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Abstract

Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the

amount of Hg in trees is not well known. To determine the importance of Hg in trees, we ana-

lyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA

(Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar

concentrations of Hg averaged 16.3 ng g-1 among the hardwood species, which was signifi-

cantly lower than values in conifers, which averaged 28.6 ng g-1 (p < 0.001). Similarly, bark

concentrations of Hg were lower (p < 0.001) in hardwoods (7.7 ng g-1) than conifers (22.5 ng

g-1). For wood, concentrations of Hg were higher in yellow birch (2.1–2.8 ng g-1) and white

pine (2.3 ng g-1) than in the other species, which averaged 1.4 ng g-1 (p < 0.0001). Sites dif-

fered significantly in Hg concentrations of foliage and bark (p = 0.02), which are directly

exposed to the atmosphere, but the concentration of Hg in wood depended more on species

(p < 0.001) than site (p = 0.60). The Hg contents of tree tissues in hardwood stands, esti-

mated from modeled biomass and measured concentrations at each site, were higher in

bark (mean of 0.10 g ha-1) and wood (0.16 g ha-1) than in foliage (0.06 g ha-1). In conifer

stands, because foliar concentrations were higher, the foliar pool tended to be more impor-

tant. Quantifying Hg in tree tissues is essential to understanding the pools and fluxes of Hg

in forest ecosystems.

Introduction

Forests are important receptors of atmospheric mercury (Hg) deposition mainly because of

the large surface area of foliage that collects Hg [1]. Trees are second only to soils as the domi-

nant Hg pool in forest ecosystems. Trees contribute Hg to the forest floor via litterfall [2,3] and

throughfall [4, 5]. Trees not only absorb Hg through phloem via foliar stomata but also take up

Hg through xylem sap via roots [6]. Tree foliage can also re-emit Hg back to the atmosphere
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via transpiration [7]. Thus, trees mediate bi-directional transport of Hg between the atmo-

sphere and soils. Research on Hg in foliage improves understanding of Hg bioaccumulation in

the terrestrial food chain as tree foliage is an important food source for herbivores [8, 9].

Understanding the content of Hg in tree tissues would also help in the prediction of re-emis-

sion of Hg associated with losses of aboveground carbon pools [10]; biomass burning is a

potentially important but poorly characterized source of Hg emissions [11].

Studies have been conducted to determine Hg concentrations in various tree tissues includ-

ing foliage [3, 12–14], leaf litter [15–17], bark [18, 19] and roots [20]. Concentrations of Hg in

wood are much lower than in other tissues. Studies of wood Hg have examined historical Hg

deposition via the accumulation of Hg in tree rings using conifer species [21–24]. Mercury in

wood of hardwood species has also been reported but is often below detection limits [25] espe-

cially for maple (Acer spp.) [23, 26]. However, because wood is the largest component of forest

biomass, it can represent a larger Hg pool than foliage [27] and thus wood can be as important

as foliage and bark to Hg budgets in forests in spite of its low concentrations.

Differences in tree Hg concentrations with geographic location have been explained by varia-

tion in atmospheric Hg deposition. For example, Hg concentrations in foliage varied across sites

within the Adirondack Park in New York due to differences in atmospheric Hg deposition [28];

across the continental United States, concentrations varied with annual precipitation [25], which

is correlated with Hg deposition. Tree species within a site can differ in Hg concentration [17, 27],

presumably due to different rates of absorption through stomata or uptake via roots. Lack of infor-

mation on Hg concentrations from multiple species and tissue types across a geographic gradient

makes it difficult to evaluate the relative importance of species differences in Hg accumulation

rates versus differential exposure to atmospheric deposition. For example, the previous study that

compared 14 sites across North America rarely observed the same species at multiple sites [25].

The first objective of this study was to determine the concentrations of Hg in foliage, bark,

and wood across four study sites for eight tree species, five of which occur at more than two

sites. We compared the importance of site and species in controlling tree Hg concentrations to

indicate the relative importance of Hg exposure and the properties of tree species. We expected

Hg concentrations in foliage and bark to show more influence of location as they are more

exposed to the atmosphere to than is wood. Concentrations of Hg in wood were expected to be

more consistent across sites because of the limited translocation of Hg to wood. Our second

objective was to compare Hg pools among tissue types and between conifer and hardwood

stands. We expected woody tissues such as bark and wood to contain more Hg than foliage on

a land-area basis because of their greater mass.

Materials and methods

Site descriptions

Four forested sites in the northeastern USA, each with both hardwood and conifer stands,

were selected for sample collection (Table 1), based on the availability of tree inventory data

and previous Hg studies of throughfall, litter, soil and streams [17, 29]. Permissions to conduct

field studies were provided by employees of the State University of New York College of Envi-

ronmental Science and Forestry for the Huntington Wildlife Forest in NY, employees of the

US Forest Service for the Hubbard Brook Experimental Forest in NH, employees of the US

Geological Survey for Sleepers River Research Watershed in VT, and employees of the Univer-

sity of Maine for Bear Brook Watershed in Maine. At the Huntington Wildlife Forest in New

York [30], the Hubbard Brook Experimental Forest in New Hampshire [31], and Bear Brook

Watershed in Maine [32], soils are dominantly well-drained Haplorthods developed in glacial

drift. At Sleepers River Research Watershed VT, the conifer stand is on similar Spodosols, but
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the hardwood stand is on richer Inceptisols with a carbonate influence [33]. All our study sites

were affected by anthropogenic Hg emission [1] from powerplants in the Midwest and urban

centers of the Northeast [34, 35]. Total atmospheric Hg deposition was estimated at 32 μg m-2

yr-1 at Huntington Forest in the Adirondacks, 29 μg m-2 yr-1 at Sleepers River and Hubbard

Brook in central New England, and 27 μg m-2 yr-1 at Bear Brook Watershed in Maine (Fig 1),

using data from Yu et al. [36]. In that study, pools of Hg in soil organic horizons averaged 4.6

mg m-2 in the Adirondacks, 3.5 mg mg-2 in central New England, and 2.7 mg m-2 in Maine

[36]. Mineral soil Hg pools averaged 18, 18, and 19 mg m-2 in these three regions, such that all

three regions had a total soil Hg pool of 22 mg m-2 [36].

Field sampling

Dominant hardwood and conifer species were sampled in each stand, including American

beech (Fagus grandifolia Ehrh.), white ash (Fraxinus americana L.), yellow birch (Betula alle-
ghaniensis Britt.), sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red

spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.) and white pine (Pinus strobus
L.). Five of these species were sampled from at least three sites (Table 1). Nine individual trees

of each species in dominant canopy positions were sampled from August 7th to 13th 2015. For

American beech, we preferentially selected trees not severely affected by beech bark disease.

For each tree, bark without visible lichen was collected from the stem 1.3 m above the

ground with a chisel and hammer. Two cores were taken from the outer wood to the pith from

each tree at 1 m above the ground using a Pressler increment borer 5 mm in diameter. The

two cores were combined to form a single sample for each tree.

Sun-exposed leaves or needles without evidence of herbivory or pathogens were collected

from the upper canopy position using a shotgun at Sleepers River and Hubbard Brook. At

Huntington Forest and Bear Brook, foliage samples were collected using ladders and pole

pruners. For conifers, needles of all age classes were pooled from a lateral branch to form a sin-

gle foliage sample for each tree. To avoid contamination, samples were collected wearing

nitrile gloves and tools were rinsed with methanol between samples. Samples were stored in

doubled Ziploc bags on ice in the field and kept frozen in the laboratory until further analysis.

Laboratory analysis

Samples were cleaned using DI water and freeze-dried to constant mass at -80˚C and 7 Pa,

using FreeZone Plus 6 (Labconco, Kansas City, MO). Dried samples were ground into

Table 1. Four sites in the northeastern USA were used in this study.

Study location Stands Sampled

speciesa
Annual mean temperature

(˚C)

Annual mean precipitation

(cm)

Latitude (N) Longitude

(W)

Elevation

(m asl)

Huntington Forest,

NY

Hardwood BE, YB, SM 5.0 105 43˚59’2.3’’ 74˚14’1.1’’ 530

Conifer WP, BF 43˚58’25’’ 74˚13’26’’ 508

Sleepers River, VT Hardwood WA, YB, SM 6.0 110 44˚29’54’’ 72˚09’33’’ 540

Conifer RS, BF 44˚30’46’’ 72˚10’47’’ 670

Hubbard Brook, NH Hardwood BE, YB, SM 5.7 140 43˚56’13’’ 71˚74’20’’ 500

Conifer RS, BF 43˚56’24’’ 71˚44’24’’ 780

Bear Brook, ME Hardwood BE, YB, RM 5.2 132 44˚51’36’’ 68˚6’17’’ 430

Conifer RS 44˚51’42’’ 68˚6’12’’ 446

a tree species included American beech (BE), yellow birch (YB), red maple (RM), sugar maple (SM), red spruce (RS), white ash (WA), white pine (WP) and balsam fir

(BF).

https://doi.org/10.1371/journal.pone.0196293.t001
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homogenized particles using a Freeze Mill (Metuchen, NJ). For each type of tissue and species,

samples were composited in groups of three trees prior to Hg analysis. This approach gives a

more accurate estimate of the population mean than a sample of three trees, for the same ana-

lytical effort.

Composited samples were analyzed for Hg concentration using thermal decomposition,

catalytic conversion, amalgamation, and atomic absorption spectrophotometry [37], using a

Milestone DMA 80 direct Hg analyzer (Shelton, CT) [38]. For each sample, two replicate sam-

ples of ~100 mg of tissue were weighed into nickel boats and auto-loaded into the instrument.

Aluminum oxide was added to each tissue sample to ensure that the samples were fully burned.

The reported Hg concentration is the average of the two replicate samples.

Quality control

Before running tissue samples, we analyzed a batch of blanks, primers (NIST DORM-2, dog-

fish muscle, ~50 mg, 410 ± 41 ng g-1), calibration verification samples (NIST 2976 mussel tis-

sue, ~15 mg, 61 ± 6 ng g-1), two quality control samples (NIST 1515 apple leaves, ~5 mg,

Fig 1. Sampling locations in this study (circles) and monitoring stations (triangles) in northeastern USA. The base map shows the sum of dry and wet Hg

deposition modeled by Yu et al. (2014).

https://doi.org/10.1371/journal.pone.0196293.g001
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44 ± 4 ng g-1) and one method blank with aluminum oxide. We did not proceed with sample

analysis unless the Hg recovery values of NIST reference materials were within 10% of the cer-

tified values. After every 10 samples, we ran a calibration verification (NIST 2976), and a cali-

bration blank and a matrix spike. The matrix spike was one actual tissue sample spiked with

the standard reference material (NIST 2976). The average Hg recovery was 99% (n = 32,

rsd = 8%) of NIST 2976, 100% (n = 16, rsd = 5%) of DORM-2, 100% (n = 8, rsd = 5.7%) of

NIST 1515 and 107% (n = 8, rsd = 14%) of the matrix spike, which were all within the accept-

able range of values.

The measured Hg concentrations in samples ranged from 0.04 to 5.6 ng in units of mass,

which were almost all higher than the method detection limit (MDL) of 0.04 ng in units of

mass (1.27 ng g-1). Two wood samples from sugar maple had measured values equal to the

MDL.

Statistical analysis

We treated the concentration of Hg measured for one composite sample of three trees as one

individual observation in the following analyses. We log-transformed the data for all the analy-

ses to meet the assumption of normality of the residuals.

To test the effects of tissue type on Hg concentrations, we applied a general linear model

with tissue type as the main effect for each species in different sites. Because Hg concentration

differed mainly by tissue type, we tested the effects of species and sites on Hg concentrations

using a two-way ANOVA for each tissue type individually.

To express Hg content on a land-area basis, the average tissue concentration was multiplied

by the estimated biomass of bark, foliage, branches, and bole wood for each species in hard-

wood and conifer stands at the four sites. Aboveground biomass in foliage, bark, branches,

and wood was estimated using stand inventory specific to Huntington Forest [39], Sleepers

River [33], Hubbard Brook [40] and Bear Brook [41] and allometric models developed for

these species at Hubbard Brook [42]. To calculate the ratio of branch bark to wood, we used a

weighted average of wood and bark based on the species and elements reported by Whittaker

et al [43]. We estimated Hg content in branches using Hg concentrations of bark and wood

times the estimated biomass in branch bark and wood. To estimate Hg concentrations of

minor species that were not collected in this study, we used the average Hg concentration of

dominant species. We summed across all the trees to obtain the total content of Hg in both

hardwoods and conifer stands for each tissue type and site.

Statistical analyses were conducted with SAS 9.4 (SAS Institute Inc. 2013).

Results

Concentrations of Hg

Foliage, with means by species and site ranging from 11 to 48 ng g-1, had the highest Hg con-

centrations. Bole wood had the lowest concentrations (0.4–2.8 ng g-1), and bark was interme-

diate (4–26 ng g-1). This pattern was consistent across all the species and sites (p< 0.001 using

least square means in a general linear model).

Species also differed in Hg concentrations. For foliage, concentrations of Hg were higher in

balsam fir (30–48 ng g-1, depending on the site) and red spruce (20–37 ng g-1); the other spe-

cies ranged from 10–23 ng g-1 (average for each species within site) (p< 0.001; Fig 2). For

bark, likewise, concentrations of Hg in balsam fir (22–26 ng g-1) and red spruce (21–25 ng g-1)

were higher than in the other species (4–20 ng g-1) (p< 0.001; Fig 3). For bole wood, concen-

trations of Hg were higher in yellow birch (2.1–2.8 ng g-1) and white pine (2.3 ng g-1) than in

the other species (0.4–2.2 ng g-1) (p< 0.001; Fig 4).

Mercury in trees in the northeastern USA
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Sites differed in concentrations of Hg for foliage (p< 0.001) and bark (p< 0.001) but not

for bole wood (p = 0.24). For foliage, Hg concentrations were lower at Sleepers River (13–30

ng g-1 depending on the species) than Huntington Forest (15–48 ng g-1), Hubbard Brook (17–

31 ng g-1), and Bear Brook (11–38 ng g-1). For bark, the concentration of Hg was lower at Bear

Brook (4–21 ng g-1) than at Huntington Forest (6–26 ng g-1), Sleepers River (6–25 ng g-1) and

Hubbard Brook (6–26 ng g-1). Concentrations of Hg in bole wood was similar among the four

sites (Fig 4).

Mercury pools

On a land-area basis, non-leaf tissues contained more Hg than did foliage in hardwood stands,

because of their greater mass, in spite of lower Hg concentrations. The average biomass by tis-

sue type in the hardwood stands was 111 Mg ha-1 for bole wood, 11 Mg ha-1 for bark and 3 Mg

ha-1 for foliage. Across all four hardwood stands, bole wood Hg averaged 0.16 g ha-1 and bark

averaged 0.10 g ha-1, while foliage averaged 0.06 g ha-1 (Table 2). For conifer stands, this pat-

tern held only at Hubbard Brook. At Huntington Forest, Sleepers River and Bear Brook, con-

tents of Hg in foliage (averaging 0.05 g ha-1 across three sites) were comparable to or larger

than those in bole wood (0.03 g ha-1) and bark (0.04 g ha-1), because of the high Hg concentra-

tion of conifer foliage.

For the total aboveground Hg pool (with branch Hg concentrations estimated as intermedi-

ate between bark and wood), the hardwood stands contained more Hg than the conifer stands

Fig 2. Concentrations of Hg in foliage of dominant species at four sites in the northeastern USA. Tree species included American beech (BE), yellow birch (YB),

red maple (RM), sugar maple (SM), red spruce (RS), white ash (WA), white pine (WP) and balsam fir (BF). Error bars represent the SE of Hg concentrations of three

composited samples.

https://doi.org/10.1371/journal.pone.0196293.g002
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at Hubbard Brook (1.14 and 0.39 g ha-1), Sleepers River (0.22 and 0.04 g ha-1) and Huntington

Forest (0.47 and 0.25 g ha-1), because of the greater biomass in hardwood stands. The esti-

mated total aboveground biomass was 304 Mg ha-1 in the hardwood stand but only 88 Mg ha-1

in the conifer stand at Hubbard Brook, 80 compared to 10 Mg ha-1 at Sleepers River and 165

compared to 34 Mg ha-1 at Huntington Forest. At Bear Brook, where the conifer stand (28 Mg

ha-1) was only modestly less massive than the hardwood stand (104 Mg ha-1), the conifer stand

had a larger content of Hg (0.32 g ha-1) than the hardwood stand (0.26 g ha-1), due to the high

concentration of Hg in conifer needles.

Discussion

Concentrations of Hg in foliage, bark and wood

Our finding of larger Hg concentrations in foliage (mean of 21 ng g-1 across species and site)

and bark (mean of 13 ng g-1) than in wood (mean of 2 ng g-1) was consistent with studies in

Norway [44], Ontario Canada [14, 23], Washington USA [27], and Vermont and New Hamp-

shire USA [45]. This pattern was also documented in a review paper of Hg concentrations in

forests [46] and a study of tree Hg concentrations across 14 sites in the USA [25]. Foliage has

high Hg concentration because foliage absorbs Hg0 from the atmosphere through stomata

[47], and Hg is accumulated over months for hardwood species [3, 12] and over years for coni-

fers [48, 49]. Thus, it is not surprising that deciduous foliage collected late in the growing sea-

son and conifer needles including those older than one year had higher Hg concentrations

than bark and wood. Foliage collected from hardwood species in early spring might have

Fig 3. Concentrations of Hg in bark of dominant species at four sites in the northeastern USA. Tree species included

American beech (BE), yellow birch (YB), red maple (RM), sugar maple (SM), red spruce (RS), white ash (WA), white pine (WP)

and balsam fir (BF). Error bars represents the SE of Hg concentrations of three composited samples.

https://doi.org/10.1371/journal.pone.0196293.g003
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lower Hg concentrations than bark; at Huntington Forest, foliage collected on June 1st from

American beech, sugar maple and yellow birch had Hg concentrations of only 4 to 7 ng g-1,

whereas foliage collected on August 1st had concentrations four times higher [13].

Bark and wood have less exposure to atmospheric Hg than the foliage. Bark can capture

and retain atmospheric Hg through surface sorption. A recent study of Australia pine (Pinus
nigra J.F.Arnold) found that tree bark first absorb gaseous Hg0 or captured particulate Hg on

the surface. Then, Hg was bound to thiol-containing molecules or tannins [50, 51]. Mercury

recently deposited on the surface of leaves and bark was not included in our analysis, as we

removed dust and other foreign material from the tissue surfaces before analysis. The fact that

Hg concentrations in wood are so low suggests that little Hg moves from the foliage through

the phloem [46], from bark into the wood [21, 52] or from roots to aboveground tissues in

xylem sap [6].

Effect of species and site on Hg concentrations

The observation that different tree species are characterized by different Hg concentrations in

foliage is not surprising, because the main pathway of Hg from the atmosphere to foliage is

through gas exchange via stomata. Species differ in rates of leaf gas exchange [53, 54], which

might account for the variation in foliar Hg that we observed.

Concentration differences reported among tree species have not been consistent among

studies. In this study, concentrations of Hg in balsam fir and red spruce foliage were twice

those in the other species. This pattern of higher foliar Hg concentration in conifers than

Fig 4. Concentrations of Hg in bole wood of dominant species at four sites in the northeastern USA. Tree species included

American beech (BE), yellow birch (YB), red maple (RM), sugar maple (SM), red spruce (RS), white ash (WA), white pine (WP)

and balsam fir (BF). Error bars represent the SE of Hg concentrations of three composited samples.

https://doi.org/10.1371/journal.pone.0196293.g004

Mercury in trees in the northeastern USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0196293 April 23, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0196293.g004
https://doi.org/10.1371/journal.pone.0196293


hardwood species agrees with studies in Ontario Canada [48], Washington USA [27], and Ver-

mont and New Hampshire USA [45]. Higher foliar Hg concentrations in American beech

than red spruce have been reported in New York [28] and Vermont and New Hampshire [45],

probably because only needles up to 2 years old were sampled. We observed higher Hg con-

centrations in conifer needles, collecting needles of age classes up to 5 years old. In a survey of

45 sites in the Adirondacks, conifer needles in the 2-year age class had higher Hg concentra-

tions than did hardwood leaves, but the current-year needles had lower Hg concentrations

[28]. Other studies have also reported Hg accumulation in needles of older age classes in black

pine (Pinus nigra J.F.Arnold) [55] and balsam fir and red spruce [56].

Mercury concentrations in bark and wood have less often been reported. Our observation

that balsam fir and red spruce had higher Hg concentration in bark than other species might

suggest that conifers have a higher rate of Hg sorption from the bark surface than hardwood

species. The high Hg concentrations we observed in bole wood in yellow birch and white pine

might be due to greater rates of Hg transport from either roots or foliage.

We found that sites differed in Hg concentrations in bark and foliage, but not in bole wood.

Because foliage and bark are exposed to the atmosphere, Hg concentrations in these tissues

may be more influenced by atmospheric Hg. The lower Hg concentration in bark at Bear

Brook than in other three sites might be due to low Hg deposition in this site (Fig 1) due to its

Table 2. Biomass and Hg content of foliage, bark and bole wood in hardwood and conifer stands in this study and three published studies.

Study location Stand

typea
Foliage Bark Bole wood Branches Reference

Biomass

(Mg ha-1)

Hg content

(g ha-1)

Biomass

(Mg ha-1)

Hg content

(g ha-1)

Biomass

(Mg ha-1)

Hg content

(g ha-1)

Biomass

(Mg ha-1)

Hg content

(g ha-1)

Huntington, NY,

USA

Beech-

maple

2.2 0.04 9.4 0.08 104.8 0.11 49.4 0.24 This study

Fir-pine 1.7 0.05 2.5 0.05 20.7 0.04 8.6 0.11

Sleepers River, VT,

USA

Ash-

maple

1.4 0.02 5.6 0.04 50.0 0.05 23.4 0.11 This study

Spruce-fir 0.5 0.01 1.0 0.01 7.5 0.01 0.9 0.01

Hubbard Brook,

NH, USA

Beech-

maple

7.6 0.15 21.4 0.26 221.7 0.36 53.0 0.37 This study

Spruce-fir 4.7 0.11 8.7 0.12 73.3 0.14 1.1 0.02

Bear Brook, ME,

USA

Beech-

maple

2.0 0.03 6.6 0.03 67.9 0.11 27.5 0.09 This study

Spruce 2.3 0.09 2.9 0.06 21.9 0.05 0.9 0.12

Dongling, Beijing,

China

Chinese

pine

13.5 0.43 5.8 0.02 51.7 0.14 24.5 0.48 Zhou et al., 2017

Oak 5.7 0.20 8.8 0.33 793.8 0.11 54.7 0.69

Larch 4.8 0.19 7.5 0.20 67.5 0.15 17.6 0.33

Birch-

Carya

1.1 0.05 3.0 0.06 27.2 0.08 9.4 0.12

New Hampshire

and Vermont, USA

Beech-

maple

5.7 0.18 N/A N/A 24.5 0.15 N/A N/A Richardson and
Friedland, 2015

Spruce-fir 1.6 0.15 N/A N/A 9.1 0.30 N/A N/A

Washington, USA Red

Alder

2 0.03 N/A N/A 113 < d.l. N/A N/A Obrist et al., 2012

Douglas

fir

3 0.32 N/A N/A 136 0.54 N/A N/A

a Oak refers to Quercus liaotungensisMayr. Chinese pine refers to Pinus tabulaeformis Carr. Larch refers to Larix principis-rupprechtii Mayr. Birch refers to Betula
platyphylla Suk and Carya refers to Carya cathayensis Sarg.

https://doi.org/10.1371/journal.pone.0196293.t002

Mercury in trees in the northeastern USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0196293 April 23, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0196293.t002
https://doi.org/10.1371/journal.pone.0196293


distance from Hg emission sources in the Midwest and urban centers of the northeastern U.S.

[34, 35]. Lack of an effect of site on Hg concentrations in bole wood could be due to the limited

transport of Hg to wood from the environment, as discussed above.

Pools of Hg

The relative contribution of tree tissues to Hg pools at the study locations depends on both tis-

sue concentrations and the biomass of those tissues, both of which vary across stands and sites

(Table 2). The larger content of Hg in bole wood than in foliage in our hardwood stands was

not surprising, because of the much larger biomass of bole wood than foliage. In this study, the

bole wood biomass was 34–47 times foliar biomass, whereas the foliar Hg concentration was

only 11–21 times bole wood Hg concentration across our four hardwood stands (Table 2).

Similarly, wood contained more Hg than foliage for individual hardwood trees in Ontario,

Canada [57] and for mixed hardwood forests in Beijing, China [58] and in New Brunswick,

Canada [56]. Thus, wood can be at least as important as foliage for Hg budgets of forests. Note

that our hardwood foliage samples were collected in late summer. The Hg concentration in

foliage collected in October might be 50–70% higher, based on observations of beech, sugar

maple and yellow birch in the Adirondacks [13]. If so, the Hg pool in foliage would then be

0.09 g ha-1, still less than the Hg pool in wood (0.16 g ha-1).

In contrast, the content of Hg in bole wood in conifer stands was not always larger than the

needles at our four sites. Though the bole wood biomass was 8–12 times the biomass of nee-

dles, the Hg concentration in needles was 16–17 times the wood Hg concentration, depending

on the site. Previous studies of conifers have reported greater Hg content of bole wood than

needles: a Douglas-fir stand in Washington State, the bole wood was reported to contain more

Hg (0.5 g ha-1) than the needles (0.3 g ha-1), and in eight spruce-fir stands in New Hampshire

and Vermont, the bole wood contained more Hg (0.3 g ha-1) than the needles (0.2 g ha-1) [45].

However, in both of these studies, only recent age classes of needles were collected (up to two

years), which might underestimate Hg concentrations by a factor of 2, based on observations

of balsam fir and red spruce in New Brunswick, Canada [56]. It is probably not uncommon for

conifer forests to have more Hg in needles than in wood, due to the long exposure of evergreen

foliage to the atmosphere, while for deciduous forests, foliage is a smaller Hg pool than bole

wood.

Relationship to previous Hg studies in the same stands

In a study of throughfall, litter inputs, and gaseous emissions of elemental mercury from the

soil surface at the Huntington Forest, New York, Hg inputs were higher and losses were lower

under conifers compared to hardwoods [17]. Our results appear consistent with this differ-

ence, as conifers seem to accumulate Hg to a greater degree than hardwoods. However, the

amount of Hg contained in trees is too small to explain the budget discrepancy of 0.1 g ha-1 yr-

1 [17]. Soil Hg pools in northern forests (~300 g ha-1) are orders of magnitude greater than

those in trees [17, 36], so accumulation in soils is a more likely mechanism to explain the dis-

crepancy in Hg budgets between stands at this site.

At Huntington Forest, the foliage of the same three hardwood species we sampled in 2015

was sampled on a monthly basis throughout the growing season in 2009 and 2010 [17]. Using

their reported daily Hg accumulation rate [17], we estimated foliar Hg concentrations for the

exact leaf age we sampled (early August) in 2009 and 2010. Foliar Hg concentrations appear to

be decreasing over time, from 21.3 ± 0.8 ng g-1 in 2009 and 19.7 ± 0.3 ng g-1 in 2010, to

17.0 ± 0.4 ng g-1 in 2015. The rate of decrease is thus -0.7 ± 0.1% yr-1 (p = 0.002), using a simple

linear regression with time as the independent variable and treating the three species as
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replicates. Similarly, fluxes of Hg in leaf litter Hg declined from 2004 to 2015 at Huntington

Forest [59]. Concentrations of atmospheric Hg0 at Huntington Forest were reported to decline

with a slope of -1.6 ± 2.0% yr-1 from 2005 to 2008 and a slope of -1.0 ± 2.0% yr-1 from 2009 to

2014 associated with declines in regional emissions [60]. Thus, the decreases in foliar Hg likely

reflect the decline in atmospheric Hg, the major source of Hg in tree foliage. Measurements of

Hg concentration in foliage or litterfall would appear to be an effective approach to monitor

future changes in atmospheric Hg deposition. Note that a biomonitoring program involving

conifer species would need to specify needle ages since Hg concentration in needles vary by

age class [55].

Conclusions

Concentrations of Hg were studied in tree foliage, bark and bole wood for eight species in

hardwood and conifer stands in four study sites in the northeastern USA “S1 Table”. Concen-

trations of Hg varied by tree tissue type, with foliage > bark > bole wood in both hardwood

and conifer stands. Concentrations of Hg in foliage and bark varied significantly with species

and site, with species the more important explanatory variable. Concentrations of Hg in bole

wood differed by species but not by site, suggesting that translocation of Hg from foliage, roots

and bark is limited.

The Hg content of aboveground biomass varied by forest type and site. Bole wood con-

tained more Hg than foliage and bark in hardwood stands because of the much larger biomass

of bole wood; conifer stands had larger Hg concentrations in foliage than in wood because of

the higher concentrations in conifer needles than deciduous leaves. Understanding the distri-

bution of Hg in tree tissues could help inform management of Hg pools and fluxes and policy

decisions regarding the fate of harvested biomass.

Supporting information

S1 Table. Concentrations of Hg in each composited tissue sample in this study.
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