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A B S T R A C T

Increasing interest in utilization of forest biomass for bioenergy has prompted extensive contemporary research
regarding costs, supply and technology for efficiently producing electricity and other forms of renewable energy.
One challenge facing both researchers and users is obtaining precise estimates of available forest biomass within
plausible supply areas for individual power plants. Due to the wide distribution of power plants poised to co-fire
with forest biomass, assessing its availability requires methods that can yield precise and low-bias estimates of
aboveground forest biomass and other key attributes at varying spatial scales. Small area estimation (SAE)
methods have high potential to accomplish this due to the availability of national forest inventory data, com-
bined with satellite imagery and other forms of remotely-sensed auxiliary information. The study assessed
several indirect, direct and composite estimators of four forest attributes: aboveground tree biomass, biomass of
small-diameter trees, biomass of tops and limbs, and volume at the county-level and within the estimated supply
areas around power plants across 20 states in the contiguous Northern U.S. Composite estimators using both k-
nearest neighbors imputation and multiple linear regression provided superior estimates of indicators of forest
biomass availability based on both precision and bias at the county-level at sampling intensities as low as
10–20%, compared to the other SAE methods examined. The composite estimator using k-nearest neighbors
imputation was subsequently shown to produce precise estimates of forest biomass availability for selected
power plant supply areas.

1. Introduction

Estimates of forest biomass and related forest attributes provide
information that can support management decisions regarding forest
health, forest structure, and potential resource utilization in conjunc-
tion with forest management. Such estimates are also important to the
renewable energy industry as they provide information on the physical
availability of forest biomass resources. Forest biomass comprises a
large portion of annual renewable energy generation in Europe and the
U.S. For example, in Sweden biomass accounted for 65% of all re-
newable energy consumed in 2016 [1], 77% of which was from forest
biomass. In Finland, forest biomass comprised approximately 50% of all
bioenergy consumption in 2016 [2]. Similarly, forest biomass currently
accounts for the greatest share of bioenergy generation in the U.S. at
about 53% [3]. Potential methods of procuring forest biomass for
bioenergy include removal of logging by-products (slash) following
traditional roundwood harvests, removal of small-diameter trees

(tree < 25 cm dbh) during pre-commercial thinning and roundwood
harvest, and through an integrated harvest (roundwood + small-dia-
meter trees + slash). Regarding its conversion to useable energy, ar-
guably, the technological platform with the greatest potential for uti-
lizing largest amounts of forest biomass in the U.S. and other countries
highly dependent upon coal electricity is co-firing (i.e. combusted
biomass with coal) or utilization in dedicated boilers for electricity
generation [4–7]. One of the greatest challenges to assessing supply
potential for multiple power plants is deriving spatial estimates of forest
biomass availability within supply areas where transport and utilization
are technologically and economically feasible [5,7,9,10]. Spatial esti-
mation in this sense refers to the inference of forest attributes across the
landscape using spatially explicit information.

In recent studies by Goerndt et al. [6] and Goerndt et al. [10], the
spatial limitation of design-based estimates for supply circles sur-
rounding power plants locations was addressed by using a weighted
mean of forest biomass estimates for all counties intersecting supply
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circles. One limitation to this approach was the assumption that the
forest biomass resource in each applicable county is uniformly dis-
tributed across the county. The potential for bias in this estimation
method, combined with the inability of most researchers and managers
to determine which specific national forest inventory plots are located
within such areas due to confidentiality policies, stresses the need to
assess spatial estimation methods that do not rely on an assumption of
uniformity. Such estimation methods also must yield low-bias and
precise estimates with small sample sizes due to the small size of many
supply areas combined with limitations in data availability. For in-
stance, the national forest inventory of the United States is conducted
by the USDA Forest Service Forest Inventory and Analysis (FIA) pro-
gram using a probability sample of field plots, similar to several na-
tional forest inventory systems used in other countries such as Sweden
and Finland and Canada, just to name a few [11–14]. FIA plots for most
eastern states have recently been measured at a base sampling intensity
of one plot per 2400 ha and on a 5-year cycle, meaning that 20% of the
plots are measured every year for five years, after which time the
measurement cycle starts over. Due to budgetary restrictions, FIA has
shifted to a 7–10 year measurement cycle. Therefore, future estimates
and monitoring of forest biomass availability for bioenergy may have to
be conducted using partial data panels, depending on the year or group
of years being analyzed and the temporal resolution required. A set of
estimation techniques well suited to the spatial challenges of using FIA
data and the issue of reduced sample size is small area estimation (SAE).
SAE techniques can increase the precision of forest attribute estimates
in cases where the sample size for an area of interest is insufficient to
achieve the desired level of precision through design-based direct es-
timation [15–18].

The main goal of this study was to compare SAE methods for

estimating select forest attributes for supply areas around coal-fired
power plants in the North-central and Northeastern contiguous U.S.
Three specific objectives supported our overall goal. The first objective
was to assess the performance of several different estimators: indirect
estimators based on multiple linear regression (MLR) and k-nearest
neighbors imputation (KNN); a stratified indirect estimator based on
MLR; and composite predictors using each of the indirect estimators as
a component for all counties in the study area. Precision and bias for
each estimator were evaluated by simulating (via subsampling) smaller
samples as a proxy for limited data availability as a pre-text for SAE.
The second objective was to use the optimal county-level estimators to
estimate forest attributes of interest for supply areas surrounding coal-
fired power plant locations.

2. Methods

The two types of SAE techniques implemented in this study are
indirect estimation and composite estimation. Indirect estimators ty-
pically utilize a model-based approach to statistical inference (e.g.
through regression or imputation) to obtain estimates for areas of in-
terest by “borrowing strength” from auxiliary information within the
entire population [15,16]. As such, indirect estimation does not require
that an area of interest contains sample units. Composite estimation
encompasses a weighted mean between a model-based indirect estimate
and a design-based direct estimate (DE). Composite estimators are de-
signed to balance the higher precision of an indirect estimator with the
low bias of a direct estimator [15,17].

Fig. 1. Location of study area (Northern U.S.) within the contiguous U.S delineated by individual states and showing forest coverage by forest type.
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2.1. Study area

The population of interest for this study consisted of every county in
the U.S. Northeastern and North-central states, hereafter referred to as
the Northern U.S. Northern U.S. states included: Connecticut (CT),
Delaware (DE), Illinois (IL), Indiana (IN), Iowa (IA), Maine (ME),
Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN),
Missouri (MO), New Hampshire (NH), New Jersey (NJ), New York
(NY), Ohio (OH), Pennsylvania (PA), Rhode Island (RI), Vermont (VT),
West Virginia (WV), and Wisconsin (WI) (Fig. 1). Forest biomass
combustion and co-firing with coal were identified as major potential
sources of renewable energy in the region [4,19] as it hosts more than
350 coal-fired power plants [20], many of which could utilize forest
biomass as a feedstock for renewable energy generation [10].

2.2. Field data

For regional-level analyses of forest biomass and other attributes,
the most authoritative and readily available forest inventory data come
from the U.S. Department of Agriculture Forest Service's Forest
Inventory and Analysis (FIA) program [14]. FIA's sample of plots pro-
vide design-based estimates of forest attributes at varying spatial scales
(e.g. state-level, county-level). However, it can often be challenging to
derive FIA estimates for areas that do not fit standard state-level or
county-level geopolitical boundaries because explicit FIA plot locations
are not made available to the general public due to security and con-
fidentiality considerations. Consequently, the smallest spatial observa-
tional unit for which estimates of forest attributes can be reliably ob-
tained is at the county level. This limitation creates a challenge when
trying to obtain biomass supply estimates for procurement areas de-
fined by economic over political boundaries. Additionally, county-level
direct (design-based) estimates of forest attributes based on FIA data
often have low precision due to the relatively small sample size within
individual counties.

The ground data used in this study included 95,351 FIA plots col-
lected throughout 1037 counties in the study area during the period of
2004–2008. County-level design-based means for the four variables of
interest were calculated from the FIA plot data, including total above-
ground biomass of live trees (Mg/ha), aboveground biomass of trees
with dbh < 25 cm (Mg/ha), aboveground biomass of tops and limbs
(Mg/ha), and total cubic volume of live trees (m3/ha). These forest
attributes were chosen because of their high importance in assessing
forest biomass availability for bioenergy generation, and comprise the
dependent variables for the SAE methods analyzed at the county-level
[4,6]. Table 1 shows summary statistics for each forest attribute of in-
terest across the Northern U.S. as defined by the study area (Fig. 1).

There are two characteristics that stand out in the statistical sum-
mary across the counties of the Northern U.S. First, the coefficient of
variation is the same between aboveground biomass and volume, re-
inforcing an assumption that there is a close relationship between
aboveground biomass and cubic volume, even when summarized by
county. Second, all coefficients of variation are very high. This em-
phasizes the need to assess SAE methods that utilize auxiliary in-
formation and do not rely solely upon direct estimates within counties
or among counties.

2.3. Auxiliary information

The study used several auxiliary variables that have been shown in
numerous studies to be correlated with vegetation composition
[15,21–24]. The final set of auxiliary variables consists of remotely-
sensed metrics related to the presence of green vegetation, seasonal
vegetation phenology, climate, topography, land cover, and ecological
region. Values for all auxiliary variables described in this section were
organized into a stack of raster files for use in the analysis (Table 2).

2.3.1. Landsat imagery
Vegetation indices were derived from annual Landsat 7

ETM + composite images for 2007. All Landsat data were obtained
through the Web-Enabled Landsat Database (WELD) maintained by the
U.S. Geological Survey (USGS), National Aeronautics and Space
Administration, and South Dakota State University. Geometric rectifi-
cation, radiometric correction, and mosaicking of individual Landsat
scenes were conducted by the WELD team. Due to a Scan-line Corrector
(SLC) malfunction in late 2003, Landsat 7 ETM + images contain strips
of missing pixels for each data collection. Consequently, the annual
Landsat 7 ETM + composite images from WELD display the same SLC
artifacts. To adjust for this, we adapted methods described by
Scaramuzza et al. [23] by which SLC gaps are filled by assuming a
linear relationship between two Landsat scenes (Appendix).

From the Landsat data, six of the original bands including bands one
through five (B1-B5) and seven (B7) were extracted. The normalized
difference vegetation index (NDVI) is a very simple function that can be
important in describing forest health and vigor [21]. More specifically,
NDVI has been shown to be effective in describing factors such as crown
closure, forest density, and tree species diversity [22]. NDVI was cal-
culated using the following equation:

= −
+

NDVI B B
B B

4 3
4 3 (1)

In addition to the aforementioned Landsat bands and transforma-
tions, there are several simple band ratios that can be useful for de-
scribing forest characteristics. The band ratios used in this study were
B4/B3 (R1), B5/B4 (R2), and B7/B5 (R3). The combined purpose of
these ratios is to enhance the features of forest cover, bare soil, and
water in order to better contrast them on the landscape [24,25]. The
original spatial resolution of all Landsat bands used in this study was
30× 30m. Subsequently, a focal mean filter was used to resample each
Landsat coverage to 250m resolution to match the resolution of the
MODIS EVI data described in the next section. These resampled values
of all Landsat variables were obtained for every pixel located within the
population (Table 2).

2.3.2. Land coverage
Forest cover, imperviousness, and percent canopy cover were de-

rived from the 2001 and 2006 National Land Cover Database [26,27].
Percent canopy and imperviousness pixels were resampled from 30-m
to 250-m using the focal window mean. Forest cover pixels were re-
sampled to 250-m resolution using the focal window majority and as-
signed a dichotomous indicator (0,1) based on whether the majority of
30-m pixels were classified as forested or non-forested (Table 2).

2.3.3. Seasonal phenology and climate
Seasonal vegetation phenology data were derived from the

Enhanced Vegetation Index (EVI) of the 250-m pixel resolution
MOD13Q1, Version 4, MODIS Terra data product. EVI is similar in form
to NDVI, but also uses the blue band to correct for aerosols in the at-
mosphere. The original MODIS data included a subset of 100 typically
snow-free, growing season images (i.e. late March through November)
from 134 16-day maximum value composite (MVC) images that were
collected between January of 2001 and October of 2006, a period that
roughly coincides with the field plot data collection period.

Table 1
Summary statistics for forest attributes of interest across the Northern U.S. re-
gion (n= 1037 counties).

Attribute Mean Standard Deviation aCV%

Aboveground Biomass (Mg ha−1) 16.7 14.8 89
Small-diameter Biomass (Mg ha−1) 5.1 4.7 92
Top and Limb Biomass (Mg ha−1) 2.9 2.6 90
Volume (m3 ha−1) 606.5 538.6 89

a Coefficient of variation= Standard Deviation/Mean.
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Because the MODIS EVI dataset was intended to represent seasonal
vegetation phenology, it was important to pre-process the data to re-
duce dimensionality and adjust for atmospheric effects. Pre-processing
of EVI was performed following Wilson et al. [28] and consisted of
pixel-level harmonic regression of all MODIS time series images for the
region using a re-weighted least squares algorithm [29]. The original
Fourier series is expressed as follows:

∑= + +
=

y a a nt b nt( cos( ) sin( )),
n

h

n n0
1 (2)

where t is the time period in radians, h is the number of harmonics in
the series, and a0, an, and bn are coefficients. Wilson et al. [28] used a
2nd order Fourier series to represent the general form of the time series
data. To adjust for clouds and snow, the same Fourier series was fit
again using weighted regression with weights defined as:

=W .1. 5 ,t
r r/max( )t (3)

where rt is the residual from the initial model for compositing period t.
The weighted regression resulted in five estimated Fourier coefficients
for each pixel, labeled with the prefix m, i.e. ma0, ma1, mb1, ma2, and
mb2.

Climate data were extracted from the Daymet 18-year dataset of
mean monthly growing-degree days and total precipitation [30]. Be-
cause temperature and precipitation also follow seasonal patterns, a
similar harmonic regression was used for the monthly climate data, but
without using weight regression. Due to the original 1 km pixel re-
solution of the Daymet data, the Fourier coefficients for climate were
resampled to 250-m pixel resolution using bilinear interpolation. The
five estimated Fourier coefficients (a0, a1, b1, a2, and b2) associated with
each pixel's mean monthly growing-degree days and total precipitation
are labeled with the prefix t and p respectively (Table 2).

2.3.4. Topographic metrics and ecoregions
Several topographic metrics were utilized as predictor variables in

this study. Elevation was derived from the 2008 USGS National
Elevation Dataset (NED) [31]. Compound topographic index (CTI) and
slope-aspect index (SAI) were derived from the 2008 USGS Elevation
Derivatives for National Applications (EDNA) dataset. CTI [32] is a
measure of site wetness based on landscape position and is correlated
with several soil characteristics [33]. SAI [34] is a measure of site or-
ientation and is correlated with solar insolation and exposure to pre-
vailing winds. CTI and SAI were resampled to 250-m pixels by applying
a 9×9-pixel moving window and then using a nearest neighbor al-
gorithm [28]. The geospatial location of the county centroids in the
study area were obtained from the 2010 U.S. Census Bureau TIGERline

data. Finally, the study utilized the U.S. Environmental Protection
Agency's (EPA) Level III Ecoregions [35]. Ecoregions were represented
by a set of associated dummy variables, whereby each pixel was as-
signed a value of 1 or 0 based on its location relative to each ecoregion
(Table 2).

2.3.5. Resampling
The primary assumption for SAE in this study is that there is an

insufficient sample size within each small area of interest to obtain
direct estimates with high precision, an issue common to county-level
direct estimates of forest attributes with FIA. For example, within the
U.S. state of Minnesota (MN), county-level direct estimates of mer-
chantable volume range in relative standard error from 1% to 97%,
with a mean of 41% [14]. Again, the base sampling intensity of the
spatially balanced FIA sample is one field plot per 2400 ha. Without
knowing the true variability of the domain of interest within the po-
pulation, and therefore assuming as a rule-of-thumb (arbitrarily) that a
minimum sample size of 60 is required for use with a direct estimator,
this suggests a minimum domain size of approximately 72,000 ha,
which would immediately exclude 40 counties within the study region.
In this study we used the full sample of FIA plots per county for vali-
dation, because census data for the entire population of forest variables
for each county does not exist. We then simulated the effect of smaller
sample sizes by sub-sampling from this full sample of plot data. This
allowed us to assess the performance of the different SAE techniques as
the sample size decreased and to facilitate validation of the estimators
using direct county estimates of the forest attributes from the full
sample as a surrogate for census information. Therefore, the simulation
of reduced sample sizes was done by randomly selecting FIA plots from
each county using 5%, 10%, 20%, 30%, and 40% sub-sampling in-
tensities, with 500 replications at each sub-sampling intensity. Direct
estimates (DE) in the form of county-level means were calculated for
each attribute at all sub-sampling intensities as well as for the full
samples. All of the estimation methods of interest were assessed for the
five sub-sampling intensities separately. County-level direct estimates
for each attribute based upon the full sample were retained as valida-
tion data for each estimator in the absence of census information.

2.4. Statistical analysis

2.4.1. Multiple linear regression (MLR)
MLR models were developed both as an indirect estimation method

for the forest attributes of interest and as a necessary component for
composite estimators developed later in the analysis. These models
were designed to estimate county-level means of the forest attributes of
interest using the DE as the response variable and the variables

Table 2
Description of category and source for all auxiliary variables used to derive indirect SAE estimates in this study.

Source Category Variable Name Source Category Variable Name

Landsat Vegetation Band 1 Daymet Temperature tb1
Landsat Vegetation Band 2 Daymet Temperature ta2
Landsat Vegetation Band 3 Daymet Temperature tb2
Landsat Vegetation Band 4 Daymet Precipitation pa0
Landsat Vegetation Band 5 Daymet Precipitation pa1
Landsat Vegetation Band 7 Daymet Precipitation pb1
Landsat Vegetation NDVI Daymet Precipitation pa2
Landsat Vegetation R1 Daymet Precipitation pb2
Landsat Vegetation R2 USGS Topography elevation
Landsat Vegetation R3 EDNA Topography CTI
MODIS Phenology ma0 EDNA Topography SAI
MODIS Phenology ma1 US Census Topography Coordinate Easting
MODIS Phenology mb1 US Census Topography Coordinate Northing
MODIS Phenology ma2 NLCD Land Cover Imperviousness %
MODIS Phenology mb2 NLCD Land Cover Canopy %
Daymet Temperature ta0 NLCD Land Cover Forest Cover
Daymet Temperature ta1 EPA Ecoregion Level III
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described in Table 2 summarized (mean) by county as the predictor
variables. Because it would have been impractical to reassess the MLR
models for each of the 500 replicated sub-samples, an MLR model was
developed for each attribute of interest using the full sample DE as the
response values for each attribute. Models were selected using a subset
regression technique that identifies the independent variables which
create the best fitting linear regression models according to Bayesian
Information Criteria (BIC) using an exhaustive search [15]. This was
performed using the ‘regsubsets()’ tool available in the ‘leaps()’ package
for ‘R ()’ [36,37]. The subsets regression stage of the analysis was set to
identify the best fitting models with a maximum of seven independent
variables for each model, to avoid potential issues of high multi-colli-
nearity between variables [15].

2.4.2. Imputation through k-nearest neighbors (KNN)
The KNN approach to imputation was assessed as an alternative

indirect estimator of forest attributes in this study. KNN is a multi-
variate nonparametric method that imputes sample units to observa-
tional units based on distance in feature space. Unlike many other
imputation methods, KNN imputation uses either a simple or weighted
mean of distance metrics for multiple neighbors to impute values to
observational units on the landscape. The distance metric used for KNN
imputation had the following form [28,38–40].

= − ′ ′ −d X X ΓΛ Γ X X( ) ( ),ij i j i j
2 2 (4)

where Xi is the vector of auxiliary variables for the ith county, Xj is the
vector of auxiliary variables for the jth reference county, Γ is a matrix
of standardized canonical coefficients for the X variables, and Λ2 is a
diagonal matrix of squared canonical correlations between the X and Y
datasets [38,39]. The set of X variables for this analysis consisted of a
matrix of the remote-sensed auxiliary variables (Table 2), whereas the
set of Y variables was a matrix of values for all four forest attributes of
interest. The canonical correlations are created using both the X and Y
variables.

One of the most important aspects of the KNN analysis was deciding
how many (k) neighbors to use. Tuominen et al. [41] stated that “The
higher the value of k, the more averaging that occurs in the estimates.
Thus, the optimal value of k is a trade-off between the accuracy of es-
timates and the variation retained in the estimates”. Additionally, it has
been observed that as the value of k increases, average bias tends to
increase for extreme response variable values [42]. Therefore, it is
considered beneficial to choose the lowest value of k possible while still
maintaining a relatively small root mean squared error between ob-
served and predicted values. For this study, k was chosen by observing
root mean squared errors for KNN models using 1 to 20 neighboring
counties. For this study, we opted to use the traditional approach to
KNN using Euclidean distance and including all independent variables
(Table 2) in the feature space [15,43,44]. Therefore, while the final
MLR models used a reduced number of independent variables based on
the results of subsets regression model fit, KNN output utilized all in-
dependent variables. Final imputation using KNN was done by calcu-
lating the simple mean (i.e. equal weighting) of the response variables
over the k nearest neighbors [45,46]. All calculations for KNN were
performed using the yaImpute() tool for R() [36,47].

2.4.3. Stratification
Past studies such as Goerndt et al. [40], Breidenbach and Astrup

[48] and Mauro et al. [49] have shown that SAE techniques have high
potential for precise estimation of forest attributes. However, in most
cases, these estimation methods have been applied to populations that
were predominantly forested. One feature of this study is that it in-
cludes data from both forested and non-forested areas within each small
area (county) of interest and within the study area as a whole. A ne-
cessary feature due to the fact that county-level estimates of forest at-
tributes have to incorporate “zero” values of forest attributes as valid

observations for areas within counties with little to no forest cover. As
such, it was desirable to analyze effects of stratification between
forested and non-forested areas on the MLR estimators. We used the
indicator of dominant forest cover (i.e. based on NLCD forest in Table 2)
to classify the individual counties into one of two strata: Stratum
1=primarily forested and Stratum 2=primarily non-forested. A
county was grouped into one stratum or the other if > 50% of land was
of that classification. For the MLR indirect estimation method, models
were developed for each stratum individually, meaning that only data
belonging to that stratum were used. Estimates were then obtained for
each county in the study area using the models from both strata across
all sub-samples. Final stratified estimates were derived for each county
using the following:

= +Y Y P Y Pˆ ˆ ˆ ,i fi fi ni ni (5)

where Ŷi is the stratified estimate for county i, Ŷfi and Ŷni are the indirect
estimates for county i based on the forested and non-forested strata
respectively, Pfi and Pni are the proportions of NLCD land cover pixels
classified as forested and non-forested respectively for county i. This
method is a variation on a stratification procedure used by Wilson et al.
[28] and Lund [50]. This weighted mean method was used, as opposed
to simply using indirect estimates for each county from the stratum in
which it resides, due to that fact that forested and non-forested land
could not be spatially matched to certain FIA plots due to unknown plot
locations. This may also lead to less precise indirect estimates due to a
lower number of observational units for either forested or non-forested
counties relative to the dataset including all counties. Note that while
we initially applied the same stratification technique to KNN, we had to
drop this component from the analysis due to an inherent tendency for
KNN to produce spurious estimates, which was greatly a result of
drastically reduced county “pools” from which the KNN procedure
could impute values for non-forested areas. Consequently, KNN had a
tendency to drastically overestimate when using this method of strati-
fication.

2.4.4. Composite predictors
Two composite estimators, or predictors, were analyzed in this

study. For every sampling intensity, each composite prediction was
calculated using the reduced sample DE and one of the aforementioned
indirect estimates for each county. Individually, the composite pre-
dictors (CP) will be referred to hereafter as MLR_CP and KNN_CP to
coincide with the respective indirect components. The composite pre-
dictors for each attribute of interest were developed using the following
equation [17].

= + −Ŷ φ Ŷ (1 φ )Ŷ ,iiCP i i2 i 1 (6)

where ŶiCP is the composite predictor of the attribute for the ith county,
Ŷi1 is the direct estimate of the attribute for the ith county, Ŷi2 is the
indirect estimate of the ith county, and φi is the weight calculated for
the ith county. The weights were calculated using a variation of the
James-Stein estimator provided in the Appendix [17]. The ultimate
purpose of calculating composite predictors is to balance the potential
bias of an indirect estimator against the potentially large variance of a
direct estimator [15,40].

2.4.5. Estimation of forest attributes by power plant supply area
Although the forest attributes of interest were estimated using each

selected SAE technique by county, we were ultimately interested in
estimating forest attributes for selected supply areas around coal-fired
power plants. Aguilar et al. [5] identified 219 counties in the Northern
U.S. with relatively high county-level probability of co-firing using
econometric models which incorporated key independent variables
pertaining to infrastructure (roads, railways, waterways), population,
availability of standing forest biomass, and state-level bioenergy po-
licies, among others. We decided to focus our analysis on circular
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supply areas around the 219 power plant locations identified by Aguilar
et al. [5] based on an assumed 60 km transport radius, which coincides
with the economically feasible maximum transport distance for biomass
feedstocks identified in Goerndt et al. [6]. A 60 km transport radius
results in supply areas that are considerably larger than most individual
counties, and in most cases encompass several entire counties and
county fragments. For this analysis, the number of power plant loca-
tions was reduced to 164 by removing plants with supply areas which
crossed into states outside the study area. The omitted supply areas
were subsequently added back in later on for actual estimation of forest
biomass availability for power plants, using the best estimators iden-
tified in the SAE analysis, and for comparison to the results from the
earlier study. In the absence of having access to actual FIA plot loca-
tions, Goerndt et al. [6] obtained weighted predictions (WP) of forest
biomass availability for supply areas were obtained by applying the
following formula:

∑=
=

WP a b ,
i

m

i i
1 (7)

where bi is the total annually available forest biomass for county i and ai
is the percentage of the area of county i that falls within the supply area
(circle). As such, equation (7) relies on the assumption that the forest
biomass resource within each county is uniformly distributed across the
entire county [6].

In order to make a direct assessment of the potential of SAE to
improve estimation of forest attributes relative to methods of direct
estimation (i.e. using design-based inference), we calculated supply
area-level WP for each of the 500 replicated sub-samples of each forest
attribute using equation (7). Indirect estimates using either MLR or
KNN were derived by predicting values for supply areas based on all
500 replicated sub-samples of county-level data [15,40]. In doing so,
we used the database of county-level values as the prediction database
for supply areas. This was intended as a feature of this study, but also
necessary as each of the supply areas includes whole or partial counties
already included in the county-level database.

2.4.6. Validation for SAE
Validation at the county-level for each estimator was done using the

county-level full sample DE. Subsequently, validation at the supply
area-level was accomplished by using the supply-area full sample DE.
Note that in a real-world situation, the FIA plot location data necessary
to estimate full sample supply area-level DE would probably not be
available, but is used in this study for validation only. In order to
compare the estimators for each sampling intensity, summary statistics
were calculated based upon the county-level validation including re-
lative root mean square error (RRMSE) and relative bias (RB). Precision
was assessed using RRMSE [49,51]:
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where RMSEi is the root mean squared error for county i, m is the
number of counties, R is the number of subsamples (iterations), ŶiP is
the predicted value for county i, and ŶiO is the full sample direct esti-
mate for county i, which is taken as an unbiased estimator of the po-
pulation total. Similarly, overall bias was assessed using relative bias
calculated as
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where RBi is the relative bias for county i.

2.4.7. Potential forest biomass availability estimates for power plants
The practical aspect of this research is to obtain estimates of forest

biomass availability for co-firing in power plants located in the U.S.
North. Therefore, the final stage of this analysis was to use the best
estimator(s) identified through the SAE analysis and validation to ob-
tain useful estimates of forest biomass availability for bioenergy feed-
stocks within power plant supply areas. Two major estimates of biomass
availability provided applicable to forest biomass feedstocks included
availability of small diameter trees and availability of logging by-pro-
ducts. Ultimately, we utilized the estimators WP and KNN_CP to derive
estimates supply areas with a 60 km procurement radius around the
same 219 power plant locations featured in Aguilar et al. [5] and
Goerndt et al. [6].

In order to derive estimates representing available biomass from
small diameter trees and logging by-products using SAE methods, we
needed to simulate a reduced sample size that would be plausible in a
practical situation. Therefore, data from only one FIA measurement
year from within the original panel was used for the study, which is
logical given that one premise of this study is the strong possibility that
full FIA panels will often not be available to many individuals due to
time frame and the recently increased number of measurement years
(e.g. 7 years) to complete one full FIA panel. For this analysis, we chose
FIA plots measured in 2005.

One limitation of this analysis was that we were unable to differ-
entiate between timberland and forestland in estimation as in due to
lack of necessary spatial delineation of timberland areas with which to
coincide the remotely sensed auxiliary data. Forest attributes of parti-
cular interest for this assessment were top and limb biomass and small
diameter tree biomass. The two metrics, estimated by SAE, provided the
basis for calculating available biomass for energy feedstocks from log-
ging by-products and small diameter trees. Deriving final estimates
required several assumptions, due to inherent differences in the data
available and estimation strategies between this study and others
[4–6,10]. To derive final estimates for logging by-products, we used a
ratio of volume of annual logging removals [52] to the KNN_CP esti-
mated volume, which was then multiplied by KNN_CP estimated top
and limb biomass by power plant supply area. Similarly we needed to
adjust the KNN_CP estimates of small diameter biomass to mimic the
use of Stand Density Index (SDI) selection, which assumes that area-
level removal of small diameter biomass cannot reduce relative SDI to
below 30% within a 30 year cutting cycle [6,10,53]. To accomplish
this, we used the ratio of full available small diameter biomass to SDI
selected biomass as multiplicative adjustment to small diameter bio-
mass availability estimated using KNN_CP.

As in Goerndt et al. [6,10], the SAE estimates of small diameter tree
biomass were adjusted using a 65% retention rate of biomass left on site
to account for ecological stability, and a subsequent 20% reduction in
available biomass to account for inaccessibility. Additionally, an ad-
justment of 1/30 was applied to small diameter biomass to simulate a
30 year cutting cycle.

3. Results and discussion

The final MLR models for the full sample county-level data were
selected using the subsets regression process which identified the seven
best variables for each model using BIC and adjusted R2 as primary
selection criteria. Table 3 shows the coefficients and performance sta-
tistics of the selected county level models for aboveground biomass,
small-diameter biomass, top and limb biomass and total cubic volume.

The MLR models for each of the four forest attributes of interest
showed a very high degree of fit, with a minimum adjusted R2 of 87%
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for Volume and a maximum of 90.7% for small-diameter tree biomass.
Each model included at least one of each of the following variable
types: seasonal vegetation phenology, climate, land cover (canopy
cover, imperviousness), topography (SAI, CTI, DEM), and ecological
region (Tables 2 and 3). One notable difference between the models was
high significance of pa2 and imperviousness in the model for small-
diameter biomass, which was lacking from the other models. This dif-
ference most likely denotes a contrast in how certain remotely-sensed
variables relate to both presence and abundance of small-diameter
biomass compared to the other three forest attributes, which rely much
heavier on presence of larger trees. For example, high values for im-
perviousness relate directly to intensive land management (particularly
agricultural) and urbanization. Therefore, it is logical that high im-
perviousness would have a significant negative effect on predictions of
small-diameter biomass. One variable that was consistently significant
across all models was Ecoregion 53. This ecoregion represents a rela-
tively small region comprised mainly of the state of Wisconsin (WI)
(Fig. 1) [35]. Due to the small size and placement, this ecoregion very
explicitly represents an area with a unique combination of high per-
centage forest cover, high frequency of timber harvest, and relatively
low degree of urbanization when compared with many of heavily
forested states further to the east. This uniqueness is the mostly likely
reason for the significant area-level effect that Ecoregion 53 has in the
models for all forest attributes. Including both forested and non-
forested FIA plots in the samples meant that many sub-samples pro-
duced a DE of zero or at least a very low number, meaning that the MLR
models occasionally produced negative values for forest attributes if the
values of some auxiliary variables were on the outer boundaries of the
ranges of values observed across all counties. This difference in scaling
of predicted values compared to the imputation methods is an im-
portant factor of the analysis as will be shown in Section 3.

The KNN models were assessed for different values of k to determine
the optimal number of neighbors to use for imputation. The analysis of
root mean square error and bias between models identified k=15 as
being optimal for imputation of the forest attributes of interest.
Performance statistics (RRMSE, RB) for each attribute of interest by
each of the estimation methods and by sampling intensity are provided
in Table 4.

3.1. County-level comparison

3.1.1. Indirect estimation
One of the most readily apparent results in Table 4 is that MLR and

KNN outperformed DE in terms of precision at low sampling intensities,
with RRMSE values for MLR being 22%–25% lower than DE for 10%
sampling intensity, a relative difference often doubled at 5% sampling
intensity. Notice that precision tends to increase at a faster rate for DE
than for the indirect estimation methods as sampling intensity in-
creases. This is expected, as DE is a design-based estimate using a sub-

sample of the full FIA sample per county. MLR had RRMSE levels si-
milar to that of DE at sampling intensity as high as 20% for both
aboveground biomass and top and limb biomass.

3.1.2. Composite prediction
Composite prediction showed improvement over indirect estimation

with regard to precision and bias for all forest attributes at all sampling
intensities. While this is not altogether surprising, it is interesting how
much of an improvement in precision over that of DE was achieved by
some of the composite predictors. KNN_CP yielded higher precision
than DE for most forest attributes at 5%, 10%, and 20% sampling in-
tensity. Even though MLR_CP had higher precision than KNN_CP for
most forest attributes and sampling intensities, the opposite was often
true for bias. While most composite predictors outperformed their
corresponding indirect estimate for most sampling intensities, this was
not true at 5% sampling intensity. This is partially an artifact of lower
precision of indirect estimation at low sampling intensities, but also the
dependence of composite predictors on DE. Notice that this relative
increase in RRMSE for composite predictors at 5% sampling intensity
corresponds with a similar increase of RRMSE for DE. This comparison
highlights the fact that a composite predictor's dependence on DE can
be both an advantage and disadvantage depending on the weight placed
on DE and the performance of DE relative to indirect estimation.

3.1.3. Optimal county-level estimators
The previous section summarized the descriptive statistics of

RRMSE and RB for all county-level estimators at all sampling in-
tensities. It was found that composite prediction generally out-
performed all forms of indirect estimation for both precision and bias
except at the smallest sampling intensity. Interestingly, composite
prediction based on KNN, while of somewhat lower precision compared
to MLR-based composite prediction, was superior overall in terms of
bias [54,55].

Given these observations regarding precision and bias of all SAE
methods, MLR, MLR_ CP, and KNN_CP were selected as the methods to
assess for estimation of forest attributes to supply areas surrounding
coal-fired power plants.

3.2. Power plant supply area-level estimation

Estimates from MLR, MLR_ CP, and KNN_CP were derived for each
of the 164 selected power plant supply circles. Recall that WP was
calculated in place of DE in the supply area analysis due to the as-
sumption that FIA plot locations are unknown. Performance statistics
(RRMSE and RB) for each attribute of interest by selected estimation
method and sampling intensity are shown in Table 5.

Of the selected composite predictors, MLR_ CP consistently pro-
duced RRMSE estimates lower than WP and the other SAE methods for
all forest attributes at 5% and 10% sampling intensity. Although MLR_

Table 3
Significant regression coefficients for selected county-level models, with adjusted R2 for each model.

Coefficient Biomass (Mg ha−1) Small Diameter Biomass (Mg ha−1) Top & Limb Biomass (Mg ha−1) Volume (m3 ha−1)

Intercept 16537.51 (2377.2) 6606.05 (568.47) 9.16 (1.25) 61.79 (12.63)
R1 777.18 (41.4) 0.44 (0.059) 3.13 (0.59)
ta1 −274.31 (41.42) 54.64 (8.41) −0.16 (0.022) −0.59 (0.22)
Canopy % 236.71 (9.3) 80.95 (3.02) 0.13 (0.005) 0.98 (0.049)
Forest Cover 736.38 (112.34)
ma1 81.39 (8.3) 18.42 (2.04) 0.047 (0.004) 0.29 (0.044)
pb1 1452.24 (108.87) 0.71 (0.057) 3.84 (0.58)
pa2 −254.31 (62.51)
Imperviousness % −41.24 (4.04)
SAI 160.94 (22.59) 0.087 (0.012) 0.32 (0.12)
Ecoregion 53 5666.87 (547.63) 825.56 (128.39) 2.88 (0.29) 23.9 (2.9)
R2 (adj), % 89.2 90.7 90.4 87.1

Coefficient standard errors provided in parentheses.
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CP was superior to all other estimators in terms of precision, KNN_CP
actually resulted in lower RB for all forest attributes and at all sampling
intensities. Results of the analysis for supply areas show that 5–10%
sampling intensity is the threshold at which indirect and composite
estimators begin to outperform DE with regard to precision. This em-
phasizes the SAE aspect of such a comparison, in that indirect and
composite estimators gain prediction strength relative to DE as the
available sample size decreases. Notice that MLR_ CP outperforms WP
and all other SAE methods at low sampling intensity. This indicates
that, even in the absence of specific plot locations, composite predictors
using adequate auxiliary data can produce estimates of higher precision
than direct estimation methods.

3.2.1. Potential biomass availability for power plants
Up to this point, our analysis has demonstrated that SAE methods

can provide precise estimates of forest attributes relating to forest
biomass availability using relatively small sample sizes. For these
methods to be applied to a particular issue, e.g. bioenergy, it is useful to
demonstrate how the SAE estimators featured in this study can be used
to calculate available forest biomass feedstocks for coal-fired power
plants. Available biomass from logging by-products and small diameter
trees was estimated using KNN_CP. KNN_CP was used because it was
one of the strongest estimators with regard to precision and bias. These
estimates were derived for all 219 original power plant locations, as-
suming a procurement radius of 60 km. Estimates of potential electrical

Table 4
Estimated RRMSE and RB from validation of indirect county-level estimation methods for each attribute of interest by sampling intensity (%).

5% 10% 20% 30% 40%

RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB

Biomass (Mg ha-1)
MLR 72.4 −37.9 67.8 −38.4 64.8 −38.1 63.4 −37.5 57.2 −37.8
MLR_CP 84.8 −18.5 66.1 −18 51.5 −16.2 43.8 −14.7 39.3 −13.8
KNN 86.2 −34.6 75.6 −34.6 69.4 −35.2 66.9 −40.1 68.3 −32.2
KNN_CP 100.4 −16.1 73.6 −15.8 54.6 −14.7 45.3 −13.7 39.4 −13.1
DE 129.8 NA 91.1 NA 62.9 NA 49.6 NA 41.2 NA
Small Diameter Biomass (Mg ha-1)
MLR 79.9 −35.3 74.4 −35.1 71.1 −34.2 67.5 −35.2 66.2 −35.2
MLR_CP 76.2 −16.5 63.5 −15.2 53.8 −14.1 45.1 −14 40.4 −13.5
KNN 89.7 −38.7 80.1 −39.2 74 −39.2 71.1 −39.4 69.8 −39.1
KNN_CP 126.1 −16.5 68.1 −16.2 53.6 −15.6 46.6 −14.9 42.5 −14.3
DE 110.6 NA 80.4 NA 58.9 NA 49.3 NA 43.4 NA
Top & Limb Biomass (Mg ha-1)
MLR 68.5 −33.2 64.5 −33.8 61.8 −33.5 54.2 −32.9 53.6 −33.2
MLR_CP 83.4 −15.9 64.6 −15.8 50.1 −14.5 41.5 −13.3 37.2 −12.5
KNN 82.5 −40.1 73.2 −39.3 67.5 −39.1 65.2 −39.5 64 −39.4
KNN_CP 97.3 −15.4 71.5 −15.7 53.2 −15.1 44.4 −14.2 39.1 −13.8
DE 127.5 NA 89.6 NA 61.9 NA 48.9 NA 40.6 NA
Volume (m3 ha-1)
MLR 70.8 −35.2 66.7 −35.7 63.8 −35.4 63.2 −34.9 62.7 −35.2
MLR_CP 85.4 −17.6 66.5 −17.5 51.8 −16.1 48.2 −14.7 43.7 −13.9
KNN 89.4 −42.5 78.5 −43.2 71.9 −43.1 69.4 −42.5 68.1 −43.1
KNN_CP 102.1 −17.2 75.1 −17.5 56.1 −16.8 46.8 −15.9 41.2 −15.5
DE 131.2 NA 92.2 NA 63.7 NA 50.4 NA 41.8 NA

Table 5
Estimated RRMSE and RB from validation of selected supply area-level estimation methods for each attribute of interest by sampling intensity (%).

5% 10% 20% 30% 40%

RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB

Biomass (Mg ha-1)
MLR 28 −11.4 25.3 −11.5 23.9 −11.5 23.4 −11.9 22.8 −11.8
MLR_ CP 25.7 −10.9 22.5 −10.8 20.1 −10.5 18.9 −10.4 18.1 −10.2
KNN_CP 38.3 −0.1 29.8 −0.1 23.8 −0.8 20.6 −1.5 19.1 −1.9
WP 38.2 −7.1 29.5 −7.1 24.1 −7.1 21.6 −7.1 20.1 −7.2

Small Diameter Biomass (Mg ha-1)
MLR 31.5 −10.8 27.7 −10.6 24.9 −11.1 24.1 −11.2 23.2 −11
MLR_ CP 28.4 −9.4 24.1 −8.7 21.4 −7.9 20.2 −7.4 19.4 −6.6
KNN_CP 41.9 4.7 33.1 4.5 26.9 4.7 24.2 4.1 22.5 3.7
WP 41.8 −7.2 33.1 −7.4 27.4 −7.1 24.8 −7.2 23.4 −7.2

Top & Limb Biomass (Mg ha-1)
MLR 27.6 −10.2 25.2 −10.4 23.8 −10.5 23.3 −10.9 22.7 −10.7
MLR_ CP 25.5 −9.9 22.3 −9.8 19.8 −9.6 18.8 −9.6 18.1 −9.3
KNN_CP 37.6 0.1 29.3 0.1 23.5 −0.6 20.6 −1.2 18.9 −1.7
WP 37.3 −6.5 37.3 −6.5 24.1 −6.5 21.6 −6.6 20.3 −6.7

Volume (m3 ha-1)
MLR 27.2 −11.5 24.6 −11.5 23.1 −11.7 22.6 −12.0 22.1 −11.8
MLR_ CP 25.1 −10.9 22.0 −10.7 19.7 −10.4 18.7 −10.3 17.9 −9.9
KNN_CP 38.2 −0.2 29.5 −0.1 23.3 −0.7 20.4 −1.2 18.6 −1.7
WP 38.1 −6.3 29.7 −6.3 24.1 −6.3 21.5 −6.3 20.1 −6.5
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power generation were obtained by applying an adjustment of 1.7 Mwh
per dry metric ton [4,6].

Based on the KNN_CP estimates, the average forest biomass an-
nually available across all power plants was approximately 35,000 dry
metric tons for logging by-products and 235,000 dry metric tons for
small diameter trees. This equates to an average of 400 Gwh potential
annual electricity generation per power plant for small diameter bio-
mass and 62 Gwh for logging by-products. The WP estimates from
Goerndt et al. [6], hereafter referred to as WP_G yielded an average of
412 Gwh potential annual electricity generation per power plant for
small diameter biomass and 95 Gwh for logging by-products. Fig. 2
compares average annual electricity generation potential between the
estimates from this study and WP_G.

From the standpoint of direct comparison, Fig. 2 highlights two
important features. First, KNN_CP provides estimates for small diameter
biomass per power plant supply area that are very similar to WP_G
Second, there is a clear tendency for KNN_CP to provide lower estimates
for logging by-products. The latter is not altogether surprising, given
that our method of obtaining final estimates of logging by-products is
somewhat different from WP_G in that we do not rely on logging re-
sidues data from TPO [6,10]. What is interesting is the tendency to
provide lower estimates, highlighting the variation between inventory
data and industry data with regard to potential annual removals of
forest biomass.

Prior to discussing observed plant-by-plant differences in the
KNN_CP and WP_G estimates, it is useful to assess the spatial trends in
estimation for WP_G, as it will be used as a baseline for comparing and
discussing major trends in estimation by KNN_P. Fig. 3 shows annual
electricity generation potential per plant based on the WP_G estimates
for logging by-products and small diameter trees [4].

While it was expected that there would be higher levels of co-firing
potential generation from small-diameter biomass compared to logging
residues, there are apparent spatial trends in generation potential across
the Northern U.S. More specifically, power plants in Northeast portion
of the region such as (e.g. Pennsylvania (PA) and West Virginia (WV))
and power plants in the Great Lakes Region (e.g. Minnesota (MN),
Wisconsin (WI) and Michigan (MI)). These spatial trends are a result of
multiple factors pertaining to availability of biomass feedstocks, infra-
structure, renewable resource policy and supply chain logistics. Recall
that selection of power plant locations observed in this analysis
stemmed from an econometric analysis conducted by Aguilar et al. [5],
which reported high importance of variables describing location-spe-
cific factors affecting supply-chain logistics as well as renewable energy
policy, which were also identified as significant factors in analyses by
Ko and Lautala [56], Eksioglu et al. [57] and Berggren et al. [58]. Of

equal importance to transport logistics, renewable energy policy and
local economics when it comes to co-firing generation potential is the
abundance and sustainable potential supply of biomass feedstocks from
forestland within economically feasible transport distances, which was
a primary focus of the WP_G estimates and is emphasized studies con-
ducted by Hansson et al. [59] and Roni et al. [8]. WP_G for both small-
small diameter trees and logging residues serves as a baseline for ana-
lyzing the spatial trends in KNN_CP estimates obtained from our ana-
lysis.

As will be illustrated shortly, the tendency for KNN_CP to provide
lower estimates for potential logging by-products (Fig. 2) persists for
most individual power plant supply areas, but varies in extremity across
the region. To better illustrate power plant level variation between the
KNN_CP estimates and WP_G, we calculated the percentage difference
(KNN_CP−WP_G) relative to WP_G. Fig. 4 shows the resulting per-
centage difference in estimated available biomass for logging by-pro-
ducts and small-diameter trees.

While there was an overall tendency for KNN_CP to yield lower
estimates for logging by-products than WP_G there is a noticeable
spatial trend for high estimation in the Northcentral States (e.g.
Minnesota (MN), Iowa (IA), Illinois (IL)). Supply areas with a high es-
timation occur primarily in areas with a high percentage of non-
forested land. Interestingly, most supply areas where KNN_CP estimates
lower logging by-products occur in the same states or adjacent states.
The most likely reason for this was variability in the same state or sub-
region with regard to forested land. Conversely, KNN_CP had a ten-
dency to produce higher estimates of small diameter biomass in states
with a high percentage of forestland such as Pennsylvania (PA) and
West Virginia (WV), which is most likely an effect of the indirect esti-
mation (KNN) component of KNN_CP. Areas with a much higher per-
centage of forest land coincided with notably different values for many
of the remote sensing metrics used during the modeling process.

For both types of biomass feedstock, the spatial trends observed
across the region were greatly an effect of spatial variation of both
forest characteristics and auxiliary information influencing the indirect
estimation component (WP) of KNN_CP. More specifically, Fig. 4 il-
lustrates the influence of using an estimator that does not rely on an
assumption of uniformity across large areas. A major objective of this
study was to obtain precise estimates of forest attributes pertaining to
biomass availability without having to assume uniformity of forest at-
tributes by county. This is crucial because as the complexity of SAE
methods increases (e.g. composite prediction), one is more likely to
violate the assumption of county- or area-level uniformity of forest at-
tributes. Deviation from the assumption of uniformity is not only de-
sired, but also necessary to utilize SAE methods that provide much

Fig. 2. Comparison of average annual electricity generation potential between KNN_CP estimates and WP_G.
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more power for capturing spatial variation across the landscape. The
most practical outcome of this study is an ability to estimate forest
biomass availability by power-plant and to illustrate how much elec-
tricity could be annually generated relative to current generation rates.
Fig. 5 shows the percentage of coal generated electricity per power
plant that could potentially be generated with forest biomass based on
the KNN_CP estimates [20].

Aside from the noticeably higher levels of co-firing generation

potential from small-diameter trees compared to logging by-product
estimates, there were noticeable trends in spatial distribution of power
plants with high co-firing potential for both sources of biomass. Power
plants with high generation potential from logging by-products were
more sporadically distributed when compared to small-diameter trees,
but one can see that many plants in the Great Lake states and the
Northeast have high co-firing potential [5,6]. Many of the same areas
denoted high co-firing potential with small-diameter trees, but there

Fig. 3. Estimated potential electricity generation from forest biomass as estimated by WP_G in Gwh for each selected power plant assuming a 60 km concentric
procurement radius for (A) logging by-products and (B) small-diameter trees. Background shading represents forest cover.
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were evident differences in co-firing potential between the two biomass
sources in states such as Ohio (OH), Pennsylvania (PA) and West Vir-
ginia (WV), where most power plants show a high co-firing potential
with small diameter trees and a low co-firing potential with logging by-
products. This trend actually contrasts with WP_G, which is most likely
due to lower dependence of the SAE methods on the uniformity as-
sumption of forest attributes across counties. This is logical due to the
tight clustering of power plants within these particular states, leading to
little variation in forest attribute estimates between power plant supply
areas when using direct estimation. The results of this study show a
relatively high degree of variation in biomass estimates within such
areas compared to simple direct estimates such as WP_G.

4. Conclusions

Precise estimates of forest attributes at varying spatial scales are
essential for forest managers and forest industry to make important
decisions. In particular to the use of forest biomass in co-fired systems,

past estimates of forest biomass availability have relied on assumptions
of forest resource uniformity across entire counties and other geo-po-
litical boundaries due to limitations in spatial estimation using FIA and
other forest inventory systems. Additionally, limitations in sample size
may make it more difficult in the future to obtain precise direct esti-
mates of forest attributes in potential supply areas that can include
many counties and county fragments. SAE can utilize estimators with
potential for precise and low-bias estimates of forest attributes at both
the county- and supply area-levels using very small sample sizes.

At the supply-area level, composite predictors were the most precise
estimation methods at low (5–10%) sampling intensity. Interestingly,
while the composite predictor using an MLR indirect component
(MLR_CP) was generally the best estimator at the county-level, the
composite predictors using a KNN indirect component (KNN_CP) tended
to be superior in terms of reduced bias. This was particularly apparent
for estimation of forest attributes for supply-areas, demonstrating an
interesting trade-off between precision and bias when assessing the use
of SAE. Therefore, KNN_CP is deemed the ideal estimator for obtaining

Fig. 4. Percentage difference between estimates from KNN_CP and WP_G for (A) logging by-products, and (B) small diameter trees. Background shading represents
forest cover.
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estimates of biomass availability for power plants derived from logging
by-products, or harvest of small diameter trees.

The estimates of forest biomass availability for co-firing highlighted
the ability of the SAE methods to capture variability in forest attributes
pertaining to biomass availability at varying spatial scales. In parti-
cular, we found that the lack of dependency on uniformity assumption
of forest attributes by county enables SAE methods to capture spatial
variability even for power plants that are clustered closely together,
which tend to have relatively homogeneous biomass estimates when
only using direct estimation. By comparing several SAE methods at
varying sampling intensities, we were ultimately able to identify several
potential estimators that can be useful for estimating forest attributes
even when inventory data for the specific supply area of interest is ei-
ther limited or non-existent. These estimators will be extremely useful
for assessing forest biomass availability for facilities that are utilizing
biomass for energy generation or are considering such activity in the

future.

Acknowledgements

We thank the faculty and staff of the William H. Darr College of
Agriculture at Missouri State University for their support in completing
this project. We are grateful to Bill Dijak of the USFS Northern Research
Station for his assistance and excellent advice on processing and uti-
lizing digital elevation models. We are also grateful to Elizabeth Burrill
of the USFS for helping to facilitate acquisition of FIA plot locations, as
well as Pat Miles of the USFS Northern Research Station for his assis-
tance with plot-level direct estimation of forest attributes. This project
was partially funded under USFS and University of Missouri Joint
Venture Agreement 12-JV-11242305-120. This publication is not in-
tended to reflect the opinions of these organizations. Any errors remain
the responsibility of the authors.6. Literature Cited.

Fig. 5. Estimated percentage of annual coal electricity generation that could potentially be replaced by forest biomass for each selected power plant at a 60 km
procurement radius based on the KNN_CP estimates for (A) logging by-products, and (B) small diameter trees. Background shading represents forest cover.
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Appendix

2007 annual Landsat composite coverage was adjusted by assuming the following:

≈ +Y GX B,

where Y is the primarily SLC-off primary scene (2007), X is the primarily SLC-on fill scene (2002), G is the gain used to histogram match the fill scene
to the primary scene, and B is the bias used to histogram match the fill scene to the primary scene.

These are defined as:

=G σ
σ

,Y

X (A1)

and

≈ +B Y GX¯ ¯ , (A2)

where σX is the standard deviation of data in the primary scene, σY is the standard deviation of data on the fill scene. Predicted values of Y were
applied to the 2007 annual WELD composite for pixels omitted by the SLC malfunction. σY and σX were estimated by using a focal moving window in
ArcGIS for the 17× 17 grid of pixels surrounding each pixel of interest.

Variation of composite predictor weight derivation by Costa et al. [9].
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where ai is the total area (ha) in county i, si
2 is the sample variance for county i, Ve is the weighted sample variance for county i, and ni is the ground

sample size for county i. Note that ψ̂i is a form of “smoothed” variance used in place of raw sample variance in the composite estimator to provide
stability to the weights [15].

References

[1] Swedish Energy Agency, Swedish Energy Statistics, (2018) Available at: http://
www.energimyndigheten.se/en/facts-and-figures/statistics/ , Accessed date: 12
November 2018.

[2] OSF (Official Statistics of Finland), Energy Supply and Consumption, Statistics
Finland, Helsinki, 2018 Available at: http://www.stat.fi/til/ehk/tau_en.html ,
Accessed date: 12 November 2018.

[3] Energy Information Administration, Annual energy outlook, Available at: https://
www.eia.gov/outlooks/aeo/pdf/0383(2014).pdf, (2014) , Accessed date: 23 April
2018Washington, D.C. (2014).

[4] M.E. Goerndt, F.X. Aguilar, P. Miles, S. Shifley, N. Song, H. Stelzer, Regional as-
sessment of forest biomass as an energy feedstock for combined combustion in the
U.S. Northern region, J. For. 110 (3) (2012) 138–148.

[5] F.X. Aguilar, M. Goerndt, N. Song, S. Shifley, Internal, external and location factors
influencing cofiring of biomass with coal in the U.S. Northern region, Energy Econ.
34 (2012) 1790–1798.

[6] M.E. Goerndt, F.X. Aguilar, K. Skog, Resource potential for renewable energy
generation from co-firing of forest biomass with coal in the Northern U.S, Biomass
Bioenergy 59 (2013) 348–361.

[7] L. Baxter, Biomass-coal co-combustion: opportunity for affordable renewable en-
ergy, Fuel 84 (2005) 1295–1302.

[8] M. Roni, S. Eksioglu, E. Searcy, K. Jha, A supply chain network design model for
biomass co-firing in coal-fired power plants, Transport. Res. E Logist. Transport.
Rev. 61 (2014) 115–134.

[9] A. Zaliwski, A. Faber, P. Rafal, M. Biberacher, S. Gadocha, M. Borzecka, Biomass
supply for co-firing in main-network power stations in Poland, J. Food Agric.
Environ. 11 (2013) 2031–2035.

[10] M.E. Goerndt, F.X. Aguilar, K. Skog, Potential for Coal Power Plants to Co-fire with
Woody Biomass in the U.S. North, 2010-2030: a Technical Document Supporting
the Northern Forest Futures Project. USDA Forest Service Gen. Tech. Rep. FPL-GTR-
237, USDA Forest Service Forest Products Laboratory, 2015 19p.

[11] J. Fridman, S. Holm, M. Nilsson, P. Nilsson, A. Hedstrom Ringvall, G. Stahl,
Adapting national forest inventories to changing requirements - the case of the
Swedish National Forest Inventory at the turn of the 20th century, Silva Fenn. 48
(3) (2014) 29p.

[12] E. Tomppo, The Finnish multisource national forest inventory: small-area estima-
tion and map production, in: R. McRoberts, G. Reams, P. Van Deusen,
W. McWilliams (Eds.), Proceedings of the Eighth Annual Forest Inventory and
Analysis Symposium, USDA Forest Service, Monterey CA, 2006October 16-19 pg.

341-349. Gen. Tech. Report WO-79.
[13] M. Gillis, Canada's national forest inventory (responding to current information

needs), Environ. Monit. Assess. 67 (2001) 121–129.
[14] P.D. Miles, Forest Inventory EVALIDator Web-application Version 1.5.00, U.S.

Department of Agriculture, Forest Service, Northern Research Station, St. Paul, MN,
2012 Available at: https://apps.fs.usda.gov/Evalidator/evalidator.jsp , Accessed
date: 23 April 2018.

[15] M.E. Goerndt, V. Monleon, H. Temesgen, A comparison of small-area estimation
techniques to estimate selected stand attributes using LiDAR-derived auxiliary
variables, Can. J. Res. 41 (2011) 1189–1201.

[16] P. Heady, P. Clarke, G. Brown, K. Ellis, D. Heasman, S. Hennell, J. Longhurst,
B. Mitchell, Small Area Estimation Project Report. Model-based Small Area
Estimation Series, Office of National Statistics, London, UK, 2003, p. 15.

[17] A. Costa, A. Sattora, E. Ventura, An empirical evaluation of small area estimators,
SORT 27 (2003) 113–135.

[18] A. Costa, A. Sattora, E. Ventura, Improving small area estimation by combining
surveys: new perspectives in regional statistics, SORT 30 (2006) 101–122.

[19] F.X. Aguilar, H. Garrett, Perspectives of forest biomass for energy: Survey of state
foresters, state energy biomass contacts, and National Council of Forestry
Association executives, J. For. 107 (2009) 297–306.

[20] Environmental Protection Agency, eGRID2012 Version 1.0, (2012) Available at:
https://www.epa.gov/energy/egrid2012-version-10-summary-tables-year-2009-
data , Accessed date: 23 April 2018.

[21] T.W. Gillespie, Predicting forest plant species richness in tropical dry forests: a case
study from south Florida, USA, Ecol. Appl. 15 (1) (2005) 27–37.

[22] K. Feeley, T. Gillespie, J. Terborgh, The utility of spectral indices from Landsat ETM
+ for measuring the structure and composition of tropical dry forests, Biotropica 37
(4) (2005) 508–519.

[23] P. Scaramuzza, E. Micijevic, G. Chander, SLC Gap-filled Products: Phase One
Methodology, (2004) Available at: https://landsat.usgs.gov/sites/default/files/
documents/SLC_Gap_Fill_Methodology.pdf , Accessed date: 23 April 2018.

[24] E.H. Wilson, S.A. Sader, Detection of forest type using multiple dates of Landsat TM
imagery, Rem. Sens. Environ. 80 (2002) 385–396.

[25] I. Olthof, D. King, R. Lautenschlager, Mapping deciduous forest ice storm damage
using Landsat and environmental data, Remote Sens. Environ. 89 (2004) 484–496.

[26] J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow,
J.N. VanDriel, J. Wickham, Completion of the 2001 national land cover database for
the conterminous United States, Photogramm. Eng. Rem. Sens. 73 (4) (2001)
337–341 https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-
downloadable-data-collection.

[27] J. Fry, G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold,

M.E. Goerndt et al. Biomass and Bioenergy 121 (2019) 64–77

76

http://www.energimyndigheten.se/en/facts-and-figures/statistics/
http://www.energimyndigheten.se/en/facts-and-figures/statistics/
http://www.stat.fi/til/ehk/tau_en.html
https://www.eia.gov/outlooks/aeo/pdf/0383(2014).pdf
https://www.eia.gov/outlooks/aeo/pdf/0383(2014).pdf
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref4
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref4
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref4
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref5
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref5
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref5
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref6
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref6
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref6
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref7
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref7
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref8
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref8
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref8
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref9
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref9
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref9
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref10
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref10
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref10
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref10
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref11
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref11
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref11
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref11
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref12
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref12
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref12
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref12
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref12
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref13
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref13
https://apps.fs.usda.gov/Evalidator/evalidator.jsp
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref15
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref15
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref15
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref16
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref16
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref16
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref17
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref17
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref18
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref18
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref19
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref19
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref19
https://www.epa.gov/energy/egrid2012-version-10-summary-tables-year-2009-data
https://www.epa.gov/energy/egrid2012-version-10-summary-tables-year-2009-data
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref21
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref21
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref22
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref22
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref22
https://landsat.usgs.gov/sites/default/files/documents/SLC_Gap_Fill_Methodology.pdf
https://landsat.usgs.gov/sites/default/files/documents/SLC_Gap_Fill_Methodology.pdf
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref24
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref24
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref25
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref25
https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection
https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection


J. Wickham, Completion of the 2006 national land cover database for the con-
terminous United States, Photogramm. Eng. Rem. Sens. 77 (9) (2006) 858–864
https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-
downloadable-data-collection.

[28] B. Wilson, A. Lister, R. Riemann, A nearest-neighbor imputation approach to
mapping tree species over large areas using forest inventory plots and moderate
resolution raster data, For. Ecol. Manag. 271 (2012) 182–198.

[29] P.J. Sellers, S.O. Los, C.J. Tucker, C.O. Justice, D.A. Dazlich, G.J. Collatz,
D.A. Randall, A global 1⁄1 degree NDVI data set for climate studies. Part 2: the
generation of global fields of terrestrial biophysical parameters from the NDVI, Int.
J. Rem. Sens. 15 (17) (1994) 3519–3545.

[30] P.E. Thornton, S.W. Running, M.A. White, Generating surfaces of daily meteor-
ological variables over large regions of complex terrain, J. Hydrol. 190 (1997)
214–251.

[31] USGS (United States Geographical Survey), National elevation dataset (NED),
Available at: https://lta.cr.usgs.gov/NED, (2008) , Accessed date: 23 April 2018.

[32] I.D. Moore, R.B. Grayson, A.R. Ladson, Digital terrain modelling: a review of hy-
drological, geomorphological, and biological applications, Hydrol. Process. 5
(1991) 3–30.

[33] P.E. Gessler, I.D. Moore, N.J. McKenzie, P.J. Ryan, Soil–landscape modeling and
spatial prediction of soil attributes, Int. J. Geogr. Inf. Syst. 9 (4) (1995) 421–432.

[34] T.D. Frank, Mapping dominant vegetation communities in the Colorado Rocky
mountain front range with Landsat thematic mapper and digital terrain data,
Photogramm. Eng. Rem. Sens. 54 (12) (1988) 1727–1734.

[35] Level III and IV Ecoregions of the Continental United States, US Environmental
Protection Agency, 2017 Available at: https://www.epa.gov/eco-research/level-iii-
and-iv-ecoregions-continental-united-states , Accessed date: 12 November 2018.

[36] R Development Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.

[37] T. Lumley, Leaps: Regression Subset Selection. R Package Version 2.9, (2009)
Available at: http://cran.rproject.org/web/packages/leaps/index.html , Accessed
date: 23 April 2018.

[38] V. Lemay, H. Temesgen, Comparison of nearest neighbor methods for estimating
basal area and stems per acre using aerial auxiliary variables, For. Sci. 51 (2) (2005)
109–119.

[39] B. Eskelson, H. Temesgen, V. Lemay, T. Barrett, N. Crookston, A. Hudak, The roles
of nearest neighbor methods in imputing missing data in forest inventory and
monitoring databases, Scand. J. For. Res. 24 (2009) 235–246.

[40] M.E. Goerndt, V. Monleon, H. Temesgen, Small-area estimation of county-level
forest attributes using ground data and remote sensed auxiliary information, For.
Sci. 59 (5) (2013) 536–548.

[41] S. Tuominen, S. Fish, S. Poso, Combining remote sensing, data from earlier in-
ventories, and geostatistical interpolation in multisource forest inventory, Can. J.
Res. 33 (2003) 624–634.

[42] R. McRoberts, M. Nelson, D. Wendt, Stratified estimation of forest area using

satellite imagery, inventory data, and the k-nearest neighbors technique, Rem. Sens.
Environ. 82 (2002) 457–468.

[43] T. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inf. Theor. 14 (1)
(1968) 50–55.

[44] G. Chirici, M. Mura, D. McInerney, N. Py, E. Tomppo, L. Waser, D. Travaglini,
R. McRoberts, A meta-analysis and review of the literature on the K-nearest
neighbors technique for forestry applications that use remotely sensed data, Rem.
Sens. Environ. 176 (2016) 282–294.

[45] M. Maltamo, A. Kangas, Methods based on k-nearest neighbor regression in the
prediction of basal area diameter distribution, Can. J. Res. 28 (8) (1998)
1107–1115.

[46] H. Temesgen, T. Barrett, G. Latta, Estimating cavity tree abundance using nearest
neighbor imputation methods for western Oregon and Washington forests, Silva
Fenn. 42 (3) (2008) 337–354.

[47] N.L. Crookston, A. Finley, yaImpute: an R package for k-NN imputation, J. Stat.
Software 23 (10) (2007) 1–16.

[48] J. Breidenbach, R. Astrup, Small area estimation of forest attributes in the
Norwegian National Forest Inventory, Eur. J. For. Res. 131 (2012) 1255–1267.

[49] F. Mauro, V. Monleon, H. Temesgen, K. Ford, Analysis of area level and unit level
models for small areas estimation in forest inventories assisted with LiDAR auxiliary
information, PLoS One 12 (12) (2017) e0189401.

[50] H. Lund, When is a forest not a forest? J. For. 100 (8) (2002) 21–28.
[51] J.N.K. Rao, Small Area Estimation, Wiley Series in Survey Methodology. John Wiley

and Sons, Hoboken, NJ, 2003 283 p.
[52] TPO (Timber Products Output Database), USDA Forest Service Southern Research

Station, 2012 Available at: https://www.fia.fs.fed.us/program-features/tpo/ ,
Accessed date: 23 April 2018.

[53] S. Hall, P. Marchand, Effects of stand density on ecosystem properties in subalpine
forests of the southern Rocky Mountains, Ann. For. Sci. 67 (2010) 102.

[54] A. Gjertsen, Accuracy of forest mapping based on Landsat TM data and KNN based
method, Rem. Sens. Environ. 110 (2007) 420–430.

[55] A. Finley, R. McRoberts, A. Ek, Applying an efficient k-nearest neighbor search to
forest attribute imputation, For. Sci. 52 (2) (2006) 130–135.

[56] S. Ko, P. Lautala, Advanced woody biomass logistics for co-firing in existing coal
power plant: case study of the Great Lakes States, Transport. Res. Rec. (2018),
https://doi.org/10.1177/0361198118797806.

[57] S. Eksioglu, A. Acharya, L. Leightley, S. Arora, Analyzing the design and manage-
ment of biomass-to-biorefinery supply chain, Comput. Ind. Eng. 57 (4) (2009)
1342–1352.

[58] M. Berggren, E. Ljunggren, F. Johnsson, Biomass Co-firing Potentials for Electricity
Generation in Poland - Matching Supply and Co-firing Opportunities vol. 32,
(2008), pp. 865–879 (9).

[59] J. Hansson, G. Berndes, F. Johnsson, J. Kjrstad, Co-firing biomass with coal for
electricity generation - an assessment of the potential in EU27, Energy Pol. 37 (4)
(2009) 1444–1455.

M.E. Goerndt et al. Biomass and Bioenergy 121 (2019) 64–77

77

https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection
https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref28
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref28
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref28
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref29
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref29
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref29
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref29
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref30
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref30
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref30
https://lta.cr.usgs.gov/NED
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref32
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref32
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref32
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref33
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref33
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref34
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref34
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref34
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref36
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref36
mailto:http://cran.rproject.org/web/packages/leaps/index.html
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref38
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref38
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref38
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref39
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref39
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref39
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref40
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref40
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref40
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref41
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref41
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref41
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref42
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref42
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref42
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref43
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref43
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref44
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref44
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref44
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref44
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref45
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref45
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref45
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref46
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref46
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref46
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref47
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref47
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref48
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref48
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref49
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref49
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref49
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref50
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref51
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref51
https://www.fia.fs.fed.us/program-features/tpo/
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref53
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref53
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref54
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref54
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref55
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref55
https://doi.org/10.1177/0361198118797806
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref57
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref57
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref57
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref58
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref58
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref58
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref59
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref59
http://refhub.elsevier.com/S0961-9534(18)30342-8/sref59

	Comparison of small area estimation methods applied to biopower feedstock supply in the Northern U.S. region
	Introduction
	Methods
	Study area
	Field data
	Auxiliary information
	Landsat imagery
	Land coverage
	Seasonal phenology and climate
	Topographic metrics and ecoregions
	Resampling

	Statistical analysis
	Multiple linear regression (MLR)
	Imputation through k-nearest neighbors (KNN)
	Stratification
	Composite predictors
	Estimation of forest attributes by power plant supply area
	Validation for SAE
	Potential forest biomass availability estimates for power plants


	Results and discussion
	County-level comparison
	Indirect estimation
	Composite prediction
	Optimal county-level estimators

	Power plant supply area-level estimation
	Potential biomass availability for power plants


	Conclusions
	Acknowledgements
	mk:H1_28
	References




