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Abstract 111 

This paper describes the formation of, and initial results for, a new FLUXNET coordination 112 

network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the 113 

Global Carbon Project in partnership with other initiatives and regional flux tower networks. The 114 

objectives of the effort are presented along with an overview of the coverage of eddy covariance 115 

(EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and 116 

future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from 117 

-0.2 ± 0.02 g C m-2 y-1 for an upland forest site to 114.9 ± 13.4 g C m-2 y-1 for an estuarine 118 

freshwater marsh, with fluxes exceeding 40 g C m-2 y-1 at multiple sites. Average annual soil and 119 

air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites 120 

globally. Water table position was positively correlated with annual CH4 emissions, although only 121 

for wetland sites that were not consistently inundated throughout the year. The ratio of annual 122 

CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. 123 

Uncertainties in annual CH4 estimates due to gap filling and random errors were on average ± 1.6 124 

g C m-2 y-1 at 95% confidence, with the relative error decreasing exponentially with increasing 125 

flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux 126 

database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and 127 

validate Earth system models, and reconcile differences between land-surface model- and 128 

atmospheric-based estimates of CH4 emissions. 129 

  130 
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Capsule Summary 131 

Here we describe a new coordination activity and initial results for a global synthesis of eddy 132 

covariance CH4 flux measurements. 133 
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1. Introduction 134 

Atmospheric methane (CH4) is the second-most important anthropogenic greenhouse gas 135 

following carbon dioxide (CO2) (Myhre et al. 2013). The concentration of CH4 in the atmosphere 136 

today is about 2.5-times higher than in 1750 (Saunois et al. 2016a). The increase in atmospheric 137 

CH4 has arisen from human activities in agriculture, energy production, and waste disposal, and 138 

from changes in natural CH4 sources and sinks (Saunois et al. 2016a, 2017, 2016b; Turner et al. 139 

2019). Based on top-down atmospheric inversions, global CH4 emissions for the decade of 2003-140 

2012 were an estimated ~420 Tg C y-1 (range 405–426 Tg C y
-1) (Saunois et al. 2016a). 141 

However, some analyses suggest that uncertainties in global CH4 sources and sinks are higher 142 

than those for CO2, and uncertainties from natural sources exceed those from anthropogenic 143 

emissions (Saunois et al. 2016a). In particular, the largest source of uncertainty in the global CH4 144 

budget is related to emissions from wetlands and inland waters (Saunois et al. 2016a; Melton et 145 

al. 2013; Bastviken et al. 2011). Wetland CH4 emissions may contribute as much as 25-40% of 146 

the global total and are a leading source of interannual variability in total atmospheric CH4 147 

concentrations (Bousquet et al. 2006; Chen and Prinn 2006; Saunois et al. 2016a).  148 

Direct, ground-based measurements of in situ CH4 fluxes with high measurement frequency 149 

are important for understanding the responses of CH4 fluxes to environmental factors including 150 

climate, for providing validation datasets for the land-surface models used to infer global CH4 151 

budgets, and for constraining CH4 budgets. Eddy covariance (EC) flux towers measure real-time 152 

exchange of gases such as CO2, CH4, water vapour, and energy between the land-surface and the 153 

atmosphere. The EC technique has emerged as a widespread means of measuring trace gas 154 

exchange because it provides direct and near-continuous ecosystem-scale flux measurements 155 

without disturbing the soil or vegetation (Baldocchi 2003; Aubinet et al. 2012). There are more 156 
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than 900 reported active and historical flux tower sites globally and approximately 7000 site-157 

years of data collected (Chu et al. 2017). While most of these sites measure CO2, water vapour, 158 

and energy exchange, the development of new and robust CH4 sensors has resulted in a rapidly 159 

growing number of CH4 EC measurements (Baldocchi 2014; Morin 2018), primarily in natural 160 

and agricultural wetlands (Petrescu et al. 2015).   161 

Since the late-1990s, with a growing number of long-term, near-continuous EC 162 

measurements, the EC community has been well coordinated for integrating and synthesizing 163 

CO2, water vapour and energy fluxes. This cross-site coordination resulted in the development of 164 

regional flux networks for Europe (EuroFlux, CarboEurope and ICOS), Australia (OzFlux), 165 

North and South America (AmeriFlux, Large Biosphere Amazon, Fluxnet-Canada/Canadian 166 

Carbon Program, and MexFlux), Asia (AsiaFlux, ChinaFlux, KoFlux, and USCCC), and 167 

globally, FLUXNET (Papale et al. 2012; Baldocchi 2014). The resulting FLUXNET database 168 

(http://fluxnet.fluxdata.org/) has been used extensively to evaluate satellite measurements, 169 

inform Earth system models, generate data-driven CO2 flux products, and provide answers to a 170 

broad range of questions about atmospheric fluxes related to ecosystems, land use and climate 171 

(Pastorello et al. 2017). FLUXNET has grown steadily over the past 25 years, enhancing our 172 

understanding of carbon, water and energy cycles in terrestrial ecosystems (Chu et al. 2017). 173 

Similar community efforts and syntheses for CH4 remain limited in part because EC 174 

measurements for CH4 fluxes were rarer until recently. Whereas the earliest EC measurements of 175 

CO2 fluxes date back to the late 1970s and early 1980s (Desjardins 1974; Anderson et al. 1984), 176 

the first EC CH4 flux measurements only began in the 1990s (Verma et al. 1992; Shurpali and 177 

Verma 1998; Fan et al. 1992; Kim et al. 1999), with reliable, easy-to-deploy field sensors only 178 

becoming available in the past decade or so. EC CH4 flux measurements became more feasible 179 
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with advances in sensor development, such as tunable diode laser absorption spectrometers, that 180 

allowed researchers to measure previously undetectable trace gas fluxes with higher signal to 181 

noise ratios (Rinne et al. 2007; McDermitt et al. 2011). After these new sensors were 182 

commercialized, and low power, low maintenance open-path sensors were developed that could 183 

be operated by solar panels in remote locations, the number of CH4 flux tower measurements 184 

increased substantially (Baldocchi 2014; Morin 2018). The rapidly growing number of EC CH4 185 

flux measurements presents new opportunities for FLUXNET-type analyses and syntheses of 186 

ecosystem-scale CH4 flux observations.  187 

This manuscript describes initial results from a new coordination activity for flux tower CH4 188 

measurements organized by the Global Carbon Project (GCP) in collaboration with regional flux 189 

networks and FLUXNET. The goal of the activity is to develop a global database for EC CH4 190 

observations to answer regional and global questions related to CH4 cycling. Here, we describe 191 

the objectives of the FLUXNET-CH4 activity, provide an overview of the current geographic and 192 

temporal coverage of CH4 flux measurements globally, present initial analyses exploring time 193 

scales of variability, uncertainty, trends and drivers of CH4 fluxes across 60 sites, and discuss 194 

future research opportunities for examining controls on CH4 emissions and reducing 195 

uncertainties in the role of wetlands in the global CH4 cycle.    196 

  197 

2. FLUXNET-CH4 synthesis objectives and tasks 198 

This activity is part of a larger GCP effort to establish and better constrain the Global 199 

Methane Budget (http://www.globalcarbonproject.org/methanebudget/index.htm), and is 200 

designed to develop a CH4 database component in FLUXNET for a global synthesis of CH4 flux 201 

tower data. To this end, we are surveying, assembling, and synthesizing data from the EC 202 
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community, in coordination with regional networks, including AmeriFlux’s 2019 ‘Year of 203 

Methane’ (http://ameriflux.lbl.gov/year-of-methane/year-of-methane/), FLUXNET initiatives, 204 

and other complementary activities. In particular, this work is being carried out in parallel with 205 

the European Union’s Readiness of ICOS for Necessities of Integrated Global Observations 206 

(RINGO) project which is working to standardize protocols for flux calculations, quality control 207 

and gap-filling for CH4 fluxes (Nemitz et al. 2018). Methane-specific protocols are needed 208 

because of the added complexities and high variability of CH4 flux measurements and dynamics 209 

(Nemitz et al. 2018).  210 

Our approach is to include all currently available and future CH4 flux tower observations 211 

in a global CH4 database, including freshwater, coastal, natural and managed ecosystems, as well 212 

as upland ecosystems that may be measuring CH4 uptake by soils. The initiative is open to all 213 

members of the EC community. Database compilation began in 2017 and is ongoing. Data from 214 

sites in the Americas can be submitted to AmeriFlux (http://ameriflux.lbl.gov/data/how-to-215 

uploaddownload-data/); otherwise, data can be submitted to the European Fluxes Database 216 

Cluster (http://www.europe-fluxdata.eu/home/sites-list).  217 

In addition to many applications, an ultimate goal of the FLUXNET-CH4 activity is to 218 

generate a publicly available, open-access, data-driven global CH4 emissions product using 219 

similar machine-learning-based approaches used for CO2 fluxes (Jung et al. 2009; Tramontana et 220 

al. 2016). The product will be based on mechanistic factors associated with CH4 emissions and 221 

new spatio-temporal information on wetland area and dynamics for constraining CH4-producing 222 

areas. This gridded product will provide an independent bottom-up estimate of global wetland 223 

CH4 emissions to compare with estimates of global CH4 emissions from land-surface models and 224 

atmospheric inversions. Recent work has shown the potential to upscale EC CH4 flux 225 
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observations across northern wetlands, with predictive performance comparable to previous 226 

studies upscaling net CO2 exchange (Peltola et al. 2019), however, our focus is on a globally 227 

gridded product.    228 

The near continuous, high-frequency nature of EC measurements also offers significant 229 

promise for improving our understanding of ecosystem-scale CH4 flux dynamics. As such, this 230 

synthesis also aims to investigate the dominant controls on net ecosystem-scale CH4 fluxes from 231 

hourly to interannual time scales across wetlands globally, and to characterize scale-emergent, 232 

nonlinear, and lagged processes of CH4 exchange.  233 

 Methane is produced during decomposition under anaerobic or reducing conditions and is 234 

transported to the atmosphere via plant-mediated transport, ebullition and diffusion (Bridgham et 235 

al. 2013). During transport, CH4 can pass through unsaturated soil layers and be consumed or 236 

oxidized by aerobic bacteria (Wahlen 1993). Process-based biogeochemical models developed 237 

and applied at site, regional and global scales simulate these individual processes with varying 238 

degrees of complexity (Bridgham et al. 2013; Melton et al. 2013; Poulter et al. 2017; Castro-239 

Morales et al.; Grant and Roulet 2002). The large range in predicted wetland CH4 emissions rates 240 

suggests that there is both substantial parameter and structural uncertainty in large-scale CH4 241 

flux models, even after accounting for uncertainties in wetland areas (Poulter et al. 2017; Saunois 242 

et al. 2016a; Melton et al. 2013; Riley et al. 2011). A global EC CH4 database and associated 243 

environmental variables can help constrain the parameterization of process-based 244 

biogeochemistry models (Saunois et al. 2016a; Bridgham et al. 2013; Oikawa et al. 2017). 245 

Furthermore, a key challenge is evaluating globally-applicable process-based CH4 models at a 246 

spatial scale comparable to model grid cells (Melton et al. 2013; Riley et al. 2011). A globally 247 

gridded wetland CH4 emissions product upscaled from EC fluxes can help resolve this issue by 248 
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providing a scale appropriate model evaluation dataset. As such, the global CH4 database and 249 

gridded product will also be used to parameterize and benchmark the performance of land-250 

surface models of global CH4 emissions, providing a unique opportunity for informing and 251 

validating biogeochemical models.   252 

 253 

3. Methods 254 

Based on a survey of the EC community (announced via the fluxnet-255 

community@george.lbl.gov and AmeriFlux-Community@lbl.gov listservs), information 256 

available in regional networks and FLUXNET, and the scientific literature, we estimate that at 257 

least 200 sites worldwide are currently applying the EC method for CH4 flux measurements 258 

(Figure 1). Here we focus on findings from across 60 of the ~110 sites currently committed to 259 

participating in our FLUXNET-CH4 activity (Tables A1 and S1). Data from this initial set of 260 

sites were selected because they were publicly available or were contributed directly by site PIs. 261 

We will continue to engage the EC community more broadly and expand the database in the 262 

future. 263 

 264 

3.1. Data standardization, gap-filling, and partitioning 265 

We used similar data processing procedures as FLUXNET to standardize and gap-fill 266 

measurements, and in the case of net CO2 exchange, partition fluxes across sites 267 

(http://fluxnet.fluxdata.org/data/aboutdata/data-processing-101-pipeline-and-procedures/). 268 

Standard quality assurance and quality control of the data was first performed by site PIs. In 269 

nearly all cases, data collected by the local tower teams were first submitted to the data archives 270 

hosted by the regional flux networks, where data are pre-screened and formatted based on the 271 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.

mailto:fluxnet-community@george.lbl.gov
mailto:fluxnet-community@george.lbl.gov


 7 

regional network data protocols. Data from the regional networks then entered our flux 272 

processing procedure.  273 

Within our processing procedure, data were first checked for obvious problems including 274 

unit errors, spikes, and out-of-range values based on visualization of the data and statistical 275 

metrics. Next, the data were filtered, gap-filled and partitioned. Friction velocity (𝑢∗) filtering, 276 

based on relating night-time CO2 fluxes to 𝑢∗, was implemented using the REddyProc package 277 

(Wutzler et al. 2018) for R statistical software (R Development Core Team, 2018, version 3.5.0), 278 

although in a few cases 𝑢∗ filtering was performed by the site PIs. Gaps in meteorological 279 

variables including air temperature (TA), incoming shortwave (SWIN) and longwave (LWIN) 280 

radiation, vapour pressure deficit (VPD), pressure (PA), precipitation (P), and windspeed (WS) 281 

were filled with ERA-Interim (ERA-I) reanalysis data (Vuichard and Papale 2015). Gaps in CO2 282 

and latent and sensible heat fluxes were filled using the marginal distribution sampling method 283 

(Reichstein et al. 2005) using the REddyProc package (Wutzler et al. 2018). Net CO2 fluxes were 284 

partitioned into gross primary production (GPP) and ecosystem respiration (ER) using both the 285 

nighttime (Reichstein et al. 2005) and daytime (Lasslop et al. 2010) approaches also 286 

implemented in REddyProc (Wutzler et al. 2018). 287 

There are as yet no standards for gap-filling CH4 flux measurements and this is an active 288 

and ongoing area of research (Nemitz et al. 2018). Gaps in CH4 fluxes were filled using artificial 289 

neural networks (ANNs), as they have shown good performance for gap-filling CH4 flux data 290 

(Dengel et al. 2013; Knox et al. 2015; Morin et al. 2014a; Nemitz et al. 2018; Goodrich et al. 291 

2015). Details of the ANN routine are provided in Knox et al. (2016) and are summarized here 292 

briefly. The ANN routine was optimized for both generalizability and representativeness. To 293 

facilitate representativeness, explanatory data were divided into a maximum of 15 data clusters 294 
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using the k-means algorithm. To avoid biasing toward conditions with better flux data coverage 295 

(e.g. summer and daytime), data used to train, test, and validate the ANN were proportionately 296 

sampled from these clusters. Several neural network architectures of increasing complexity were 297 

tested, ranging from one hidden layer with the number of nodes equal to the number of 298 

explanatory data variables (N) to two hidden layers with 1.5N and 0.75N nodes, respectively. 299 

The architecture of each neural network was initialized 10 times with random starting weights, 300 

and the initialization resulting in the lowest mean sampling error was selected. The simplest 301 

architecture, whereby additional increases in complexity resulted in <5% reduction in mean 302 

squared error, was chosen and the prediction saved. This procedure was repeated with 20 303 

resamplings of the data, and missing half hours were filled using the median prediction. A 304 

standard set of variables available across all sites were used to gap-fill CH4 fluxes (Dengel et al. 305 

2013), including TA, SWIN, WS, PA, and sine and cosine functions to represent seasonality. 306 

These meteorological variables were selected since they are relevant to CH4 exchange and were 307 

gap-filled using the ERA-I reanalysis data. Other variables related to CH4 exchange such as 308 

water table depth (WTD) or soil temperature (TS) were not included as explanatory variables as 309 

they were not available across all sites or had large gaps that could not be filled using the ERA-I 310 

reanalysis data. These missing data for variables highlight some of the key challenges in 311 

standardizing CH4 gap-filling methods across sites and emphasize the need for standardized 312 

protocols of auxiliary measurements across sites (c.f. ‘Future research directions and needs’) 313 

(Nemitz et al. 2018; Dengel et al. 2013). ANN gap-filling was performed using MATLAB 314 

(MathWorks Inc., 2018, version 9.4.0). 315 

Annual CH4 budgets represent gap-filled, half-hourly fluxes integrated over an entire year 316 

or growing season. If fluxes were only measured during the growing season, we assumed that 317 
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fluxes outside of this period were negligible, although we acknowledge that cold season fluxes 318 

can account for as much as ~13-50% of the annual CH4 emissions in some locations (Zona et al. 319 

2016; Treat et al. 2018b; Helbig et al. 2017a; Kittler et al. 2017).  320 

 321 

3.2. Uncertainty estimation 322 

ANNs were also used to estimate annual gap-filled and random uncertainty in CH4 flux 323 

measurements (Richardson et al. 2008; Moffat et al. 2007; Anderson et al. 2016; Knox et al. 324 

2018). Here, we focus on assessing the random error, but a full assessment of total flux 325 

measurement error also requires quantifying systematic error or bias (Baldocchi 2003). 326 

Systematic errors, due to incomplete spectral response, lack of nocturnal mixing, sub-mesoscale 327 

circulations, and other factors are discussed elsewhere (Baldocchi 2003; Peltola et al. 2015) and 328 

are the focus of other ongoing initiatives.  329 

 Random errors in EC fluxes follow a double exponential (Laplace) distribution with a 330 

standard deviation varying with flux magnitude (Richardson et al. 2012, 2006). Model residuals 331 

of gap-filling algorithms such as ANNs provide a reliable, and conservative ‘upper limit’, 332 

estimate of the random flux uncertainty (Moffat et al. 2007; Richardson et al. 2008). For half-333 

hourly CH4 flux measurements, random error was estimated using the residuals of the median 334 

ANN predictions. At each site, the probability density function (PDF) of the random flux 335 

measurement error more closely followed a double-exponential (Laplace) rather than normal 336 

(Gaussian) distribution, with the root-mean-square error (RMSE) for the Laplace distribution 337 

fitted to the PDF of random errors consistently lower than the normal distributed error. From 338 

half-hourly flux measurements, random error can also be estimated using the daily differencing 339 

approach (Richardson et al. 2012). Random error estimates (𝜎(𝛿)), as expressed as the standard 340 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 10 

deviation of the double-exponential distribution with scaling parameter 𝛽, where 𝜎(𝛿) =  √2𝛽 341 

(Richardson et al. 2006), were found to be nearly identical using the two approaches 342 

(𝜎(𝛿)𝑚𝑜𝑑𝑒𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 1.0 × 𝜎(𝛿)𝑑𝑎𝑖𝑙𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑛𝑔 + 1.21), r2 = 0.97, p < 0.001), supporting the 343 

use of the model residual approach for estimating random error. As discussed below, 𝜎(𝛿) scaled 344 

linearly with the magnitude of CH4 fluxes at nearly all sites. To quantify random uncertainty of 345 

cumulative fluxes, we used a Monte Carlo simulation that randomly draws 1,000 random errors 346 

for every original measurement using 𝜎(𝛿) binned by flux magnitude, and then computed the 347 

variance of the cumulative sums (Anderson et al. 2016). For gap-filled values, the combined gap-348 

filling and random uncertainty was calculated from the variance of the cumulative sums of the 20 349 

ANN predictions (Anderson et al. 2016; Oikawa et al. 2017; Knox et al. 2015). The annual 350 

cumulative uncertainty at 95% confidence was estimated by adding the cumulative gap-filling 351 

and random measurement uncertainties in quadrature (Richardson and Hollinger 2007; Anderson 352 

et al. 2016). Note that when reporting mean or median annual CH4 fluxes across sites, error bars 353 

represent the standard error. 354 

 355 

3.3. Wavelet-based timescale decomposition 356 

 Methane fluxes are highly dynamic and vary across a range of time scales (Sturtevant et 357 

al. 2016; Koebsch et al. 2015). For example, in wetlands with permanent inundation, the 358 

seasonal variation of CH4 exchange is predominantly controlled by temperature and plant 359 

phenology (Chu et al. 2014; Sturtevant et al. 2016). Ecosystem CH4 exchange also varies 360 

considerably at both longer (e.g. interannual; (Knox et al. 2016; Rinne et al. 2018)) and shorter 361 

(e.g. weeks, days or hours; (Koebsch et al. 2015; Hatala et al. 2012; Schaller et al. 2018)) time 362 

scales. Wavelet decomposition is a particularly useful tool for investigating scale in geophysical 363 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 11 

and ecological analysis (Cazelles et al. 2008; Torrence and Compo 1998), because it can 364 

characterize both the time scale and location of patterns and perturbations in the data. 365 

Partitioning variability across temporal scales can help to isolate and characterize important 366 

processes (Schaller et al. 2018).  367 

 The maximal overlap discrete wavelet transform (MODWT) was used to decompose the 368 

time scales of variability in gap-filled CH4 flux measurements, as described in Sturtevant et al. 369 

(2016). The MODWT allows the time series to be decomposed into the detail added from 370 

progressively coarser to finer scales and either summed or treated individually to investigate 371 

patterns across scales. We reconstructed the detail in the fluxes for dyadic scales 1 (21 372 

measurements = 1h) to 14 (214 measurements = 341 days). Since patterns generated by ecological 373 

processes tend to occur over a scale range rather than at one individual scale, the detail over 374 

adjacent scales were summed to analyze four general time scales of variation (Sturtevant et al. 375 

2016). These time scales included the ‘hourly’ scale (1-2 h) representing perturbations such the 376 

passage of clouds overhead and turbulent scales up to the spectral gap, the ‘diel’ scale (4 h to 1.3 377 

days) encompassing the diel cycles in sunlight and temperature, the ‘multiday’ scale (2.7 to 21.3 378 

days) reflecting synoptic weather variability or fluctuations in water levels, and the ‘seasonal’ 379 

scale (42.7 to 341 days) representing the annual solar cycle and phenology. Data were wavelet 380 

decomposed into the hourly, diel, and multiday scales using the WMTSA Wavelet Toolkit in 381 

MATLAB. 382 

 383 

3.4. Statistical analysis 384 

We tested for significant relationships between log-transformed annual CH4 emissions 385 

and a number of covariates using linear mixed-effects models as described in Treat et al. 386 
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(2018b). The predictor variables of CH4 flux we evaluated included: biome or ecosystem type 387 

(categorical variables), and continuous biophysical variables including mean seasonal WTD, 388 

mean annual soil and air temperature (TMST and TMAT, respectively), net ecosystem exchange 389 

(NEE), GPP, and ER. When considering continuous variables, we focused on freshwater 390 

wetlands for comparison with previous CH4 synthesis activities. Soil temperature was measured 391 

between 2 cm and 25 cm below the surface in different studies. The results below are presented 392 

for GPP and ER covariates that are partitioned using the nighttime flux partitioning algorithm 393 

(Wutzler et al. 2018; Reichstein et al. 2005), although similar findings were obtained using 394 

daytime partitioned estimates. Additionally, individual sites or site years were excluded when 395 

gaps in measurements exceeded two consecutive months, which explains the differences in the 396 

number of sites and site years in Section 4.3 below.  397 

Mixed-effects modeling was used because of the potential bias of having measurements 398 

over several years, with site included as a random effect in the analysis (Treat et al. 2018b). The 399 

significance of individual predictor variables was evaluated using a 𝜒2 test against a null model 400 

using only site as a random variable (Bates et al. 2015), with both models fit without reduced 401 

maximum likelihood. For multiple linear regression models, we used the model selection process 402 

outlined in Zuur et al. (2009). To incorporate annual cumulative uncertainty when assessing the 403 

significance of trends and differences in annual CH4 fluxes across biomes and ecosystem types, 404 

we used a Monte Carlo simulation that randomly draws 1,000 annual cumulative uncertainties 405 

for each estimate of annual CH4 flux. For each random draw the significance of the categorical 406 

variable was tested using a 𝜒2 test against the null model with only site as a random variable. We 407 

report the marginal r2 (𝑟𝑚
2) which describes the proportion of variance explained by the fixed 408 
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factors alone (Nakagawa and Schielzeth 2013). The mixed-effects modeling was implemented 409 

using the lmer command from the lme4 package (Bates et al. 2014) for R statistical software. 410 

 411 

4. Results and discussion 412 

4.1. Geographic and temporal coverage of eddy covariance CH4 flux measurements 413 

We identified 200 sites worldwide that are applying the EC method for CH4 (Figure 1; 414 

Table S1); wetlands (including natural, managed and restored wetlands) comprise the majority of 415 

sites (59%), with rice agriculture (10%) as the second most represented vegetation type. The 416 

predominance of wetland and rice paddy sites in the database is unsurprising because many 417 

studies are designed to target ecosystems expected to have relatively large CH4 emissions. 418 

However, there are also sites in ecosystems that are typically smaller sources or even sinks of 419 

CH4 such as upland forests (13%) and grasslands (8%). Additionally, six sites (~3%) are urban, 420 

with another five sites measuring CH4 fluxes from open water bodies. Although identified sites 421 

span all continents except Antarctica, the majority are concentrated in North America and 422 

Europe, with a growing number of sites in Asia (Figure 1; Table S1). 423 

Measurements of CH4 fluxes cover a broad range of climates and a large fraction of wetland 424 

habitats (Figure 2), with the tropics and tropical wetlands notably underrepresented. As discussed 425 

below (see Future research directions and needs), one important goal of FLUXNET and the 426 

regional networks is to increase site representativeness and extend measurements in under-427 

sampled regions. Increasing the number of tropical sites is particularly important for CH4 428 

because more than half of global CH4 emissions are thought to come from this region (Saunois et 429 

al. 2016a; Dean et al. 2018). Furthermore, compared to northern wetlands, their biogeochemistry 430 

remains relatively poorly understood (Mitsch et al. 2009; Pangala et al. 2017). We expect the 431 
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number of CH4 flux sites and their geographic and temporal coverage to continue to increase, as 432 

has occurred through time for CO2, water vapour, and energy flux measurements in FLUXNET 433 

(Pastorello et al. 2017; Chu et al. 2017).  434 

Long-term CH4 flux time series are key to understanding the causes of year-to-year 435 

variability and trends in fluxes (Chu et al. 2017; Euskirchen et al. 2017; Pugh et al. 2018). The 436 

longest continuous record of CH4 flux measurements, from a fen in Finland (Rinne et al. 2018), 437 

is now ~14 years and ongoing (Table S1). Three other sites have measurements exceeding 10 438 

years; however, the median length is 5 years, with most sites established from 2013 onward 439 

(Table S1). Longer time series are also important for both exploring the short- and long-term 440 

effects of extreme events on fluxes and tracking the response of disturbed or restored ecosystems 441 

over time (Pastorello et al. 2017). Furthermore, they can help address new and emerging science 442 

questions, such as quantifying CH4 feedbacks to climate with rising temperatures and associated 443 

changes in ecosystem composition, structure and function (Helbig et al. 2017a,b; Dean et al. 444 

2018), and the role of wetland emissions in atmospheric CH4 variability (McNorton et al. 2016; 445 

Poulter et al. 2017).  446 

 447 

4.2. CH4 fluxes and trends across biomes and ecosystem types 448 

Half-hourly and annual net CH4 fluxes for the 60 sites currently included in the database 449 

exhibited strong variability across sites (Figure 3 and Figure 4). Across the dataset, the mean 450 

half-hourly CH4 flux was greater than the median flux, indicating a positively skewed 451 

distribution with infrequent, large emissions (Figure 3a), similar to findings from chamber-based 452 

syntheses (Olefeldt et al. 2013; Turetsky et al. 2014). Mean and median CH4 fluxes were smaller 453 

at higher latitudes and larger at lower latitudes (Figure 3b), comparable again to trends in CH4 454 
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fluxes observed in predominantly chamber-based syntheses (Bartlett and Harriss 1993; Turetsky 455 

et al. 2014; Treat et al. 2018b). 456 

 The continuous nature of EC flux measurements is well suited for quantifying annual 457 

ecosystem-scale CH4 budgets, along with accumulated uncertainty (c.f. Section 4.5). Annual 458 

estimates of net CH4 flux for each of the 60 sites in the flux tower database ranged from -0.2 ± 459 

0.02 g C m-2 y-1 for an upland forest site to 114.9 ± 13.4 g C m-2 y-1 for an estuarine freshwater 460 

marsh (Rey-Sanchez et al. 2018), with fluxes exceeding 40 g C m-2 y-1 at multiple sites (Figure 461 

4b). These emissions are of a considerably broader range and have much higher annual values 462 

than in an earlier synthesis by Baldocchi (2014) which included published values from 13 sites 463 

(Figure 4a); median annual CH4 fluxes (± SE) in that study were 6.4 ± 1.9 g C m-2 y-1, compared 464 

with 10.0 ± 1.6 g C m-2 y-1 for our expanded database. Annual CH4 sums in our database were 465 

positively skewed, with skewness increasing with additional observations due largely to the 466 

inclusion of high CH4-emitting freshwater marsh sites (Figure 4).  467 

As suggested from Figure 3b, annual wetland CH4 emissions differed significantly among 468 

biomes, even when considering accumulated uncertainty (average Monte Carlo χ2 = 13.4 (12.1-469 

14.7, 95% confidence interval), df = 3, p < 0.05) (Table 1). Median CH4 emissions were 470 

significantly lower for tundra wetlands (2.9 ± 1.3 g C m-2 y-1) than temperate wetlands (27.4 ± 471 

3.4 g C m-2 y-1). Higher CH4 emissions were observed from subtropical/tropical wetlands (43.2 ± 472 

11.2 g C m-2 y-1), based on only three site years of data, however, emphasizing the need for 473 

additional flux tower measurements in the tropics.  474 

Whereas annual boreal/taiga wetland CH4 emissions were comparable to values reported in a 475 

recent synthesis of predominantly chamber-based CH4 flux measurements (Treat et al. 2018b), 476 

our tower-based measurements are ~50% lower and over six times higher for tundra and 477 
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temperate wetlands, respectively (Table 1). The inconsistencies highlighted in Table 1 not only 478 

reflect the differences in the number and location of sites between datasets, but also the 479 

discrepancies resulting from different measurement techniques. Several studies have noted 480 

considerable differences in CH4 emissions measured using EC and chamber techniques, with 481 

estimates from chambers often higher than those from the EC measurements (Schrier-Uijl et al.; 482 

Hendriks et al. 2010; Meijide et al. 2011; Krauss et al. 2016). This distinction highlights the need 483 

for additional studies investigating the systematic differences caused by the different spatial and 484 

temporal sampling footprints of these methods (Krauss et al. 2016; Morin et al. 2017; Windham-485 

Myers et al. 2018; Xu et al. 2017). Characterizing discrepancies between measurement 486 

techniques may also help constrain bottom-up estimates of CH4 emissions and reduce the 487 

disagreement of ~15 Tg C y-1 between bottom-up (139 Tg CH4 y
-1) and top-down (125 Tg CH4 488 

y-1) estimates of CH4 emissions from natural wetlands (Saunois et al. 2016a). 489 

Annual CH4 emissions also differed significantly across ecosystems (average Monte 490 

Carlo χ2 = 45.5 (39.3-50.1), df = 9, p < 0.001; Figure 5), with median fluxes highest for 491 

freshwater marshes (43.2 ± 4.2 g C m-2 y-1) and lowest for upland ecosystems (1.3 ± 0.7 g C m-2 492 

y-1). Treat et al. (2018b) also observed the highest annual emissions in marshes and reported a 493 

similar median value for temperate marshes (49.6 g C m-2 y-1). Wet tundra and bogs had 494 

significantly lower annual emissions than marshes (Figure 5), which in part reflects their 495 

presence in colder boreal and tundra systems, as well as differences in vegetation type, nutrient 496 

status and hydrological regime (Treat et al. 2018b). Low median CH4 emission was observed 497 

from salt marshes in our dataset (0.8 ± 2.9 g C m-2 y-1), because high sulfate concentrations 498 

inhibit methanogenesis (Poffenbarger et al. 2011; Holm et al. 2016). Even drained wetlands 499 

converted to agricultural land can be large sources of CH4 associated with seasonal flooding 500 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 17 

(Figure 5). Median annual CH4 flux from rice was 12.6 ± 1.6 g C m-2 y-1,  which is slightly lower 501 

than the IPCC default value of 15 g C m-2 y-1 (Sass 2003).  502 

 503 

4.3 Environmental controls on annual CH4 emissions across freshwater wetland sites 504 

Using an integrated CH4 flux database, we can begin to investigate the factors associated 505 

with varying CH4 emissions across sites. We explored the effects of WTD, TMST or TMAT, NEE, 506 

GPP and ER on annual CH4 flux. At global scales, TMAT and TMST were the most important 507 

predictors of annual CH4 flux across wetland sites (p < 0.001 for each), with the fixed factor of 508 

TMAT or TMST explaining ~65% of the variation in log transformed annual CH4 emission (Figure 509 

6a,b). Previous synthesis studies also observed a significant, but weaker, relationship between 510 

soil temperature and average CH4 emissions across sites, explaining < 15% of the variation in 511 

CH4 flux in those studies (Olefeldt et al. 2013; Yvon-Durocher et al. 2014). However, our 512 

findings are consistent with numerous site-level studies that report a strong correlation between 513 

wetland CH4 emissions and temperature, with nearly 95% of all EC studies reporting a 514 

significant relationship between temperature and CH4 flux (Morin 2018). Across sites, Peltola et 515 

al. (2019) found that the most important predictor in a random forest model used to upscale EC 516 

CH4 emissions across northern latitudes was temperature, again highlighting the importance of 517 

temperature in regulating CH4 emissions within and across sites.  518 

Water table depth has also commonly been identified as a key control on CH4 emissions 519 

(Turetsky et al. 2014; Bubier et al. 2005), because higher water levels often inhibit oxygen 520 

availability and lower the soil reduction potential, making methanogenesis more 521 

thermodynamically favorable. Although predominantly chamber-based wetland CH4 syntheses 522 

have found a positive relationship between WTD and average or annual CH4 emissions across 523 
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sites (Olefeldt et al. 2013; Turetsky et al. 2014; Treat et al. 2018b), we observed no significant 524 

relationship between mean WTD and annual CH4 flux across all sites (χ2 = 0.2, df = 1, p = 0.66, 525 

Nsites = 20, Nsite yrs = 46), even when considering WTD2 or WTD3 (Olefeldt et al. 2013). However, 526 

if we consider only sites where WTD was below the soil surface for part or all of the year 527 

(Figure 6c solid circles), we did observe a significant relationship with WTD (p < 0.05). 528 

Conversely, CH4 emissions for permanently inundated sites showed no significant relationship 529 

with WTD (Figure 6c open circles) (χ2 = 0.5, df = 1, p = 0.50, Nsites = 13, Nsite yrs = 19). This result 530 

supports the finding that wetlands that are permanently inundated or exhibit little variation in 531 

WTD tend to show weak to no correlation between WTD and CH4 emissions (Chu et al. 2014; 532 

Jackowicz-Korczyński et al. 2010; Rinne et al. 2007; Christensen et al. 2003); in contrast, 533 

wetlands with lower and more variable water levels often have a significant relationship between 534 

WTD and CH4 emissions (Bubier et al. 2005; Treat et al. 2007). However, only half of the sites 535 

currently included in the database report water table position, and given the importance of WTD 536 

in regulating CH4 exchange, it is critical to ensure that WTD is measured across all sites.  537 

Gross primary production and ER were both significant positive predictors of annual CH4 538 

flux (χ2 = 21.3, df = 1, p < 0.001, 𝑟𝑚
2  = 0.29 and χ2 = 17.1, df = 1, p < 0.001, 𝑟𝑚

2  = 0.25, 539 

respectively, Nsites = 26, Nsite yrs = 64), although there was no significant relationship between 540 

NEE and annual CH4 flux (χ2 = 0.9, df = 1, p = 0.33, Nsites = 2, Nsite yrs = 64). However, when 541 

considering GPP or ER in a multiple linear regression model with TMST, including interaction 542 

terms (Chu et al. 2014), neither GPP nor ER were significant, suggesting that the observed 543 

relationship with GPP or ER was due to co-variation with soil temperature and, possibly, other 544 

environmental drivers. 545 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 19 

The strong temperature dependence of ecosystem-scale CH4 emissions we observed across 546 

wetland sites is in line with the high temperature sensitivity of CH4 emissions found across 547 

microbial to ecosystem scales (Yvon-Durocher et al. 2014). CH4 emissions also have a higher 548 

temperature dependence than ER, such that the ratio of CH4 to CO2 emissions was found to 549 

increase markedly with seasonal increases in temperature (Yvon-Durocher et al. 2014). 550 

Similarly, we observed a significant increase in the ratio of annual CH4 to ER along geographic 551 

temperature gradients, ranging from 0.4 to 7.9%, with a median value of 2.8% across the dataset 552 

(Figure 6d). This relationship suggests that warming may result in a greater relative contribution 553 

of CH4 to total carbon emissions from wetland ecosystems. With a growing FLUXNET CH4 554 

database, it will be possible to further explore the dominant controls on CH4 fluxes within and 555 

across ecosystem types, as well as further investigate the temperature dependence of ecosystem-556 

scale CH4 exchange (Schipper et al. 2014; Arcus et al. 2016; Yvon-Durocher et al. 2014). 557 

 558 

4.4 Time scales of variability  559 

 Methane fluxes exhibited strong variability over a range of time scales, with the variation 560 

across time scales differing between wetland types (Figure 7). As observed previously 561 

(Sturtevant et al. 2016), the seasonal time scale dominated CH4 flux variability across wetland 562 

types, but was most pronounced in rice paddies, which have a distinct growing season, and least 563 

pronounced in bogs (Figure 7). Across ecosystem types, variation was lowest at the multiday 564 

scale, although multiday CH4 flux variation was slightly greater in rice paddies and wet tundra, 565 

potentially indicating greater water table fluctuations (Sturtevant et al. 2016), particularly at rice 566 

paddy sites which are subject to seasonal drainage (Knox et al. 2016; Runkle et al. 2019). 567 

Whereas some studies report a strong diel pattern in CH4 emissions from wetlands and rice 568 
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paddies (Knox et al. 2016; Chu et al. 2014; Morin et al. 2014b; Kim et al. 1999), others have 569 

found little or no diel variation (Rinne et al. 2018; Jackowicz-Korczyński et al. 2010; Yagi and 570 

Minami 1990; Nadeau et al. 2013). Across wetland types, diel variation was greatest in 571 

freshwater marshes (Figure 7), which is consistent with the observations that the vegetation at 572 

sites with a strong diel cycle of CH4 emissions is typically dominated by species with convective 573 

gas flow such as Phragmites australis or Typha spp. (Brix et al. 1992; Chanton et al. 1993). 574 

Bogs, fens, and wet tundra showed the greatest variation at the hourly scale (Figure 7). This is 575 

likely in part due to typically lower fluxes at these sites as hourly perturbations of turbulent time 576 

series are largely dominated by noise (Hollinger and Richardson 2005), as well as the fact that 577 

near-surface turbulence and short-term pressure fluctuations can strongly influence CH4 578 

exchange in these peat dominated ecosystems (Nadeau et al. 2013; Sachs et al. 2008).  579 

 580 

4.5 Gap-filling performance and uncertainty quantification 581 

The performance of the neural networks varied strongly across sites (Figure 8). Model r2, 582 

calculated from the median ANN prediction and observed fluxes at each site, ranged from ~0 to 583 

0.92 across sites, with a median value of 0.41. Across sites, ANN performance was strongly 584 

linked to the percentage of total variance at diel and seasonal scales (r2 = 0.69, p < 0.001), 585 

indicating that across the wide range of observed flux magnitudes, sites with a more distinct 586 

seasonal and diel pattern tended to be more predictable (Figure 8). There was also a significant 587 

negative relationship between model r2 and the percentage of total variance at the hourly scale 588 

across sites (r2 = 0.72, p < 0.001), because, as noted previously, hourly perturbations are largely 589 

dominated by noise (Hollinger and Richardson 2005).  590 
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Knowledge of the random errors in half-hourly flux measurements is not only important for 591 

evaluating the uncertainty in cumulative fluxes (e.g. daily, monthly, or annual) and comparing 592 

fluxes across tower sites, but it also needed to incorporate information about random flux errors 593 

in model-data synthesis activities (Richardson et al. 2006). As noted above, random flux error 594 

more closely followed a Laplace rather than Gaussian distribution. Within sites, 𝜎(𝛿) was not 595 

constant, but rather nearly always scaled with the magnitude of CH4 fluxes (Figure 9a), as 596 

predicted from theory (Richardson et al. 2006). As observed for other fluxes (Richardson et al. 597 

2006), both the slope and intercept of this relationship varied among sites, and depending on the 598 

sign of the flux (Figure 9a). Across sites, random flux error therefore scaled linearly with the 599 

magnitude of mean CH4 flux (r2 = 0.86, p < 0.001), even when excluding the two highest CH4-600 

emitting sites (r2 = 0.46, p < 0.001) (Figure 9b). Whereas closed-path CH4 analyzers have been 601 

found to have lower random errors and instrument noise compared with open-path sensors 602 

(Peltola et al. 2014), there was no clear evidence of a systematic effect of the influence of closed- 603 

vs. open-path sensors on random errors across sites (Figure 9).  604 

The total annual cumulative uncertainty in CH4 fluxes, including both random and gap-605 

filling errors, ranged from ± 0.01 to ± 13.4 g C m-2 y-1, with a median value of ± 1.0 g C m-2 y-1 606 

at 95% confidence (Figure 10a). Relative error decreased exponentially with flux magnitude, 607 

ranging from 1.5 % to 60% in most cases (Figure 10b), although a few sites where annual CH4 608 

sums were near zero had relative errors exceeding 200% (data not shown). The highest relative 609 

errors therefore tended to be associated with low CH4-emitting sites, such as upland sites and 610 

bogs, and the lowest relative errors were generally associated with high CH4-emitting sites such 611 

as freshwater marshes (Figure 10b). 612 

 613 
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5 Future research directions and needs  614 

Better quantification of CH4 sources and sinks will improve estimates of regional and global 615 

CH4 budgets and reduce uncertainties in the CH4 cycle. In this general context, high-frequency 616 

observations of ecosystem-scale CH4 emissions should help constrain bottom-up CH4 budgets, 617 

improve our understanding of the environmental factors controlling CH4 fluxes, and inform and 618 

validate land-surface models used to estimate global CH4 fluxes. Unlike well-established efforts 619 

synthesizing CO2, water vapour, and energy observations, no such global data synthesis or 620 

initiative previously existed for CH4. The database presented here addresses this gap with the EC 621 

community by organizing the collection and aggregation of a global EC CH4 database through 622 

FLUXNET.  623 

EC flux data quality assessment: Much of what has been learned within FLUXNET for 624 

CO2, water vapour, and energy measurements is informing, and should continue to inform, new 625 

efforts for CH4. Reliable EC measurements of CO2 and water vapour fluxes have been conducted 626 

at hundreds of sites across broad regional networks (Papale et al. 2012), and substantial efforts 627 

have focused on developing best practices and harmonizing approaches across sites to ensure 628 

consistent, high-quality flux measurements (Aubinet et al. 1999; Reichstein et al. 2005; Moffat et 629 

al. 2007). CH4 fluxes are often characterized by small fluxes with episodic spikes, and additional 630 

research is needed to ensure reliable measurements (Peltola et al. 2014, 2013), and refine and 631 

standardize methods and routines for data processing and quality checking (Nemitz et al. 2018; 632 

Schaller et al. 2018). Recent efforts provided guidance on instrument selection, setup and 633 

maintenance, and data processing for EC CH4 flux measurements (Nemitz et al. 2018). However, 634 

with respect to instrument setup and data processing, more research is needed in best practices 635 

for storage flux quantification, despiking, and 𝑢∗ filtering (Nemitz et al. 2018).           636 
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 Gap-filling: Whereas neural networks have shown strong performance for gap-filling 637 

CH4 fluxes (Dengel et al. 2013; Knox et al. 2016), our results reveal some of the challenges of 638 

gap-filling CH4 fluxes at sites with low fluxes and/or a lack of seasonal and diel variation (Figure 639 

8). More research is therefore needed for best practices for gap-filling to estimate annual CH4 640 

budgets (Nemitz et al. 2018). For example, there has yet to be a comprehensive analysis 641 

comparing a wide range of gap-filling approaches for CH4 fluxes similar to the study by Moffat 642 

et al. (2007) for CO2 exchange. While ANNs are one gap-filling method (Dengel et al. 2013; 643 

Shoemaker et al. 2014; Morin et al. 2014a), numerous other gap-filling approaches exist, 644 

including non-linear regression techniques, mean diurnal variation, look-up tables, marginal 645 

distribution sampling, and the multiple imputation method (Moffat et al. 2007; Vitale et al. 646 

2018). Future efforts should focus on systematically investigating these approaches across a 647 

range of sites to provide best practices for gap-filling CH4 exchange.   648 

Ancillary measurements: Along with research that addresses the challenges of measuring 649 

and processing EC CH4 fluxes, key ancillary variables to help gap-fill, predict and scale CH4 650 

fluxes should also be measured more comprehensively across sites. For instance, although WTD 651 

is known to strongly influence CH4 emissions (Turetsky et al. 2014; Treat et al. 2018b), as noted 652 

above, only half of the sites currently included in the database report water table position. 653 

Generally, EC CH4 measurements are implemented at sites also collecting CO2 fluxes and 654 

common meteorological measurements used in the flux community; however, guidelines are 655 

only beginning to emerge for which additional supporting variables should be collected at sites 656 

measuring CH4 fluxes (Nemitz et al. 2018).  657 

Measurements of variables beyond those relevant for CO2 are needed to better understand 658 

and predict the complex and interacting processes of CH4 production, consumption and transport, 659 
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the latter of which includes diffusion, ebullition, and plant-mediated transport. Guidance on the 660 

description of some basic variables affecting these processes is available through new protocols 661 

in the flux community detailing soil meteorological measurements, ancillary vegetation 662 

measurements, and site description, management and disturbance (Saunders et al. 2018; Op De 663 

Beeck et al. 2018; Gielen et al. 2018). These protocols provide guidance on variables such as soil 664 

temperature and soil moisture profiles, water table depth and snow depth, soil pH and soil type, 665 

bulk density, and livestock density. However, although WTD is an easily measured proxy for 666 

anaerobic conditions, direct and continuous measurement of redox potential and oxygen content 667 

in particular would be valuable additional measurements (Nemitz et al. 2018). Similarly, 668 

measuring variables such as conductivity, below-ground CH4 concentrations, dissolved organic 669 

carbon concentrations, and the presence of alternative electron acceptors such as nitrate, iron, 670 

sulfate, and humic substances in the water and soil column would provide useful information for 671 

the interpretation of CH4 emissions. Stable isotope analyses of CH4 are also valuable as they 672 

provide important information on mechanisms of CH4 production, transport, and oxidation 673 

(Chanton et al. 1997; Marushchak et al. 2016). Detailed information on soil microbial 674 

communities driving CH4 production and consumption could also be helpful (Kwon et al. 2017). 675 

Vegetation biomass, species composition and phenology are also important variables to consider, 676 

because plants are a primary source of carbon substrates for methanogenic metabolism, and they 677 

mediate CH4 transport through aerenchymous tissue (Kwon et al. 2017; Joabsson et al. 1999; 678 

Carmichael et al. 2014). New guidance is now available for such measurements at flux tower 679 

locations (Gielen et al. 2018; Hufkens et al. 2018). Continuing to develop a consensus on best 680 

practices for ancillary measurements is important for interpreting, gap-filling, and upscaling CH4 681 

flux measurements.  682 
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Characterizing spatial variability: CH4 fluxes exhibit fine-scale spatial variability that can 683 

span orders of magnitude within a landscape (Peltola et al. 2015; Marushchak et al. 2016; Desai 684 

et al. 2015; Treat et al. 2018a; Iwata et al. 2018), attributable to heterogeneous soil properties and 685 

moisture conditions, vegetation composition, and land-use (Davidson et al. 2016; Parmentier et 686 

al. 2011; Chamberlain et al. 2018). Furthermore, there is evidence that traditionally unmeasured 687 

surfaces (i.e., tree stems) are important sources of CH4 to the atmosphere and could explain 688 

spatial heterogeneity within ecosystems (Barba et al. 2019). Accurately representing spatial 689 

heterogeneity and the relative fraction of uplands and wetlands is imperative for interpreting and 690 

predicting CH4 emissions within many ecosystems, and for upscaling flux measurements 691 

regionally and globally as wetlands are hot spots for carbon cycling (Treat et al. 2018a; Tuovinen 692 

et al. 2019; Rößger et al. 2019). Flux footprint analysis characterizing the fractional coverage of 693 

the dominant surface types, particularly the fraction of open water and aerenchymatous plants, is 694 

important for interpreting EC CH4 flux measurements and quantifying annual CH4 budgets at 695 

spatially heterogeneous sites (Franz et al. 2016; Helbig et al. 2017a; Jammet et al. 2017) (Figure 696 

11). This integration can be achieved by combining CH4 measurements, flux footprint analysis, 697 

and near-surface (e.g., phenocams) and/or high-resolution drone or satellite remote sensing data, 698 

and should be common practice for all sites measuring CH4 fluxes.  699 

Spatial variability in ecosystem-scale CH4 flux can further be examined by combining 700 

chamber and EC measurements, including manual and auto-chambers, multi-tower approaches, 701 

and airborne flux measurements (Peltola et al. 2015; Zona et al. 2016; Helbig et al. 2017a; Wolfe 702 

et al. 2018; Kohnert et al. 2018; Lai et al. 2014; McNicol et al. 2017). Integrating additional 703 

observations such as information on microbial communities, isotopic measurements, and 704 

laboratory incubation observations along with chamber and EC CH4 flux measurements can 705 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 26 

further help explain CH4 dynamics across scales (Angle et al. 2017; Chamberlain et al. 2018; 706 

Yang et al. 2017). However, as discussed above, additional research is needed to reconcile 707 

differences in fluxes measured across scales (Gioli et al. 2004; Holm et al. 2016; Meijide et al. 708 

2011). Explicitly considering source area composition and spatial heterogeneity will provide 709 

enhanced processed-based understanding of CH4 fluxes and improve upscaled regional and 710 

global estimates of CH4 emissions, which can help reconcile the discrepancy between bottom-up 711 

and top-down budgets (Saunois et al. 2016a; Morin et al. 2017; Davidson et al. 2016).  712 

More sites in key regions: We expect the number of flux towers measuring CH4 fluxes will 713 

continue to grow (Chu et al. 2017; Pastorello et al. 2017; Morin 2018), but our compilation of 714 

EC CH4 flux sites highlights key underrepresented regions where future flux towers are needed 715 

or where more efforts are needed for existing but non-reporting towers to contribute to 716 

FLUXNET (Figure 1). As noted previously, notable gaps include both tropical and subtropical 717 

regions, as well as eastern Canada, and the boreal forests of Russia. Figure 1 also provides 718 

guidance on where new towers could be strategically located to help reconcile differences 719 

between top-down and bottom-up estimates of wetland CH4 emissions. In particular, substantial 720 

disagreements between top-down and bottom-up estimates are found over the Congo basin, the 721 

Inner Niger Delta, the Orinoco River Delta, the Maranon-Ucayali palm swamps, the Pantanal, 722 

the Ganges-Brahmaputra Delta, Sumatra, the western Siberian lowlands, and the Hudson Bay 723 

Lowlands (Figure 1). However, the placement of new towers is a strong function of the scientific 724 

question being asked and research funding priorities, and therefore the optimal tower network 725 

could be different for different applications (Mahecha et al. 2017; Papale et al. 2015; Villarreal et 726 

al. 2018).  727 
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Better understanding and representing processes: One of the biggest challenges for 728 

understanding ecosystem functioning is resolving overlapping, asynchronous (i.e., lagged) and 729 

nonlinear processes (Sturtevant et al. 2016). This challenge is particularly relevant for 730 

interpreting continuous, ecosystem-scale measurements of CH4 exchange where scale-specific, 731 

nonlinear, and lagged processes may dominate (Franz et al., 2016; Sturtevant et al., 2016; Knox 732 

et al., 2018). For instance, CH4 emission responses to water table fluctuation can be nonlinear 733 

and lagged on the order of days to months (Goodrich et al., 2015; Sturtevant et al., 2016). CH4 734 

flux has also been observed to lag GPP by hours to days (Rinne et al. 2018; Hatala et al. 2012). 735 

Adequately representing these dynamics in process models is important, and further research is 736 

needed to better characterize the complex and nonlinear processes influencing ecosystem-scale 737 

CH4 exchange across time scales.  738 

The complex nature of CH4 flux dynamics requires moving beyond traditional linear 739 

correlation and regression, and using methods such as wavelets, information theory, and Granger 740 

causality that are more tailored to address scale, nonlinearity, and lags directly (Stoy et al. 2005; 741 

Vargas et al. 2011; Schäfer et al. 2014; Knox et al. 2016; Detto et al. 2012). Through a USGS 742 

Powell Center working group activity, we will continue to investigate controls on CH4 emissions 743 

within and across wetland types. To further explore interactions between ecosystem-scale CH4 744 

exchange and drivers across time scales, wavelet analysis will be combined with information 745 

theory to explore biosphere-atmosphere interactions regardless of form or asynchrony 746 

(Sturtevant et al. 2016; Knox et al. 2018; Chamberlain et al. 2018). By coupling wavelet 747 

decomposition with information theory, future research will investigate key controls on CH4 748 

fluxes across time scales, as well as the importance of nonlinearities and lags in predicting CH4 749 

flux dynamics. Future research will also use the global CH4 database to parameterize and 750 
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benchmark the performance of land-surface models of global CH4 emissions, providing a unique 751 

opportunity for informing and validating biogeochemical models.  752 

Coordinating, organizing and improving the integration of CH4 fluxes in regional networks 753 

and ultimately FLUXNET will bring us one step closer to achieving the goal of providing flux 754 

information “everywhere and all of the time” (Baldocchi 2008). In the long-term, we hope to 755 

integrate the global eddy covariance CH4 database with other methods for measuring CH4 fluxes, 756 

such as chamber, aircraft, and satellite measurements. By integrating CH4 flux measurements, 757 

remote sensing, and modeling, we aim to better characterize CH4 emissions from terrestrial 758 

ecosystems and ultimately reduce uncertainties in the global CH4 cycle.  759 
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Appendix A: Sites currently included in the database 780 

Table A1 here 781 
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Tables 1234 

Table 1. Number of site years and characteristics of CH4 fluxes (g C m-2 y-1) currently included 1235 

in the database. Fluxes are compared with measurements reported in a recent synthesis of 1236 

predominantly chamber-based CH4 flux measurements. Biome type was extracted from Olson et 1237 

al. (2001) using site coordinates and includes tundra, boreal/taiga, temperate, and 1238 

tropical/subtropical. Wetland CH4 emissions differed significantly across biomes, with letters 1239 

indicating significant differences (α = 0.05) among biomes.  1240 

Biome 

#Site 

years 

Median annual  

CH4 flux 

25th 

Percentile 

75th 

Percentile References 
      

Tundra 10 

10 

31 

26 

2.9 

2.9a 

5.6 

6.3 

1.8 

1.8 

1.0 

3.0 

4.2 

4.2 

11.4 

16.4 

This study - all sites 

This study - wetlands 

Treat et al. (2018)† - all sites 

Treat et al. (2018) - wetlands 

Boreal & 

Taiga 

35 

30 

68 

67 

8.3 

9.5ab 

13.1 

13.2 

4.1 

6.0 

3.5 

3.6 

10.9 

11.3 

23.7 

23.7 

This study - all sites 

This study - wetlands 

Treat et al. (2018) - all sites 

Treat et al. (2018) - wetlands 

Temperate 72 

47 

27 

25 

16.4 

27.4b 

4.3 

5.3 

7.9 

10.0 

0.3 

0.8 

35.9 

47.3 

41.7 

42.2 

This study - all sites 

This study - wetlands 

Treat et al. (2018) - all sites 

Treat et al. (2018) - wetlands 

Tropical & 

Subtropical 

3 

3 

-- 

-- 

43.2 

43.2ab 

-- 

-- 

20.0 

20.0 

-- 

-- 

46.8 

46.8 

-- 

-- 

This study - all sites 

This study - wetlands 

Treat et al. (2018) - all sites 

Treat et al. (2018) - wetlands 
† Note that similar to our tower only dataset, values from Treat et al. (2018) represent measured annual fluxes 1241 
derived from a smaller dataset where measurements were made in the growing season and non-growing season.  1242 
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Appendix A: Sites currently included in the database 1243 

Table A1. Characteristics of sites currently included in the database. Ecosystem type is based on the classification of Olefeldt et al. 1244 

(2013) and Treat et al. (2018). Biome was based on the classification of Olson et al. (2001) and extracted using site coordinates. 1245 

Vegetation type was based on the International Geosphere-Biosphere Programme (IGBP) definition. Salinity regime includes 1246 

freshwater (FW) or saltwater (SW) wetlands. Disturbance is based on the classification of Turetsky et al. (2014). Data from all sites 1247 

are publicly available, primarily through Ameriflux and the European Database Cluster, and in a few cases, through other 1248 

databases/repositories. Site DOIs are specified where applicable.  1249 

Site ID Site Name Country Lat Long Biome IGBP 
Ecosystem 

Type 
Salinity 

Wetland 

Disturbance 
Site PI 

data 

DOI/Location 

US-ICs 
Wet sedge 

tundra 
USA 68.606 -149.311 Tundra  WET Wet tundra FW Undisturbed 

Eugenie 

Euskirchen 

doi: 

10.17190/AM 

F/1246130 

SE-St1 

Stordalen 

grassland 

(Mire) 

Sweden 68.350 19.050 Tundra  WET Fen FW Undisturbed 
Thomas 

Friborg 

European Fluxes 

Database Cluster 

SE-Sto 
Stordalen 

Palsa Bog 
Sweden 68.356 19.050 Tundra  WET Bog FW Undisturbed 

Thomas 

Friborg 

European Fluxes 

Database Cluster 

RU-Vrk 
Seida/Vork

uta 
Russia 67.055 62.940 Tundra  WET Wet tundra FW Undisturbed 

Thomas 

Friborg 

European Fluxes 

Database Cluster 

RU-Ch2 
Chersky 

reference 
Russia 68.617 161.351 Tundra  WET Wet tundra FW Undisturbed 

Matthias 

Goeckede 

European Fluxes 

Database Cluster 

RU-Che Chersky Russia 68.613 161.341 Tundra  WET Wet tundra FW Drying 
Matthias 

Goeckede 

European Fluxes 

Database Cluster 

RU-

SAM 
Samoylov Russia 72.374 126.496 Tundra  WET Wet tundra FW Undisturbed 

Torsten 

Sachs 

European Fluxes 

Database Cluster 
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US-

NGB 

NGEE 

Barrow 
USA 71.280 -156.609 Tundra  WET Wet tundra FW Undisturbed 

Margaret 

Torn 

doi: 

10.17190/AM 

F/1436326 

US-Beo Barrow USA 71.281 -156.612 Tundra  WET Wet tundra FW Undisturbed 
Donatella 

Zona 
Ameriflux 

US-Bes Barrow USA 71.281 -156.596 Tundra  WET Wet tundra FW Undisturbed 
Donatella 

Zona 
Ameriflux 

US-Atq Atqasuk USA 70.470 -157.409 Tundra  WET Wet tundra FW Undisturbed 
Donatella 

Zona 

doi:10.17190/A

MF/1246029 

US-Ivo Ivotuk USA 68.486 -155.750 Tundra  WET Wet tundra FW Undisturbed 
Donatella 

Zona 

doi:10.17190/A

MF/1246067 

-- 

Black 

spruce 

forest 

USA 64.700 -148.320 

Boreal 

Forests/Ta

iga  

ENF Upland -- -- 
Eugenie 

Euskirchen 

http://www.lter.u

af.edu/data/data-

detail/id/708 

-- Rich Fen USA 64.704 -148.313 

Boreal 

Forests/Ta

iga  

WET Fen FW Undisturbed 
Eugenie 

Euskirchen 

http://www.lter.u

af.edu/data/data-

detail/id/708 

-- 

Thermokar

st collapse 

scar bog 

USA 64.700 -148.320 

Boreal 

Forests/Ta

iga  

WET Bog FW Undisturbed 
Eugenie 

Euskirchen 

http://www.lter.u

af.edu/data/data-

detail/id/708 

FI-Lom 
Lompoloja

nkka 
Finland 67.997 24.209 

Boreal 

Forests/Ta

iga  

WET Fen FW Undisturbed 
Annalea 

Lohila 

European Fluxes 

Database Cluster 

SE-Deg Degero Sweden 64.182 19.557 

Boreal 

Forests/Ta

iga  

WET Fen FW Undisturbed 

Matthias 

Peichl, 

Mats 

Nilsson 

European Fluxes 

Database Cluster 

CA-

SCC 

Scotty 

Creek - 

Peat 

plateau/coll

apse scar 

Canada 61.308 -121.299 

Boreal 

Forests/Ta

iga  

ENF 
Peat 

plateau 
FW -- 

Oliver 

Sonnentag 

doi:10.17190/A

MF/1480303 

CA-

SCB 

Scotty 

Creek Bog 
Canada 61.309 -121.299 

Boreal 

Forests/Ta

iga 

WET Bog FW Undisturbed 
Oliver 

Sonnentag 
Ameriflux 

US-

NGC 

NGEE 

Arctic 

Council 

USA 64.861 -163.701 

Boreal 

Forests/Ta

iga 

WET Wet tundra FW Undisturbed 
Margaret 

Torn 
Ameriflux 
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US-Uaf 

University 

of Alaska, 

Fairbanks 

USA 64.866 -147.856 

Boreal 

Forests/Ta

iga 

WET Bog FW Undisturbed 
Masahito 

Ueyama 

doi:10.17190/A

MF/1480322 

FI-Sii 
Siikaneva I 

(FI-Sii) 
Finland 61.833 24.193 

Boreal 

Forests/Ta

iga  

WET Fen FW Undisturbed 

Timo 

Vesala & 

Ivan 

Mammarell

a 

European Fluxes 

Database Cluster 

FI-Si2 
Siikaneva 

II 
Finland 61.837 24.170 

Boreal 

Forests/Ta

iga  

WET Bog FW Undisturbed 

Timo 

Vesala & 

Ivan 

Mammarell

a 

European Fluxes 

Database Cluster 

US-

Myb 

Mayberry 

Wetland 
USA 38.050 -121.765 Temperate  WET Marsh FW Wetting 

Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1246139 

US-Sne 

Sherman 

Island 

Restored 

Wetland 

USA 38.037 -121.755 Temperate  WET Marsh FW Wetting 
Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1418684 

US-

Tw1 

Twitchell 

West Pond 

Wetland 

USA 38.107 -121.647 Temperate  WET Marsh FW Wetting 
Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1246147 

US-

Tw4 

Twitchell 

East End 

Wetland 

USA 38.103 -121.641 Temperate  WET Marsh FW Wetting 
Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1246148 

US-Twt 
Twitchell 

Rice 
USA 38.109 -121.653 Temperate  

CRO 

- Rice 
Rice FW -- 

Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1246151 

US-Bi2 
Bouldin 

Island corn 
USA 38.109 -121.535 Temperate  

CRO 

- 

Other 

Drained/Ag

ricultural 

wetland 

FW Drying 
Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1419513 

US-Bi1 

Bouldin 

Island 

Alfalfa 

USA 38.102 -121.504 Temperate  

CRO 

- 

Other 

Drained/Ag

ricultural 

wetland 

FW Drying 
Dennis 

Baldocchi 

doi:10.17190/A

MF/1480317 
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US-Snd 
Sherman 

Island 
USA 38.037 -121.754 Temperate  

CRO 

- 

Other 

Drained/Ag

ricultural 

wetland 

FW Drying 
Dennis 

Baldocchi 

doi: 

10.17190/AM 

F/1246094 

US-

OWC 

Old 

Woman 

Creek 

USA 41.380 -82.512 Temperate  WET Marsh FW Undisturbed Gil Bohrer 

doi: 

10.17190/AM 

F/1246094 

US-

ORv 

Olentangy 

River 

Wetland 

Research 

Park 

USA 40.020 -83.018 Temperate WET Marsh FW Undisturbed Gil Bohrer 
doi:10.17190/A

MF/1246135 

NZ-Kop Kopuatai 
New 

Zealand 

-

37.388 
175.554 Temperate  WET Bog FW Undisturbed 

Dave 

Campbell 

https://researchc

ommons.waikato

.ac.nz/handle/10

289/11393 

IT-Cas Castellaro Italy 45.070 8.718 Temperate  
CRO 

- Rice 
Rice FW -- 

Alessandro 

Cescatti 

European Fluxes 

Database Cluster 

US-

WPT 

Winous 

Point North 

Marsh 

USA 41.465 -82.996 Temperate  WET Marsh FW Wetting 

Jiquan 

Chen & 

Housen 

Chu 

doi: 

10.17190/AM 

F/1246155 

US-

CRT 

Curtice 

Walter-

Berger 

cropland 

USA 41.628 -83.347 Temperate  

CRO 

- 

Other 

Upland -- -- 

Jiquan 

Chen & 

Housen 

Chu 

doi: 

10.17190/AM 

F/1246156 

US-Los Lost Creek USA 46.083 -89.979 Temperate  WET Fen FW Undisturbed 
Ankur 

Desai 

doi: 

10.17190/AM 

F/1246071 

JP-Mse 

Mase 

paddy flux 

site (MSE) 

Japan 36.054 140.027 Temperate 
CRO 

- Rice 
Rice FW -- 

Akira 

Miyata 

European Fluxes 

Database Cluster 

JP-Swl 
Suwa Lake 

Site 
japan 36.047 138.108 Temperate WAT Waterbody FW Undisturbed 

Hiroki 

Iwata 

European Fluxes 

Database Cluster 

IT-BCi 
Borgo 

Cioffi 
Italy 40.524 14.957 Temperate 

CRO 

- 

Other 

Upland -- -- 
Vincenzo 

Magliulo 

European Fluxes 

Database Cluster 

-- Hongyuan China 32.800 102.550 Temperate  GRA Upland -- -- Shuli Niu 
European Fluxes 

Database Cluster 
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US-

NC4 

NC 

Alligator 

River 

USA 35.788 -75.904 Temperate  WET Swamp FW Undisturbed 
Asko 

Noormets 

doi:10.17190/A

MF/1480314 

DE-SfN 
Schechenfil

z Nord 
Germany 47.806 11.328 Temperate  WET Bog FW Undisturbed 

Hans Peter 

Schmid 

European Fluxes 

Database Cluster 

US-Ho1 

Howland 

Forest 

(main 

tower) 

USA 45.204 -68.740 Temperate ENF Upland -- -- 
Andrew 

Richardson 

doi:10.17190/A

MF/1246061 

US-

HRA 

Humnoke 

Farm Rice 

Field 

AWD, 

United 

States 

USA 34.585 -91.752 Temperate 
CRO 

- Rice 
Rice FW -- 

Benjamin 

Runkle 
Ameriflux 

US-

HRC 

Humnoke 

Farm Rice 

Field 

convention

al, United 

States 

USA 34.589 -91.752 Temperate 
CRO 

- Rice 
Rice FW -- 

Benjamin 

Runkle 
Ameriflux 

KR-

CRK 

Cheorwon 

Rice paddy 

South 

Korea 
38.201 127.251 Temperate 

CRO 

- Rice 
Rice FW -- 

Youngryel 

Ryu & 

Minseok 

Kang 

European Fluxes 

Database Cluster 

DE-Zrk Zarnekow Germany 53.876 12.889 Temperate WET Fen FW Wetting 
Torsten 

Sachs 

European Fluxes 

Database Cluster 

DE-

Dgw 
Dagowsee Germany 53.151 13.054 Temperate WAT Waterbody FW Undisturbed 

Torsten 

Sachs 

European Fluxes 

Database Cluster 

US-

MRM 

Marsh 

Resource 

Meadowlan

ds 

Mitigation 

Bank 

USA 40.816 -74.044 Temperate WET Salt Marsh SW Wetting 
Karina 

Schäfer 
Ameriflux 

-- 
Bog Lake 

peatland 
USA 47.530 -93.470 Temperate WET Fen FW Undisturbed 

Shahi 

Verma 
Ameriflux 
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-- 

MacArthur 

Agro-

Ecology 

Research 

Center 

USA 27.163 -81.187 Temperate 

CRO 

- 

Other 

Drained/Ag

ricultural 

wetland 

FW Drying 

Jed Sparks 

& Samuel 

Chamberlai

n 

Ameriflux 

JP-BBY Bibai bog Japan 43.323 141.811 Temperate WET Bog FW Undisturbed 
Masahito 

Ueyama 

European Fluxes 

Database Cluster 

US-StJ 
St Jones 

Reserve 
USA 39.088 -75.437 Temperate WET Salt Marsh SW Undisturbed 

Rodrigo 

Vargas 

doi:10.17190/A

MF/1480316 

US-Srr 

Suisun 

marsh - 

Rush 

Ranch 

USA 38.201 -122.026 Temperate WET Salt Marsh SW Undisturbed 

Lisamarie 

Windham-

Myers 

doi:10.17190/A

MF/1418685 

AT-Neu Neustift Austria 47.117 11.318 Temperate GRA Upland -- -- 
Georg 

Wohlfahrt 

European Fluxes 

Database Cluster 

US-

LA2 

Salvador 

WMA 

Freshwater 

Marsh 

USA 29.859 -90.287 

Tropical 

& 

Subtropic

al 

WET Marsh FW Undisturbed Ken Krauss Ameriflux 

US-

LA1 

Pointe-aux-

Chenes 

Brackish 

Marsh 

USA 29.501 -90.445 

Tropical 

& 

Subtropic

al 

WET Salt Marsh SW Undisturbed Ken Krauss Ameriflux 

MY-

MLM 
Maludam Malaysia 1.454 111.149 

Tropical 

& 

Subtropic

al 

WET Swamp FW Undisturbed 
Angela 

Tang 

https://doi.org/10

.5281/zenodo.11

61966 

1250 
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1251 

Figure Caption List 1252 

 1253 
Figure 1. Location of the 200 tower sites that report eddy covariance CH4 flux measurements 1254 

worldwide. Triangles indicate sites from which data are included in this manuscript, with circles 1255 

indicating additional flux towers measuring CH4 emissions. The colors of the markers represent 1256 

the vegetation type based on the International Geosphere-Biosphere Programme (IGBP) 1257 

definition. See Table S1 for a list of sites, their characteristics, and years of operation. Sites are 1258 

overlaid over a map of the differences between the average CH4 emissions over 2000-2010 1259 

between top-down and bottom-up wetland CH4 estimates. Top-down estimates are represented 1260 

by the natural fluxes inventoried in NOAA’s CarbonTracker 1261 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/). Bottom-up emissions were produced 1262 

from an ensemble of 11 Earth System Models simulations (Poulter et al. 2017).  1263 

 1264 

Figure 2. Distribution of sites by mean annual air temperature and precipitation. Tower locations 1265 

are shown as circles or triangles, with vegetation type in color based on the IGBP definitions 1266 

(CRO = Croplands; DBF = Deciduous Broadleaf Forests; EBF = Evergreen Broadleaf Forests; 1267 

ENF = Evergreen Needleleaf Forests; GRA = Grasslands; MF = Mixed Forests; URB = Urban 1268 

and Built-Up Lands; WAT = Water Bodies; WET = Permanent Wetlands). Gray dots represent 1269 

annual mean temperature and total precipitation from the CRU TS 3.10 gridded climate dataset 1270 

over the entire land mass (Harris et al. 2014), whereas blue dots represent grid cells with >25% 1271 

wetland fraction as estimated using the Global Lakes and Wetlands Database (Lehner and Döll 1272 

2004). Temperature and precipitation grid cells included in this figure were averaged from 1981 1273 

to 2011, at 0.5° resolution. 1274 

 1275 

Figure 3. (a) Probability density function, and (b) cumulative frequency distribution of half-1276 

hourly CH4 flux (FCH4) data for sites currently included in the database (60 sites) aggregated by 1277 

biome. Thin lines represent individual sites, whereas thicker lines present sites aggregated by 1278 

biome. All cases are approximated by kernel density estimation. Note that whereas the x-axis is 1279 

scaled between -50 and 900 nmol m-2 s-1 for visualization purposes, some CH4 fluxes exceed this 1280 

range. 1281 

 1282 

Figure 4. (a) Histogram of annual CH4 fluxes (FCH4; g C m-2 y-1) measured with eddy covariance 1283 

and published in the synthesis by Baldocchi (2014), and (b) histogram of annual CH4 fluxes 1284 

including additional site years of data estimated from the 60 sites listed in Table A1.  1285 

 1286 

Figure 5. Annual CH4 fluxes (FCH4; g C m-2 y-1) among ecosystem types for the 60 sites 1287 

currently included in the database (Table A1). Letters indicate significant differences (α = 0.05) 1288 

among ecosystem types. Median value, first and third quartiles are presented in the boxes, and 1289 

dots represent outliers, which are defined as observations more than 1.5-times the interquartile 1290 

range away from the top or bottom of the box.   1291 

 1292 

Figure 6. Relationship between annual CH4 flux (FCH4) and (a) mean annual air temperature 1293 

(TMAT) (χ2 = 36.7, df = 1, p < 0.001), (b) mean annual soil temperature (TMST) (χ2 = 32.3, df = 1, 1294 

p < 0.001) for freshwater wetlands, and (c) mean water table depth (WTD). While there was no 1295 

significant relationship between mean annual WTD and annual CH4 flux across all sites, there 1296 
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was a significant relationship if we consider only sites where WTD was below the soil surface 1297 

for part or all of the year (solid circles) (χ2 = 5.6, df = 1, p < 0.05). Open circles in (c) indicate 1298 

CH4 emissions for permanently inundated sites. (d) shows the temperature dependence of the 1299 

annual CH4:ER ratio (χ2 = 12.0, df = 1, p < 0.001). Lines represent the fitted values for the 1300 

population.  1301 

 1302 

Figure 7. Variance of CH4 flux (FCH4) wavelet coefficients across time scales, as a percentage of 1303 

the total variance, averaged by wetland type. Error bars represent the standard error. Note that 1304 

only ecosystem types with at least 6 sites are shown here, including bogs, fens, freshwater (FW) 1305 

marshes, rice paddies, and wet tundra. 1306 

 1307 

Figure 8.  Relationship between the correlation coefficient (r2) calculated from the median ANN 1308 

prediction and observed CH4 fluxes at each site and the percentage of total variance at diel and 1309 

seasonal scales (r2 = 0.69, p < 0.001). Each site is color coded by ecosystem type. Size of the 1310 

dots are proportional to the magnitude of mean CH4 flux, where flux magnitude was aggregated 1311 

into 10 bins for plotting.   1312 

 1313 

Figure 9. (a) Scaling of FCH4 random flux measurement error (𝜎(𝛿)) with flux magnitude for all 1314 

sites with a significant linear relationship between random error and flux magnitude (95% of all 1315 

sites). Data at each site were placed into 10 bins (Oikawa et al. 2017). (b) Scaling of FCH4 1316 

random flux measurement error, characterized by the standard deviation of the double-1317 

exponential distribution (𝜎(𝛿)), with mean flux magnitude across sites. There was a significant 1318 

linear relationship between 𝜎(𝛿) and the magnitude of mean CH4 flux (𝜎(𝛿) = 0.5 × FCH4 + 5.9, 1319 

r2 = 0.86, p < 0.001), even when excluding the two highest CH4-emitting sites (𝜎(𝛿) = 0.4 × 1320 

FCH4 + 11.3, r2 = 0.46, p < 0.001). Note that circle represent sites with open-path CH4 analyzers 1321 

while asterisks represent sites with closed-path sensors. 1322 

 1323 
Figure 10. (a) Histogram of total random error (g C m-2 y-1) in annual CH4 flux at 95% 1324 

confidence, where count refers to the number of site years of measurements. The cumulative 1325 

gap-filling and random measurement uncertainties of gap-filled and original values were added 1326 

in quadrature to estimate the total random uncertainty at each site. (b) Relationship between 1327 

annual CH4 flux (g C m-2 y-1) and relative error (i.e. total random error divided by flux 1328 

magnitude; %).  1329 

 1330 
Figure 11. Footprint climatology for a eutrophic shallow lake on a formerly drained fen in 1331 

Germany (Zarnekow; DE-Zrk) illustrating the importance of footprint analysis for the 1332 

interpretation of EC measurements of CH4. Here we used two footprint models, including the 1333 

model of Kormann & Meixner (2001) (2001) (yellow) and Kljun et al. (2015) (white). The 1334 

footprint climatology was calculated by aggregating all half-hour footprints within a year. The 1335 

dashed lines enclose the areas aggregating to 80% of source areas, while solid lines enclose the 1336 

50% of source areas.   1337 

 1338 

  1339 
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Figures 1340 

 1341 
Figure 1. Location of the 200 tower sites that report eddy covariance CH4 flux measurements 1342 

worldwide. Triangles indicate sites from which data are included in this manuscript, with circles 1343 

indicating additional flux towers measuring CH4 emissions. The colors of the markers represent 1344 

the vegetation type based on the International Geosphere-Biosphere Programme (IGBP) 1345 

definition. See Table S1 for a list of sites, their characteristics, and years of operation. Sites are 1346 

overlaid over a map of the differences between the average CH4 emissions over 2000-2010 1347 

between top-down and bottom-up wetland CH4 estimates. Top-down estimates are represented 1348 

by the natural fluxes inventoried in NOAA’s CarbonTracker 1349 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/). Bottom-up emissions were produced 1350 

from an ensemble of 11 Earth System Models simulations (Poulter et al. 2017).  1351 

  1352 
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 1353 
Figure 2. Distribution of sites by mean annual air temperature and precipitation. Tower locations 1354 

are shown as circles or triangles, with vegetation type in color based on the IGBP definitions 1355 

(CRO = Croplands; DBF = Deciduous Broadleaf Forests; EBF = Evergreen Broadleaf Forests; 1356 

ENF = Evergreen Needleleaf Forests; GRA = Grasslands; MF = Mixed Forests; URB = Urban 1357 

and Built-Up Lands; WAT = Water Bodies; WET = Permanent Wetlands). Gray dots represent 1358 

annual mean temperature and total precipitation from the CRU TS 3.10 gridded climate dataset 1359 

over the entire land mass (Harris et al. 2014), whereas blue dots represent grid cells with >25% 1360 

wetland fraction as estimated using the Global Lakes and Wetlands Database (Lehner and Döll 1361 

2004). Temperature and precipitation grid cells included in this figure were averaged from 1981 1362 

to 2011, at 0.5° resolution.  1363 
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 1364 
Figure 3. (a) Probability density function, and (b) cumulative frequency distribution of half-1365 

hourly CH4 flux (FCH4) data for sites currently included in the database (60 sites) aggregated by 1366 

biome. Thin lines represent individual sites, whereas thicker lines present sites aggregated by 1367 

biome. All cases are approximated by kernel density estimation. Note that whereas the x-axis is 1368 

scaled between -50 and 900 nmol m-2 s-1 for visualization purposes, some CH4 fluxes exceed this 1369 

range.1370 
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 1371 

 1372 
Figure 4. (a) Histogram of annual CH4 fluxes (FCH4; g C m-2 y-1) measured with eddy covariance 1373 

and published in the synthesis by Baldocchi (2014), and (b) histogram of annual CH4 fluxes 1374 

including additional site years of data estimated from the 60 sites listed in Table A1. 1375 
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 1376 
Figure 5. Annual CH4 fluxes (FCH4; g C m-2 y-1) among ecosystem types for the 60 sites 1377 

currently included in the database (Table A1). Letters indicate significant differences (α = 0.05) 1378 

among ecosystem types. Median value, first and third quartiles are presented in the boxes, and 1379 

dots represent outliers, which are defined as observations more than 1.5-times the interquartile 1380 

range away from the top or bottom of the box.    1381 
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 1382 
Figure 6. Relationship between annual CH4 flux (FCH4) and (a) mean annual air temperature 1383 

(TMAT) (χ2 = 36.7, df = 1, p < 0.001), (b) mean annual soil temperature (TMST) (χ2 = 32.3, df = 1, 1384 

p < 0.001) for freshwater wetlands, and (c) mean water table depth (WTD). While there was no 1385 

significant relationship between mean annual WTD and annual CH4 flux across all sites, there 1386 

was a significant relationship if we consider only sites where WTD was below the soil surface 1387 

for part or all of the year (solid circles) (χ2 = 5.6, df = 1, p < 0.05). Open circles in (c) indicate 1388 

CH4 emissions for permanently inundated sites. (d) shows the temperature dependence of the 1389 

annual CH4:ER ratio (χ2 = 12.0, df = 1, p < 0.001). Lines represent the fitted values for the 1390 

population. 1391 
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 1392 
Figure 7. Variance of CH4 flux (FCH4) wavelet coefficients across time scales, as a percentage of 1393 

the total variance, averaged by wetland type. Error bars represent the standard error. Note that 1394 

only ecosystem types with at least 6 sites are shown here, including bogs, fens, freshwater (FW) 1395 

marshes, rice paddies, and wet tundra.1396 
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 1397 
Figure 8.  Relationship between the correlation coefficient (r2) calculated from the median ANN 1398 

prediction and observed CH4 fluxes at each site and the percentage of total variance at diel and 1399 

seasonal scales (r2 = 0.69, p < 0.001). Each site is color coded by ecosystem type. Size of the 1400 

dots are proportional to the magnitude of mean CH4 flux, where flux magnitude was aggregated 1401 

into 10 bins for plotting.  1402 
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 1403 
Figure 9. (a) Scaling of FCH4 random flux measurement error (𝜎(𝛿)) with flux magnitude for all 1404 

sites with a significant linear relationship between random error and flux magnitude (95% of all 1405 

sites). Data at each site were placed into 10 bins (Oikawa et al. 2017). (b) Scaling of FCH4 1406 

random flux measurement error, characterized by the standard deviation of the double-1407 

exponential distribution (𝜎(𝛿)), with mean flux magnitude across sites. There was a significant 1408 

linear relationship between 𝜎(𝛿) and the magnitude of mean CH4 flux (𝜎(𝛿) = 0.5 × FCH4 + 5.9, 1409 

r2 = 0.86, p < 0.001), even when excluding the two highest CH4-emitting sites (𝜎(𝛿) = 0.4 × 1410 

FCH4 + 11.3, r2 = 0.46, p < 0.001). Note that circle represent sites with open-path CH4 analyzers 1411 

while asterisks represent sites with closed-path sensors. 1412 
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 1413 
Figure 10. (a) Histogram of total random error (g C m-2 y-1) in annual CH4 flux at 95% 1414 

confidence, where count refers to the number of site years of measurements. The cumulative 1415 

gap-filling and random measurement uncertainties of gap-filled and original values were added 1416 

in quadrature to estimate the total random uncertainty at each site. (b) Relationship between 1417 

annual CH4 flux (g C m-2 y-1) and relative error (i.e. total random error divided by flux 1418 

magnitude; %).  1419 

 1420 

  1421 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0268.1.



 70 

 1422 

 1423 
Figure 11. Footprint climatology for a eutrophic shallow lake on a formerly drained fen in 1424 

Germany (Zarnekow; DE-Zrk) illustrating the importance of footprint analysis for the 1425 

interpretation of EC measurements of CH4. Here we used two footprint models, including the 1426 

model of Kormann & Meixner (2001) (2001) (yellow) and Kljun et al. (2015) (white). The 1427 

footprint climatology was calculated by aggregating all half-hour footprints within a year. The 1428 

dashed lines enclose the areas aggregating to 80% of source areas, while solid lines enclose the 1429 

50% of source areas.   1430 
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