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Abstract Forests of the Midwest and Northeast significantly define the character, culture, and
economy of this large region but face an uncertain future as the climate continues to change.
Forests vary widely across the region, and vulnerabilities are strongly influenced by regional
differences in climate impacts and adaptive capacity. Not all forests are vulnerable; longer
growing seasons and warmer temperatures will increase suitable habitat and biomass for many
temperate species. Upland systems dominated by oak species generally have low vulnerability
due to greater tolerance of hot and dry conditions, and some oak, hickory, and pine species are
expected to become more competitive under hotter and physiologically drier conditions.
However, changes in precipitation patterns, disturbance regimes, soil moisture, pest and
disease outbreaks, and nonnative invasive species are expected to contribute forest vulnera-
bility across the region. Northern, boreal, and montane forests have the greatest assessed
vulnerability as many of their dominant tree species are projected to decline under warmer
conditions. Coastal forests have high vulnerability, as sea level rise along the Atlantic coast
increases damage from inundation, greater coastal erosion, flooding, and saltwater intrusion.
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Considering these potential forest vulnerabilities and opportunities is a critical step in making
climate-informed decisions in long-term conservation planning.

1 Introduction

TheUSMidwest andNortheast, covering20states, are themostheavilypopulatedareas in theUSA
(Shifley et al. 2012). Forests are a defining landscape feature across the region, covering 42%of the
region’s landarea(Oswaltetal.2014).Mostof theregion’s land isprivatelyowned(74%),withmost
private forest heldbysmall family forest owners (Shifleyet al. 2012).Forests providemanybenefits
to thepeople that live in the region,suchascleandrinkingwater, recreationopportunities, and timber
products (Shifley et al. 2012).

The Climate Change Response Framework1 (CCRF; Swanston et al. 2016) has generated
vulnerability assessments of forest ecosystems across the Midwest and Northeast as a first step to
identifying risks and adapting to climate changes (Brandt et al. 2014; Handler et al. 2014a, b;
Janowiak et al. 2014;Butler et al. 2015;Butler-Leopold et al. 2017; Janowiak et al. 2017).Here,we
synthesize findings from these forest ecosystem vulnerability assessments with consideration of
common themes in nine ecological provinces (McNab et al. 2007) (Fig. 1). TheCCRFassessments
combine literature synthesis, statistical and process modeling, and expert judgment from scientists
and managers to understand the key impacts and adaptive capacity factors that contribute to the
vulnerability of particular plant species and forest types (see Brandt et al. 2017a and Iverson et al.
2017formethods).Wedefinepotential impactsas thedirectandindirecteffectsofclimatechangeon
the systems,whichmay be beneficial or disruptive to the existing system. Factors thatmay increase
the potential impacts on an ecosystem include the following: major system drivers are projected to
change; dominant species are projected to substantially decline or increase; and current stressors are
projected to increase.Adaptivecapacity is theabilityof the speciesor ecosystemtoaccommodateor
cope with potential climate change impacts with minimal disruption (Glick et al. 2011) and is
strongly related to the concept of ecological resilience (Holling 1973; Walker et al. 2004). The
synthesis ofmajor forest vulnerabilities across the region can be used to inform national and global
climate assessments, as well as adaptation policies at a range of spatial scales.

2 Changes in system drivers and stressors

The CCRF assessments identified ongoing and projected changes in current ecosystem drivers
and stressors. Many impacts will be similar across ecoregions, but some will be different
because of latitude, topography, land use, and proximity to large bodies of water (Table 1).

2.1 Shorter, warmer winters

Winterprocessesplayanimportant role inforestsacross theregion,althoughmanytreespecies inthe
region lie dormant during the winter months. Snowpack is expected to decline by the end of the
century (Notaro et al. 2014), which will alter ecosystem dynamics. Soils that typically remain
insulated by snowpack can freeze in the absence of snow cover, which can kill fine roots and
ultimately lead to reducedplantproductivity andchanges innutrient andwater cycling (Rustadet al.

1 For more information, see www.forestadaptation.org.
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2012). Milder winters with more variable snow and soil conditions can also affect forest manage-
ment operations, increasing harvest windows for jack pine (Pinus banksiana) and red pine (Pinus
resinosa), while reducing harvest windows for aspen (Populus tremuloides), black spruce (Picea
mariana), hemlock (Tsuga canadensis), redmaple (Acer rubrum), andwhite spruce (Piceaglauca)
(RittenhouseandRissman2015).Acrossmuchof thecentralandsouthernpartsof the region,winter
precipitation is more likely to fall as rain rather than snow in the future (Ning and Bradley 2015),
which may lead to an increase in runoff, sedimentation, and nutrient inputs from surrounding
agricultural areas. Ice storms,whichcan lead tobreakageandmortalityofmany trees, couldbecome
more frequent in some places but less frequent in others (Klima and Morgan 2015), potentially
altering ecosystem succession in both situations. In areas adjacent to the Great Lakes, lake-effect
snow is a major driver of forest community composition (Henne et al. 2007). An increase in lake-
effect precipitation duringwintermonths could be experienced because of reduced ice cover on the
Great Lakes (Wright et al. 2013) but may ultimately lead to increased rain-on-snow dynamics as
winter temperatures continue to increase (Notaro et al. 2014).

2.2 Increased extreme precipitation and flooding

Extreme precipitation events have increased since the mid-1900s in the Midwest and North-
east, more than any other region of the country, and this trend is expected to continue (Walsh
et al. 2014). Projected increases in extreme precipitation events, combined with milder winters,

Fig. 1 Nine ecological provinces (Cleland et al. 2007) in the Northeast and upper Midwest: Northeastern Mixed
Forest (211); Adirondack-New England Mixed Forest-Coniferous Forest-Alpine Meadow (M211); Laurentian
Mixed Forest (212); Eastern Broadleaf Forest (221); Central Appalachian Broadleaf Forest-Coniferous Forest-
Meadow (M221); Midwest Broadleaf Forest (222); Central Interior Broadleaf Forest (223); Outer Coastal Plain
Mixed Forest (232); Prairie Parkland (251). Dark background shading indicates forest cover
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are expected to increase total runoff and peak stream flow during the winter and spring across
the region (Cherkauer and Sinha 2010; Hayhoe et al. 2007), which may increase the magnitude
or frequency of flooding (Hirabayashi et al. 2013). Flood frequency and duration are a major
driver of forest composition in bottomland forests (De Jager et al. 2016), and any changes in
flood dynamics will have important implications for diversity and nutrient cycling. Increased
heavy precipitation events can also increase soil erosion (Nearing et al. 2004), with areas in
Illinois, Indiana, Ohio, Vermont, and Maryland being among the most susceptible to erosion in
the country (Segura et al. 2014). In coastal areas, storm surges combined with sea level rise
may lead to significant increases in salinity and cause tree mortality (Titus et al. 2009). The
Atlantic coast has experienced three to four times the global rate of sea level rise during the
second half of the twentieth century (Sallenger et al. 2012; Kunkel et al. 2013), which has
increased the risk of erosion, damage from storm surges, flooding, and damage to infrastruc-
ture and coastal ecosystems.

2.3 Changes in drought and moisture stress

Drought occurrence has not changed in much of the region in recent decades, although drought
has decreased in New England and the Ohio River Valley and increased in parts of the upper
Midwest (Ficklin et al. 2015). Amidst general increases in annual precipitation, more of the
annual rainfall is occurring in fewer events with longer dry periods between the events (Karl
et al. 2008; Melillo et al. 2014). Most models project greater drought frequency across the
eastern USA in the coming decades (Vose et al. 2016). Longer growing seasons and warmer
temperatures could result in greater vapor pressure deficit and evaporative demand, causing
greater evapotranspiration and decreased soil-water availability, especially later in the growing
season (Gutowski et al. 2008; Hayhoe et al. 2007; Diffenbaugh and Ashfaq 2010; Mishra et al.
2010). Since many trees are already functioning at their hydraulic limits, even a small increase
in moisture stress could lead to ecological shifts and widespread decline of mesic species
(Choat et al. 2012; Pederson et al. 2014).

2.4 Enhanced fire risk

Wildfires are currently relatively infrequent in the region due to a combination of past
management history, relatively high precipitation, and fire suppression efforts (Nowacki and
Abrams 2008). However, fire has played an important role in shaping many of the region’s
forest communities in the past, especially oak-hickory and oak-pine forests. By the end of the
century, most models project an increase in wildfire probability (Moritz et al. 2012), with
weather conditions that tend to promote large wildfires (hot, dry conditions with upper
atmosphere instability) occurring more frequently (Tang et al. 2015). The increase in wildfire
risk may be greatest in southern Ohio, West Virginia, and western Pennsylvania (Heilman et al.
2015). Fuel loads from pest-induced mortality or blowdown events could further increase fire
risk, but the relationship between these factors can be complex (Hicke et al. 2012).

2.5 Intensified biological stressors

Changes in climate may allow some undesirable plant species, insect pests, and pathogens to
expand their ranges (Dukes et al. 2009; Ryan and Vose 2012; Weed et al. 2013). Insects such
as hemlock woolly adelgid (Adelges tsugae) and southern pine beetle (Dendroctonus frontalis)
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have been able to expand their ranges northward due to milder winters (Rustad et al. 2012;
Weed et al. 2013). Increased spring precipitation has been favorable to bur oak blight (Tubakia
iowensis) in Iowa and some parts of Illinois (Harrington et al. 2012). Forest pests and
pathogens are also able to disproportionately damage already stressed ecosystems (Sturrock
et al. 2011; Weed et al. 2013). For example, oak decline, a disease complex exacerbated under
drought conditions in parts of the Central Interior Broadleaf Forest region, may become more
pronounced under drier conditions with higher evaporative demand (Dwyer et al. 1995; Fan
et al. 2006). Nonnative invasive species such as honeysuckle (Lonicera spp.), reed canary
grass (Phalaris arundinacea), and common buckthorn (Rhamnus cathartica) will also likely
be favored by climate change due to life history traits that enhance their adaptive capacity
(Brandt et al. 2017b). It is also possible that nonnative plant species will take advantage of
shifting forest communities and unoccupied niches if native forest species are limited
(Hellmann et al. 2008; Vose et al. 2012).

3 Changes to forest communities and species distribution

Several tree species and ecosystems have emerged as being highly vulnerable, while others
may be more adapted to future climates (Table 1). These vulnerability ratings have been
derived from local scientific and management expertise that was further informed by habitat
suitability and process models (Brandt et al. 2017a; Iverson et al. 2017).

3.1 Reduced habitat for northern and boreal tree species

Acrossnorthern latitudes,warmer temperatures areexpected tobestressful to treesoccurringnear
their southern species range extent (Iverson et al. 2008). Results from climate impact models
project declines in suitable habitat and landscape-level biomass for northern and boreal ecosys-
temsdominatedbyblack spruce (Piceamariana), red spruce (Picea rubens),white spruce (Picea
glauca), tamarack (Larix laricina), jackpine (Pinusbanksiana), balsamfir (Abiesbalsamea), and
paper birch (Betula papyrifera) (Rustad et al. 2012; Butler et al. 2015; Handler et al. 2014a, b;
Lucash et al. 2017). In fact, northward shifts in abundance in many of these boreal species are
already documented (Woodall et al. 2009; Fei et al. 2017). Boreal tree species may have limited
ability toadapt their hydraulicanatomytowarmerconditions (McCullohetal. 2016),even though
they may be able to adjust photosynthesis to accommodate higher temperatures (Sendall et al.
2015). However, some species may be able to persist in the region at high elevations and north-
facing slopes and other areas with cooler microclimates, or if competitor species are unable to
colonize these areas (Iverson et al. 2008; Iverson et al. 2011).

3.2 Stresses to lowland forests

Multiple vulnerability assessments have shown lowland forests to be among the most vulner-
able to projected changes in most of the region (Manomet and NWF 2012; Brandt et al. 2014;
Handler et al. 2014a, b; Janowiak et al. 2014; Butler et al. 2015). Although lowland forests are
adapted to annual and seasonal water table fluctuations, more intense and variable precipitation
events may present risks to this system through excessive flooding, inundation, streambank
erosion, or prolonged droughts between heavy precipitation events (Williams et al. 2015).
Lowland forests may be particularly vulnerable to climate change if they are already under
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stress from altered hydrology and if they occur in watersheds with highly impervious surface
area or erosion-prone land uses (WICCI 2011; Handler et al. 2014c).

3.3 Shifts in upland Forest composition

Temperate broadleaf forests are common in upland areas across the region. The composition of
these forests varies greatly; maple species (Acer rubrum and A. saccharum) are more abundant
in mesic sites, whereas oak (Quercus spp.), hickory (Carya spp.), and pine (Pinus spp.) species
are more common in warmer and drier locations with periodic fire. Vulnerability of these
ecosystems can vary depending on location within the region. There is evidence that temperate
tree species such as red maple are crossing ecotones into boreal forest patches, potentially in
response to warming in northern Minnesota and Wisconsin (Fisichelli et al. 2013), even as
boreal species abundance is shifing northward (Fei et al. 2017). Models indicate this northward
expansion will likely continue in the future (Iverson et al. 2008, 2011). Fire suppression in
temperate forests for nearly a century has allowed widespread expansion of mesic, shade-
tolerant species (e.g., red maple, sugar maple, basswood [Tilia americana]), often to the
detriment of fire-dependent species in a general mesophication of habitats (Nowacki and
Abrams 2008; McEwan et al. 2011; Hanberry et al. 2012). Forest communities featuring a
greater abundance of oak and southern pine species have generally been assessed as being less
vulnerable to projected changes in climate (Manomet and NWF 2012; Brandt et al. 2017a).
These systems are adapted to hot, dry summers and frequent fires, which are predicted to
increase across much of the region. The ability of these forests to expand to new areas will
likely depend on the role of fire on specific sites and the overall balance between soil moisture
and evaporative demand during summer months.

4 Adaptive capacity of forests in the region

The Midwest and Northeast is highly heterogeneous, including relatively flat agriculturally
dominated regions, highly urbanized areas, and heavily forested landscapes with complex
topography. These regional differences can lead to differences in adaptive capacity and have a
strong influence on the overall vulnerability of forest ecosystems across the region (Table 1).

4.1 Diversity of habitats and species

Biodiversity plays a large role in maintaining ecosystem identity and function in the face of
environmental change, with more diverse communities generally exhibiting a greater resilience
to extreme environmental conditions and a greater ability to recover from disturbance (Oliver
et al. 2015; Duveneck and Scheller 2016; Isbell et al. 2015; Tilman et al. 2014). Some parts of
the region are considered hotspots of biodiversity, such as the Central Appalachians, the
Missouri Ozarks, and far southern Illinois (Stein et al. 2000), which increases the adaptive
capacity for some ecosystems (Brandt et al. 2014; Butler et al. 2015). The northern forests
often have lower diversity at the stand level than many areas in the USA (Stein 2002). This can
be due to habitat loss, fragmentation, or prior management that has reduced species or
structural diversity, or simply because some ecosystems such as boreal forests naturally have
lower biodiversity (Millennium Ecosystem Assessment 2005). Topographic and geologic
diversity are strongly related to biodiversity (Anderson and Ferree 2010). Large elevational
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gradients can create diverse habitats and provide opportunities for species migration and gene
flow within mountainous landscapes like the Catskills, Ozarks, and Appalachians. Montane
forest communities will contract in response to a warming climate, but high-elevation areas or
north-facing slopes may be able to serve as refugia for alpine meadow and red spruce
communities in the Appalachians (Morelli et al. 2016). The more diverse habitats across the
region are generally considered to have a greater capacity to adapt to climate change while
maintaining their character.

4.2 Anthropogenic forest change and fragmentation

Forests across the entire region have been affected by human actions for centuries. Past
changes include periods of exploitive timber harvesting, land clearing and fire burning to
benefit agriculture, fire suppression, urbanization, and landscape fragmentation and
parcelization that have created the forests of today (Shifley et al. 2014) and influence the
ability of forests to respond to anthropogenic climate change. Forest coverage and the integrity
of forest communities have been greatly reduced in some areas as a result of human activities,
including agricultural land use in the central and southern Midwest, urban development along
the Atlantic coast, and oil and gas development in the Appalachians. Fragmentation decreases
the movement of species and genes within a landscape (Ibáñez et al. 2006; Scheller and
Mladenoff 2008; Duveneck et al. 2014), thereby reducing the ability of forests ecosystems to
maintain identity and function as the climate shifts. Species migrate independently, and
ecosystems and landscapes have lower adaptive capacity when the component species depend
upon particular hydrologic, soil, or site conditions. In contrast, large and intact forested
landscapes may support greater adaptive capacity that allows for some degree of species
movement in response to changing conditions while also maintaining the character and
function of forest communities at a landscape level. Further, many fragmented and degraded
ecosystems have been invaded by nonnative plant species that complete with native species,
alter ecosystem function, decrease biodiversity, and pose threats to forest regeneration (Shifley
et al. 2014). Across the region, forest landscapes and communities that have been heavily
altered or simplified by fragmentation, invasive species, and other stressors will be more
susceptible to additional threats posed by climate change. In contrast, forest ecosystems within
larger and more intact landscapes that have had less alteration in species composition and
structure are generally expected to have greater resilience to future conditions.

5 Concluding remarks

Vulnerability assessments provide critical information for understanding the potential risks,
challenges, and opportunities from climate change on a particular system. Empirical evidence
and modeling projections point to decades- to centuries-long shifts in many forest communities
in the Midwest and Northeast as suitable habitat, competitive relationships, and regeneration
respond to changes in moisture, temperature, and disturbance regimes. Individual disturbances,
or interactions among multiple disturbances and amplified stressors, may accelerate landscape
change faster than anticipated. Given the deep challenges in anticipating forest response across
a range of plausible future climates and associated disturbance regimes, it is important to
transparently integrate scientific and management expertise into the assessment of climate
vulnerability. Even so, most assessments are too broad in scale and content for direct
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application to management areas, necessitating that resource managers consider and adjust the
assessed regional vulnerabilities within the unique context of their site characteristics as they
pursue conservation planning.
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