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Forest landscape simulation models (FLSMs) – often used to understand and project 
forest dynamics over space and time in response to environmental disturbance – have 
rarely included realistic epidemiological processes of plant disease transmission and 
impacts. Landscape epidemiological models, by contrast, frequently treat forest ecosys-
tems as static or make simple assumptions regarding ecosystem change following dis-
ease. Here we present the Base Epidemiological Disturbance Agent (EDA) extension 
that allows users of the LANDIS-II FLSM to simulate forest pathogen spread and host 
mortality within a spatially explicit forest simulation. EDA enables users to investigate 
forest pathogen spread and impacts over large landscapes (> 105 ha) and long time 
periods. We evaluate the model extension using Phytophthora ramorum as a case study 
of an invasive plant pathogen causing emerging infectious disease and considerable 
tree mortality in California. EDA will advance the utility of LANDIS-II and forest 
disease modeling in general.

Keywords: LANDIS-II, forest landscape model, pathogen, Phytophthora ramorum, 
disturbance, epidemiological model

Introduction

Epidemiological disturbances, such as emerging pathogens and infectious disease out-
breaks, are important agents of forest change around the world, causing tree mortal-
ity at scales ranging from individual trees of a single species to entire forest patches 
(Meentemeyer et al. 2008, Welsh et al. 2009). Beyond the complete loss of certain tree 
species, forest pathogens can significantly alter the functioning of forested ecosystems 
and the services they provide (Liebhold et al. 1995, Vitousek et al. 1997, Simberloff 
2000). For example, pathogens can reduce the capacity of forests to sequester carbon, 
and can strongly interact with other types of disturbance such as fire, insects, and 
drought (Vitousek et al. 1997, Anderson et al. 2004, Dwyer et al. 2004, Dale et al. 
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2009, Jactel et al. 2012). Developing a better understanding 
of how forest pathogens interact with other disturbances and 
changing environmental conditions to alter forest ecosystem 
dynamics is crucial for land managers, decision makers, and 
any stakeholder with multiple local interests involved (Cobb 
and Metz 2017).

Forest landscape simulation models (FLSMs) have been 
developed to specifically address management and research 
questions at landscape scales (> 105 ha) by projecting for-
est dynamics over space and time (Mladenoff 2004, Scheller 
and Mladenoff 2007). These models typically include details 
such as tree age, species and biomass, and are widely used to 
analyze the influence of disturbances over time as they affect 
large-scale forest ecosystem dynamics (Thompson et al. 2016). 
One of several FLSMs, LANDIS-II stands out as a process-
based forest landscape model that can include variable time 
steps for different ecological processes (e.g. succession, distur-
bance, seed dispersal, forest management, carbon dynamics) 
and simulate their interactions as an emergent property of the 
independently simulated processed (Mladenoff 2004, 2005, 
Scheller et al. 2007). LANDIS-II continues to grow its user 
community and several extensions are available to simulate 
disturbances like wind, fire, insects, harvesting, or land-use 
change. To date, the representation of forest pathogen and 
disease spread in FLSMs including LANDIS-II has been 
lacking. 

Landscape epidemiological models frequently treat forest 
composition and host density as static (Meentemeyer et al. 
2011), meaning that the species do not age or experience 
effects of disturbance. This makes it difficult to understand 
how disease alters competitive interactions among species, 
a process known as apparent competition, which can alter 
species composition at a landscape level (Cobb et al. 2010). 
This lack of realistic changes in host community composi-
tion greatly impedes modeling the interactions of other 
landscape-level disturbances with disease spread (Cobb and 
Metz 2017).

In this paper, we fill this gap by introducing the Base 
Epidemiological Disturbance Agent (EDA) extension for 
LANDIS-II, which simulates forest pathogen spread and 
mortality in forested landscapes. The new extension is com-
patible with all LANDIS-II succession extensions and can be 
used in conjunction with other disturbance extensions (e.g. 
fire, insect, wind) to simulate their combined effects on forest 
landscape dynamics. In this paper, we provide an overview of 
the modeling framework behind Base EDA and an example 
application of the extension to simulate the expansion of the 
pathogen (Phytophthora ramorum) that causes ‘sudden oak 
death’ within the Big Sur area of California (USA). 

Model description

LANDIS-II is a raster-based modeling framework consisting 
of a model core that links, parses, and validates data from 
multiple extensions (modules) and allows the user to ‘plug 

in’ a forest succession extension and any number of optional 
disturbance extensions (Scheller et al. 2007). EDA is a dis-
turbance extension compatible with all LANDIS-II succes-
sion extensions. It is open source and freely available at the 
LANDIS-II website < www.landis-ii.org >. The download 
comes with an installer, user guide and sample data. 

Base EDA requires the user to supply a raster map with 
location(s) of initial infection. The user must also supply 
agent-specific parameters such as host transmissivity, host 
susceptibility, climate tolerances and preferences, mean 
transmission rate, acquisition rate, maximum dispersal dis-
tance, and choose the appropriate dispersal kernel and expo-
nent (see below). The user also provides parameters defining 
how other disturbances modify likelihood of infection. We 
demonstrate Base EDA with a case study of Phytophthora 
ramorum, the pathogen which causes sudden oak death, a 
major forest disease in California (Meentemeyer et al. 2008, 
2011, Metz et. al. 2017). For sudden oak death, fire kills the 
pathogen and slows reinfection for several years following fire 
(Beh et al. 2012).

Base EDA is specifically designed to simulate asymmetric 
weather-driven transmission of pathogen infection within a 
multi-host landscape. Transmission is modeled as a dynamic 
process affecting a meta-population comprised of N con-
tiguous subpopulations represented by cells (sites) arranged 
on a grid. Cells contain forest tree species age cohorts, and 
(optionally) nonforest vegetation types. Tree mortality simu-
lated by EDA is passed to the succession model that in turn 
handles vegetation response to that mortality (e.g. changes 
in light, water, and/or nutrients, depending on the succes-
sion extension used). Epidemiological disturbances within 
the EDA are probabilistic at the site level, where each site 
is assigned a probability of being in one of the following 
states: susceptible (S), infected (infectious non-symptomatic) 
(I), diseased (infectious and symptomatic) (D). Probabilities 
are compared with a uniform random number to determine 
whether the site becomes infected or, if already infected, to 
become diseased. Disease causes species- and cohort-specific 
mortality in the cell. The epidemiological model is similar to 
that in Meentemeyer  et  al. (2011) with adjustments made 
to fit the LANDIS-II framework and account for mortality. 
Additionally, the model can handle more than one EDA agent 
(pathogen), and is most compatible with aerial dispersal.

Site host index

Site host index (SHI) was adapted from the ‘site resource dom-
inance’ concept in the LANDIS-II Biological Disturbance 
Agent Extension (Sturtevant et al. 2004). SHI accounts for 
the spatial distribution of known hosts of the EDA agent and 
is a combined function of tree species composition and the 
age cohorts present on that site. This approach allows the 
quantification of susceptibility for each non-infected cell to 
become infected, and the suitability of each infected cell to 
produce infectious spores. The relative host index value of a 
given species cohort is defined by its host competency class, 
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where low, medium, and high competency classes are user-
defined using values ranging between 1 and 10, with non-
hosts having a value of 0. The EDA extension compares a 
look-up table with the species cohort list at each cell gen-
erated by LANDIS-II to calculate SHI at time t using one 
of two methods: 1) the host value from the maximum host 
competency class present, or 2) an average host value of all 
tree species present, where the host value of each species is 
represented by the one assigned to the oldest cohort. Species 
identified as ‘ignored’ do not contribute to the calculation of 
average resource value, while non-host species that are not 
ignored contribute a value of 0. Non-sporulating hosts (i.e. 
hosts that do not contribute to pathogen or disease transmis-
sion) should not be included in the host index calculation.

Site host index modifiers
Site host index modifiers (SHIMs) are optional parameters 
used to adjust SHI to reflect variation introduced by both 
site environment (i.e. land type) and recent disturbances 
(Sturtevant  et  al. 2004). Land type modifiers (LTMs) and 
disturbance modifiers (DMs) can range between –10 and 
+10, and are added to the SHI value of all affected sites where 
host species are present (SHI > 0). LTMs are assumed to be 
constant for the entire simulation, while DMs have a defined 
duration and decline linearly with the time since last distur-
bance (tDST) as follows:

DM t DM
DM t

DMDST max DST
duration DST DST

duration DST

( ) =
−

,
,

,

*

Disturbances that may affect a given EDA agent include  
fire, wind, other EDA agents and insects, as well as timber 
harvest. SHI is then modified by LTM and the sum of all 
DMs:

SHIM t SHI t LTM DM t DM twind fire( ) = ( ) + + ( ) + ( ) +( )  

The user should calibrate the two modifiers to reflect the 
relative influence of species composition/age structure, 
the abiotic environment, and recent disturbance on SHI. 
SHIM is normalized by its mean over the entire study area, 

SHIM t
SHIM t
SHIMmean

( ) = ( ) , and modifies the disease transmis-

sion rate, β (see section Weather). Normalization of SHI 
allows comparison of β against homogeneous landscape con-
ditions (where SHIM = 1) and to interpret β as the rate of 
secondary infection of cells by a single infected neighboring 
cell in an otherwise uninfected landscape.

Weather

An annual weather index, w t( ) , is used to account for the 
effect of weather conditions on the probability of uninfected 
hosts becoming infected, and infected hosts spreading an indi-
vidual EDA agent. Weather predictors (or transformations 

thereof ) should be selected based on their relevance to the 
chosen EDA agent. The weather index is multiplied by a 
baseline transmission rate, β0 , to produce a time-dependent 
transmission rate, β βt w t( ) = ( ) 0, where β0  is defined by the 
user. The basic weather index for year t, W t( ) , comprises the 
cumulative effect of N weather predictors (e.g. rainfall alone, 
or rainfall and temperature) over a range of months, specified 
by the user (e.g. April to June), and is calculated as follows:

W t X X X
d month t month t

N
A B

( ) = …
∈ ( ) … ( ) 

∑
, ,

* * *1 2 	 (1)

where X X X N1 2* * *…  represent the weather predictors and 
the cumulative sum runs over days d included between two 
user-defined months (monthA and monthB) for the current  
year t. If necessary, weather predictors in (Eq. 1) can be 
replaced by derived (e.g. aggregated, or transformed) ver-
sions. As an example, a predictor can be aggregated (summed 
or averaged) over N consecutive days of a week or month 
(e.g. cumulative precipitation). Transformed predictors are 
expressed by a function, (X). In the current version of the 
extension (ver. 1.0), only a polynomial transformation is 
available for the user, defined as:

f X A B exp C
X
D

E
F

( ) = + + 



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













* ln 	  

where A, B, C, D, E, F are constants specified by the user to 
adjust the shape of the polynomial (e.g. improving polyno-
mial fit to empirical data on response of EDA agent to changes 
in temperature). As an example, such a transformation can 
reflect changes in rate of pathogen sporulation at increas-
ing temperature values. The actual weather index, w t( ),  
is normalized by the mean Wmean  over the available time 
series of historical weather predictors: w t W t Wmean( ) = ( ) / .  
Normalization means that β0  can be interpreted as the 
annual transmission rate under average (or under constant) 
weather conditions. The weather index built this way varies 
annually, but is spatially-uniform within each ecoregion.

Epidemiological processes

The epidemiological model shares features with spatially-
structured metapopulation models and relies on a few 
important assumptions: first, only the presence/absence of 
infection in each cell is accounted for. This simplification 
ignores a transient effect (occurrence, spread and intensifica-
tion) within the same cell, assuming that an effective level of 
inoculum is reached rapidly (but still below the maximum 
sporulating capacity of the cell). Improving this approxima-
tion would require a much larger computational effort in 
the parameter estimation procedure described in Filipe et al. 
(2012). Second, infected cells immediately become infec-
tious, which is particularly true for an EDA with a small 
latent period across its host range. Third, infected sites remain 
infectious for an undetermined (i.e. long) period; in epidemi-
ological terms the infectious period is considered indefinite 
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and is left out of the model. The practical implication is that 
no cell can recover from infection throughout the simulation, 
for example by a within-host process such as a host defensive 
response. However, conversion from infected to uninfected 
status of a cell can occur due to 1) mortality of susceptible 
species by disease or other disturbances and/or 2) succes-
sional processes that result in a community with no hosts.

At every time step t, a susceptible cell (site) i can become 
cryptically infected subject to a force of infection Λi t( )  and, 
once infected, it can become diseased at rate rD. Despite 
potentially containing dead hosts, symptomatically infected 
(diseased) cells have the same transmission rate, i.e. are as 
infectious as cryptically infected cells. The probabilities that 
cell i is in each of the possible states (susceptible, infected, 
diseased), Pi,S, Pi,I, and Pi,D, respectively, are governed by a 
system of differential equations:
∆
∆

Λ
P

t Pi S
i i S

,
,t

= − ( )

∆
∆

Λ
P

t P r Pi I
i i S D i I

,
, ,t

= ( ) −

∆
∆
P

Pi D
D i I

,
,t

r=

The initial conditions for each cell, at the estimated time of 
onset of the outbreak, are Pi,S = 1, Pi,I = 0, Pi,D = 0, except at 
the cell estimated to be the location of the first infection, 
where Pi,S = 0, Pi,I = 1, Pi,D = 0. The force of infection, Λi t( ),  
is given by:

Λ βi
j i

j i j I D i S ijt t SHIM t SHIM t P K d( ) = ( ) ( ) ( ) ( )
≠

+∑ * * *, | , 	 (2)

where β βt w t( ) = ( ) 0  is the transmission rate, with w t( )  the 
annual index of weather fluctuation about a N-year average 
(see section Weather) and β0  the baseline rate; K dij( )  is 
a dispersal kernel (see section Dispersal kernel) for a given 
distance d between target and source cells; Pj I D i S, | ,+  is the 
conditional probability that source cell j is infectious (either 
cryptic or symptomatic infection) given that target cell i is 
susceptible. To achieve a first order of approximation, we 
assume that P P Pj I D i S j I j D, | , , ,+ ≈ +  which we expect to be a 
reasonable approximation to the infection pattern, especially 
when dispersal is not too localized (e.g. within short distance 
from source of infection).

Dispersal kernel
The dispersal kernel used in Base EDA is derived from, and 
shares code with, the seed dispersal kernel developed by 
Lichti and colleagues (N. Lichti, Purdue Univ., pers comm.). 
This dispersal function and associated distributions are espe-
cially suitable for aerially dispersed EDA agents that include 
a broad range of fungi and mistletoes. The probability that 
the agent disperses a distance d from the source was expressed 

by two main functional forms, often used in the literature: a 
power-law and a negative exponential. Their generic form can 
be defined as follows:

K d dPowerLaw ( ) = −α

K d eNegExp
d( ) = − /α

An EDA agent produced in a source cell can only be depos-
ited in a cell different from the source, i.e. transmission in 
force of infection ( Λ,  see section Epidemiological processes 
above) is conditional on the agent being dispersed outside 
the source cell. The rationale for this choice is that infection 
processes within a cell are not tracked (no transient effect). 
In addition, the kernel must integrate to 1 within a chosen 
2D spatial neighborhood window (excluding the source cell). 
The 2D window accounts for all possible pathways through 
which the target cell can become infected by a given source 
cell. A user-defined maximum radial distance is used to limit 
EDA agent dispersal within a chosen neighborhood size. For 
cases where only local, short-distance dispersal events are 
considered, this parameter becomes essential to reduce com-
putational burden. Only isotropic dispersal (no wind-assisted 
directional spread) was considered for version 1.0 of the Base 
EDA extension.

Tree species cohort mortality
Within each diseased cell, the mortality of individual tree 
species age cohorts is a probabilistic function of the mortality 
probability of the cohort’s vulnerability class. The user defines 
which species and ages fall into each vulnerability class (low-
high), and the probability of cohort mortality for each class. 
Probabilities are compared with a uniform random num-
ber to determine whether an entire age-cohort dies (i.e. is 
removed) or not, where tree species cohort mortality is then 
passed to the succession extension which handles the removal 
of the cohort(s) and updates the cohort list. We acknowl-
edge that complete cohort removal rather than a partial one 
may be a simplistic assumption in the current version of the 
model, but for many landscape-level processes or dynamics 
it should not cause significant changes in outcome. The Base 
EDA time step concludes updating the time since last distur-
bance, updating the time since last disturbance, outputting 
maps of cell states (1 = susceptible, 2 = infected, 3 = diseased) 
and cohort mortality, and by updating the Base EDA log file 
(Fig. 1).

Case study

To demonstrate the capabilities of the Base EDA exten-
sion, we modeled 23 yr of Phytophthora ramorum spread 
within an 8017 km2 area of central California, USA (Fig. 2). 
Phytophthora ramorum infects multiple hosts with some tree 
and shrub species experiencing non-lethal foliar symptoms 
known as ramorum blight, and oaks and tanoaks experiencing 
lethal stem cankers that lead to the disease sudden oak death. 
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The simulations were initiated with the best-known locations 
of initial infection in the study area in 1990 and simulated 
through 2013 (the last year for which plot level infection 
data are available) (Gaydos  et  al. 2017, Metz  et  al. 2017). 
We used LANDIS-II NECN Succession 1.0 (Scheller et al. 
2011) to simulate forest growth and succession and the 
LANDIS-II Base EDA 1.0 extension to simulate spread of 
P. ramorum and mortality caused by SOD. Parameter values 
chosen for the EDA agent in this simulation are reported 
in Supplementary material Appendix 1 Table A1–A2. The 
simulations used a 30-m cell size. Base EDA used 1-yr time 
steps and NECN used 10-yr time steps. We compared the 
simulated disease spread in 2006, 2007, 2009, 2010, 2011, 
and 2013 with the subset of plots that were sampled in that 
year (i.e. plots sampled in 2006 were compared to model 
results in 2006 etc.) (Fig. 2) (Meentemeyer et. al. 2008, Metz 
et. al. 2017). We achieved a simulation accuracy of approxi-
mately 73.05 and 58.33% for infected and uninfected plots, 
respectively, for an odds ratio of 3.79 (Table 1). Calibration 
would allow for this to be further improved. Currently, the 
model is not predicting negative values as well as it does 
for positive values. Further calibration should improve this 
behavior. Moreover, it is partially due to the fact that the host 
data being used for the model are only 80% accurate at the 
landscape level.

The results also replicate the patchy nature of P. ramorum 
infection observed in the field (Meentemeyer et. al. 2008, 
Metz et. al. 2017). This example illustrates the utility of being 
able to simulate disease spread and mortality with an existing 
FLSM to understand not only the spread of the disease, but 
also its potential impacts to the ecosystem through mortality 
of host trees. 

We performed a sensitivity analysis of the model’s trans-
mission rate ( β0 ) and a coefficient in the dispersal kernel. 
We choose to focus on both β0 and a coefficient as they are 
the parameters that will allow the user most flexibility when 
calibrating the model and they will have substantial impact 
on spread. For this analysis we focused on model accuracy 
as measured by the odds ratio. We ran 3 simulations of each 
model with a different random seed in order to account for 
stochasticity between model runs. β0  varied from 4.00 to 
5.00 in 0.25 increments and a varied from 2.4 to 2.6 in 0.1 
increments for a total for 15 different combinations of β0  
and a and total number of model simulations of 45. On aver-
age decreasing β0  by 0.25 resulted in a 7.01% decrease in the 
odds ratio (a measure of accuracy) while holding a constant. 
On average a 0.1 decrease in a resulted in a 15.2% increase 
in the odds ratio while holding β0  constant.

More broadly, the Base EDA extension could be a suitable 
landscape modeling tool for a range of EDA agents. Across 
the globe, an increasing number of destructive pathogens 
have emerged as disturbance agents shaping forest structure 
and function at landscape scales. These events have substan-
tial ecological and economic impacts, the understanding of 
which are important to designing management responses 
(Liebhold et al. 1995, Vitousek et al. 1997, Simberloff 2000). 
The default Base EDA data and parameterization is most 
suitable for aerially dispersed pathogens and those where a 
biologically-driven infectious period is not a significant fac-
tor. These conditions are met for the most destructive forest 
diseases in North America including chestnut blight, sud-
den oak death, and possibly Beech Bark Disease although 
the latter system involves an insect that may complicate the 
process of infection and spread. In practice, we emphasize 
the importance of parameterizing the dispersal kernel for 
application to a new system. Proper understanding of dis-
persal dynamics is critical to accurate forecasting of spread 
and disease dynamics (Meentemeyer et al. 2011, Filipe et al. 
2012, Metz et al. 2017). Acquiring empirical measurements 
of dispersal at scales more than a few meters is challenging 
but we emphasize it is incumbent on users to overcome this 
difficulty in order to properly apply the model. Examples of 
confronting this problem for P. ramorum can be found in 
Meentemeyer et al. 2011 and Filipe et al. 2012. These exam-
ples integrated several datasets to estimate and validate dis-
persal parameters including spore trapping, molecular data, 
landscape-extent monitoring plot networks, and aerial tree 
mortality mapping from fixed-wing aircraft. We encourage 
further experimentation with alternative formulations of dis-
persal kernels and environmental (weather) dependencies as 
these could render the extension suitable for a greater range 

Figure 1. Flow diagram illustrating the main logical structure of the 
LANDIS-II Base Epidemiological Disturbance Agent (EDA) 
extension.
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of epidemiological disturbance agents such as pathogens 
spread via insect vectors, movement of contaminated soil or 
plant material, and spread in waterways.

To cite the Base EDA LANDIS-II extension or acknowl-
edge its use, cite this Software note as follows, substituting 
the version of the application that you used for ‘version 0’:

Tonini, F., Jones, C., Miranda, B. R., Cobb, R. C., Sturtevant, B. 
R. and Meentenmeyer, R. K. 2018. Modeling epidemiological 
disturbances in LANDIS-II. – Ecography 41: 000–000 (ver. 0).

Software name: Base EDA for LANDIS-II.
Programming language: C#.
Available at: < www.landis-ii.org/extensions >.
Source code: < https://github.com/LANDIS-II-Foundation/
Extension-Base-EDA >.
Reproducible analysis repository: < https://github.
com/f-tonini/LANDIS-II_EDA_CaseStudy >.

Figure 2. 2013 most recent plot disease status compared to 2013 model results. For comparison we used modeled diseased status and most 
recent plot diseased status (not all plots are sampled every year so this comparison will tend to underestimate plot disease status). For sim-
plicity and realistic comparisons, we treated both infected and uninfected model results as uninfected since infected non-symptomatic areas 
would be recorded as uninfected in the field due to no visible symptoms.

Table 1. Accuracy assessment of the model results at a landscape 
level comparing plot observations to model observations for the 
year the observations occurred (e.g. plots sampled in 2007 were 
compared to model results in 2007). The true positive rate is 73.1% 
and the true negative rate is 58.3% and total accuracy is 68.9%. 
Values are aggregates of all years considered in the model.

Observed

Positive Negative

Modeled Positive 225 50
Negative 83 70

73.1% 58.3%
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