we choose to study a set
of parameters that is realistic for 17-year periodical cicadas. Based on the literature,
reasonable values of the parameters arem = 50, Pmax = 3.9/m2, Ahalf = 3.3/m2 and
σ = 1.4 (Blackwood et al. 2018). Unfortunately, there have been very few studies of
competition among cicada nymphs so the nature andmagnitude of competition remains
an unknown (Karban 1984). Consequently, here we simply plot varying values of χ

as a function of β, measured in units of m2. Figure 2 shows the theoretical (Eq. 33)
q → ∞ result (blue curve) along with the q = 17 simulation results for linear
competition (red curve) and exponential competition (green curve). The theory is
again a reasonable approximation to the finite q simulations. In addition, the behavior
of the simple (quadratic) functional response is qualitatively similar to these more
realistic parameters. For the above realistic parameters,wefind that the edge of stability
of the single-brood steady state obtained from Eq. (39) is at βc = 0.173m2. The
dimensionless parameters α and δ vary with β, but their values at the edge of stability
of the single-brood state are as follows: αc = 0.572 and δc = 0.104. The control
parameter κ̃ = κr at the edge of stability for the simple (quadratic) functional response
is 1/4, whereas for these parameters the edge of stability is κ̃c = 0.101. The quantity
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Fig. 2 Dimensionless adult population, χ versus the competition parameter, β (m2), for the single-brood
stationary state for realistic values of parameters for 17-year cicadas (m = 50, Pmax = 3.9/m2, Ahalf =
3.3/m2 and σ = 1.4). The blue curve (top) is the q → ∞ theoretical result. The red and green curves
are both q = 17, simulations. The red curve (bottom) represents linear competition (Eq. 4), while the
green curve (middle) represents exponential competition (Eq. 59). A period-doubling transition for linear
competition for q = 17 occurs for β ≈ 0.009m2 and is not shown. There is no period-doubling transition
for exponential competition. The edge of stability of the single-brood equilibrium occurs at βc = 0.173m2

(color figure online)

χ̃ = χr at the edge of stability for the simple quadratic functional response is 1/2,
whereas for these parameters χ̃c = 0.573. Thus, realistic parameters for the 17-year
cicadas are qualitatively similar to the simplified case of the quadratic functional
response. The critical density of the adult population is, x̄− = χc/βc = 1.51/m2.
Below this density, the single-brood steady state cannot exist. For weak competition,
the adult population is inversely proportional to the competition parameter, x̄− ≈
(0.4/β)m−2. For small β, the q = 17 single-brood solutions exists in the limit β → 0
for both linear and exponential competition. For exponential competition, there is
a unique steady state for small β. For linear competition, there is a bifurcation at
β ≈ 0.009 to a period-2 oscillation followed by a period-doubling cascade to chaos.
The population dynamics displays two-banded chaos in the limit β → 0 for linear
competition. Note that the (unrealistic) β → 0 limit is singular since the population
diverges so that linear and exponential competition differ in this limit.

10 Discussion

The spatial distribution of periodical cicadas remains enigmatic: all populations exist
within broods spanning large, non-overlapping geographical areas with well-defined
boundaries. Within each brood, development is synchronized such that adults emerge
synchronously every 13 or 17 years. (Lloyd and Dybas 1966; Dybas and Lloyd 1974;
Williams and Simon 1995). Using a combination of analytic and numerical methods,
we studied a nonlinear Leslie matrix model with the aim of determining the condi-
tions under which a single-brood stable equilibrium exists. The main mathematical
tool employed here is continuous time approximation to juvenile development allow-
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ing us to replace the high-dimensional Leslie matrix model by a far more tractable
hybrid model. In the context of the hybrid model, we proved a theorem showing that
all equilibria with more than one extant brood are linearly unstable. The proof is
quite general insofar as it does not depend on the specific forms of competition and
reproduction except for the following features. First, reproduction has positive density
dependence, and second, competition applies equally to all juvenile age classes. The
instability of the two-brood and all-brood states arises from the growth of one brood
at the expense of the other(s).

Using the hybrid model, we studied equilibria consisting of a single brood, two
broods and all broods. We showed that the single-brood equilibrium exists and is
stable so long as competition, predation and mortality are not too strong relative to
fecundity. The two-brood and all-brood equilibria exist over a much narrower range
of parameters and, according to Theorem 2, are always unstable. While we have
considered only two multiple-brood equilibria, the methods used here, with additional
work, would also be applicable to three and higher numbers of broods equilibria.
The analysis of the two-brood equilibrium in the hybrid model involves two coupled
differential equations, while analyzing a k-brood state would involve k differential
equations.

Our model contains five parameters that control competition, the functional
response for predation, mortality and fecundity. We showed that these five param-
eters can be reduced to three dimensionless parameters that describe the properties of
the single-brood and two-brood equilibria, while the all-brood equilibrium requires
four dimensionless parameters. Within the hybrid model, the region of existence and
stability of the three equilibria can be easily determined.

Additional insights into the single-brood equilibrium were obtained by using a
simplified quadratic functional response to predation. Here a single parameter, κ̃ ,
essentially the ratio of the product of predation and competition to fecundity, deter-
mines the existence of the single-brood steady state. This ratio must be less than a
critical value for the single-brood steady state to exist. The results for this simplified
quadratic functional response are both qualitatively and quantitatively similar to the
more general Type II Holling response studied here. A key insight is that the transi-
tion to extinction is discontinuous. Although the single-brood equilibrium is linearly
stable, it becomes increasingly sensitive to large perturbations as the edge of stability
is approached and the unstable fixed point approaches the stable fixed point.

The results from the hybrid model were compared to simulations of the Leslie
matrix model corresponding to a finite q (q = 17)—which is representative of the
actual behavior of periodical cicadas—for both the simple linear form of competition
and a more realistic exponential functional form. We found that the hybrid model is
in reasonable agreement with the q = 17 simulations. However, in some cases the
simulations for q = 17 show a period-doubling cascade followed by extinction if
predation and competition are very weak relative to fecundity. The q → ∞ limit used
inour continuumanalysis likely eliminates thismore complexbehavior. Thepossibility
of period doubling and extinction for the finite q case is intuitively plausible—high
fecundity leads to a boom in population size of first instar nymphs, but this amplifies
competition and ultimately leads to a crash in the population. However, this regime is
unlikely to be biologically relevant.
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While the aboveobservations relied on simplifying the formof predation and assum-
ing a very high fecundity, we also compared our theoretical equilibrium analysis to
numerical simulations of the finite q case using parameters realistic for periodical
cicadas. Here, the parameters driving fecundity and predation are fixed based on exist-
ing data (Karban 1982, 1984, 1997), and we only vary the parameter corresponding
to the level of competition, reflecting the fact that very little information exists about
competition among nymphs. Here, similar observations are made: the single-brood
state only stably exists when competition is sufficiently small to avoid driving the
population to extinction. Again, we found that the q → ∞ theory is in reasonable
agreement with the q = 17 simulations.

We made several simplifying assumptions to increase the tractability of the anal-
ysis in this paper. For example, we employed a relatively simple functional form for
competition. A recent paper (Blackwood et al. 2018) implements and compares sev-
eral alternative functional forms for competition through numerical simulation of the
Leslie matrix model. This paper also considers the role of “stragglers” —individuals
emerging out of sync from their brood as a result of delayed or accelerated develop-
ment (White et al. 1979; Lloyd and White 1976; Williams and Simon 1995; Heath
1968; White and Lloyd 1979). This paper explores the effect of stragglers on the sta-
bility a single brood through numerical simulation of the Leslie matrix model. The
present results for the unstable two-brood equilibrium are relevant to understanding
the dynamics following a large “leakage” event.

Previous studies of periodical insects indicate that the synchronized development
characteristic of these organisms may arise either as a result of asymmetrical com-
petition among different age cohorts or as an emergent consequence of numerical
responses of predators (Heliövaara et al. 1994). (Bulmer 1977) found that synchronized
development in periodical insects can occur when inter-cohort competition exceeds
intra-cohort competition though this seems unlikely for periodical cicadas. Similar
mechanisms have also been advanced to explain developmental synchronization in
insects that exhibit multiple generations within a single year (Gurney et al. 1983;
Hastings and Costantino 1987; Hastings 1987; Hastings and Costantino 1991; Briggs
et al. 2000; Yamanaka et al. 2012). (Bulmer 1977) concluded that predation by gen-
eralist predators may reinforce synchronous development in periodical insects and
this is likely the case with periodical cicadas. Hoppensteadt and Keller (Hoppensteadt
and Keller 1976) showed that predation and competition can interact to produce syn-
chronous development in cicada populations of life spans > 10 years, but they only
considered intra-brood competition. (Behncke 2000) also explored a model with inter-
acting competition and predation and found that as life span increased, this leads to
the emergence of a single synchronized cohort (brood).

Our work demonstrates how inter-cohort competition together with the Allee effect
can drive synchronization in a periodical insect, but we did not explore the possible
role of numerical responses in predators. For periodical cicadas, there is good evidence
for such responses (Koenig and Liebhold 2013), but their role in synchronization will
need to be explored in future studies.

Periodical cicada broods extend over large regionswith sharp boundaries separating
broods. The current study is concernedwith a single patch, but itwould be interesting to
extend the methods developed here to a spatially explicit model to study the boundary
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between broods. The instability of the two-brood equilibrium helps to explain the
sharp boundary between broods.

Acknowledgements The authors thank the Santa Fe Institute for sponsoring three working groups during
which much of this work was carried out. JM, AH and AN acknowledge support from the National Science
Foundation under INSPIRE Grant No. 1344187. We are grateful to Prof. Odo Diekmann for providing key
insights that motivated Theorems 1 and 2.

References

Behncke H (2000) Periodical cicadas. J Math Biol 40(5):413–431
Blackwood J, Meyer A, Noble A, Machta J, Hastings A, Liebhold A (2018) Competition and stragglers as

mediators of developmental synchrony in periodical cicadas. Am Nat 192(4):479–489
Briggs C, Sait S, BegonM, ThompsonD,GodfrayHCJ (2000)What causes generation cycles in populations

of stored-product moths? J Anim Ecol 69:352–366
Bulmer MG (1977) Periodical insects. Am Nat 111(982):1099–1117
Cushing JM, Henson SM (2012) Stable bifurcations in semelparous Leslie models. J Biol Dyn 6(sup2):80–

102
DavydovaN, DiekmannO, vanGils S (2005) On circulant populations. I. The algebra of semelparity. Linear

Algebra Appl 398:185–243 special Issue on Matrices and Mathematical Biology
de Roos AM, Persson L (2013) Population and community ecology of ontogenetic development. Princeton

University Press, Princeton
Diekmann O, Planque R (2018) The winner takes it all: how semelparous insects can become periodical.

bioRxiv https://doi.org/10.1101/446252
Dybas HS, Lloyd M (1974) The habitats of 17-year periodical cicadas (homoptera: Cicadidae: Magicicada

spp.). Ecol Monogr 44(3):279–324
Gasciogne JC, Lipcius RN (2004) Allee effects driven by predation. J Appl Ecol 41:801–810
Gurney W, Nisbet R, Lawton J (1983) The systematic formulation of tractable single-species population

models incorporating age structure. J Anim Ecol 52(2):479–495
Hastings A (1987) Cycles in cannibalistic egg-larval interactions. J Math Biol 24(6):651–666
Hastings A, Costantino RF (1987) Cannibalistic egg-larva interactions in tribolium: an explanation for the

oscillations in population numbers. Am Nat 130(1):36–52
Hastings A, Costantino RF (1991) Oscillations in population numbers: age-dependent cannibalism. J Anim

Ecol 60(2):471–482
Heath JE (1968) Thermal synchronization of emergence in periodical “17-year” cicadas (homoptera, cica-

didae, magicicada). Am Midland Nat 80(2):440–448
Heliövaara K, Väisänen R, Simon C (1994) Evolutionary ecology of periodical insects. Trends Ecol Evol

9(12):475–480
Hoppensteadt FC, Keller JB (1976) Synchronization of periodical cicada emergences. Science

194(4262):335–337
Karban R (1982) Increased reproductive success at high densities and predator satiation for periodical

cicadas. Ecology 63(2):321–328
Karban R (1984) Opposite density effects of nymphal and adult mortality for periodical cicadas. Ecology

65(5):1656–1661
Karban R (1997) Evolution of prolonged development: a life table analysis for periodical cicadas. Am Nat

150(4):446–461
Koenig WD, Liebhold AM (2013) Avian predation pressure as a potential driver of periodical cicada cycle

length. Am Nat 181(1):145–149
Leonard DE (1964) Biology and ecology of magicicada septendecim (l.) (hemiptera: Cicadidae). J N Y

Entomol Soc 72(1):19–23
Lloyd M, Dybas HS (1966) The periodical cicada problem II. Evolution. Evolution 20:466–505
LloydM,White JA (1976) Sympatry of periodical cicada broods and the hypothetical four-year acceleration.

Evolution 30(4):786–801
Mjølhus E, Wikan A, Solberg T (2005) On synchronization in semelparous populations. J Math Biol

50(1):1–21

123

https://doi.org/10.1101/446252


1142 J. Machta et al.

Tanaka Y, Yoshimura J, Simon C, Cooley JR, Ki Tainaka (2009) Allee effect in the selection for prime-
numbered cycles in periodical cicadas. Proc Nat Acad Sci 106(22):8975–8979

WebbG (2001) The prime number periodical cicada problem. Discrete Contin Dyn Syst Ser B 1(3):387–399
White J, LloydM (1979) 17-year cicadas emerging after 18 years: a new brood? Evolution 33(4):1193–1199
White J, Lloyd M, Zar JH (1979) Faulty eclosion in crowded suburban periodical cicadas: populations out

of control. Ecology 60(2):305–315
White JA, Lloyd M (1975) Growth rates of 17 and 13-year periodical cicadas. AmMidland Nat 94(1):127–

143
Wikan A (2012) On nonlinear age-and stage-structured population models. J Math Stat 8(2):311–322
WilliamsKS, Simon C (1995) The ecology, behavior, and evolution of periodical cicadas. Ann Rev Entomol

40:269–295
Williams KS, Smith KG, Stephen FM (1993) Emergence of 13-yr periodical cicadas (cicadidae: Magici-

cada): phenology, mortality, and predator satiation. Ecology 74(4):1143–1152
Yamanaka T, Nelson W, Uchimura K, Bjørnstad O (2012) Generation separation in simple structured life

cycles: models and 48 years of field data on a tea tortrix moth. Am Nat 179(1):95–109
Yoshimura J, Hayashi T, Tanaka Y, Tainaka K, Simon C (2009) Selection for prime-number intervals in a

numerical model of periodical cicada evolution. Evolution 63(1):288–294

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A Hybrid Model for the Population Dynamics of Periodical Cicadas
	Abstract
	1 Introduction
	2 Mathematical Models
	2.1 Leslie Matrix Model
	2.2 The Hybrid Model

	3 General Properties of Steady States
	4 Single-Brood Equilibria for Large q
	5 Existence, Stability and Properties of the Single-Brood Solutions
	6 Simplified Functional Response
	7 Two-Brood Equilibria
	8 All-Brood Equilibria
	9 Simulation Results for Single-Brood Equilibria
	9.1 Simplified Functional Response
	9.2 Type II Holling Response

	10 Discussion
	Acknowledgements
	References




