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Abstract
Biosecurity surveillance has been highlighted as a key activity to discover non-native species at the initial stage of invasion. 
It provides an opportunity for rapidly initiating eradication measures and implementing responses to prevent spread and 
permanent establishment, reducing costs and damage. In importing countries, three types of biosecurity activities can be 
carried out: border surveillance targets the arrival stage of a non-native species at points-of-entry for commodities; post-
border surveillance and containment target the establishment stage, but post-border surveillance is carried out on a large 
spatial scale, whereas containment is carried out around infested areas. In recent years, several surveillance approaches, 
such as baited traps, sentinel trees, biosurveillance with sniffer dogs or predatory wasps, electronic noses, acoustic detec-
tion, laser vibrometry, citizen science, genetic identification tools, and remote sensing, have been developed to complement 
routine visual inspections and aid in biosecurity capacity. Here, we review the existing literature on these tools, highlight 
their strengths and weaknesses, and identify the biosecurity surveillance categories and sites where each tool can be used 
more efficiently. Finally, we show how these tools can be integrated in a comprehensive biosecurity program and discuss 
steps to improve biosecurity.
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Key messages

•	 Biosecurity surveillance is a key activity to discover non-
native species at the initial stage of invasion.

•	 Several surveillance tools have been developed to com-
plement routine visual inspections and aid in biosecurity 
capacity both at the arrival stage (border surveillance) 
and at the establishment stage (post-border surveillance 

and containment). Optimal implementation of these tools 
in time and space is fundamental to enhance efficacy.

•	 Biosecurity programs may be enhanced by combining 
multiple surveillance tools and strategies into a compre-
hensive program that encompasses various location and 
spatiotemporal scales.

Introduction

Management of non-native forest insect pests is one of the 
most demanding challenges faced by forest health practi-
tioners (Brockerhoff and Liebhold 2017). The rate of global 
movement of these insects is continuously increasing 
(Aukema et al. 2010; Roques 2010; Brockerhoff and Lieb-
hold 2017), and adopted preventive measures can reduce 
(Allen et al. 2017) but not stop invasions (Haack et al. 2014). 
In this context, biosecurity surveillance plays a key role 
(Hulme 2014). Non-native species management becomes 
increasingly difficult and expensive as populations of non-
native pests establish and expand into new areas (Liebhold 
and Tobin 2008). Thus, discovering a non-native species 
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at the initial stage of its invasion provides an opportunity 
for rapidly initiating mitigation measures and implementing 
responses to prevent its permanent establishment and spread, 
reducing costs and damage (Epanchin-Niell and Liebhold 
2015).

Biosecurity surveillance efforts can be classified depend-
ing on the targeted invasion stage (Hulme 2014). Pre-bor-
der biosecurity includes development of policies that allow 
commodities to be imported safely (Hulme 2014). Border 
surveillance targets the very initial stage of the invasion pro-
cess (arrival stage) to prevent establishment of a non-native 
species either directly (e.g., rejecting cargo or destroying 
infested materials) or indirectly (e.g., culling host mate-
rial). Such activities are generally carried out at the main 
points-of-entry for imported commodities, such as seaports, 
airports, post-entry plant quarantine facilities, cargo depots, 
or mail centers. Post-border surveillance and containment 
target the first establishment stage and attempt to discover 
a non-native species when its population level is still low 
and when eradication and management strategies are most 
likely to succeed (Liebhold and Tobin 2008). Post-border 
surveillance is carried out on a large spatial scale, whereas 
containment is carried out around infested areas.

Biosecurity surveillance efforts can also be classified 
depending on the targeted species or group of species. Spe-
cific surveillance targets a single species or a very narrow 
and well-defined group of species or guild. Generic surveil-
lance instead may target a broad range of species, belonging 
to several genera or families. Finally, biosecurity efforts can 
be categorized as active surveillance, generally undertaken 
by pest specialists (e.g., phytosanitary personnel), and pas-
sive surveillance, generally relying on members of the pub-
lic and community to report suspect insects to biosecurity 
institutions (Hulme 2014).

Visual inspections routinely carried out by inspectors at 
points-of-entry represent the first line of defense against non-
native species (Saccaggi et al. 2016). These standard proce-
dures resulted in the detection of hundreds of thousands of 
insects (Haack 2001; Brockerhoff et al. 2006a; McCullough 
et al. 2006; Roques and Auger-Rozenberg 2006; Lee et al. 
2016), rejection of infested cargo shipments and passen-
gers, and compilation of several databases that further our 
understanding of introduction pathways and detection pro-
grams (Kenis et al. 2007; Meurisse et al. 2018). Neverthe-
less, visual inspections are not adequate to stop all insect 
invasions (Bacon et al. 2012; Caley et al. 2015). Increased 
global trade in recent decades has not been matched by a 
corresponding increase in the capacity of inspection agen-
cies to inspect shipments in many countries (Saccaggi et al. 
2016). For example, only a very small percentage (2%/year) 
of incoming shipments is actually inspected in the USA 
(McCullough et al. 2006). Furthermore, illegal trade and 
fraudulent certification of shipments cause commodities and 

associated insects to be imported without any inspection 
(Bisschop 2012; Haack et al. 2014). Thus, in recent years, 
considerable research has been conducted to develop effec-
tive and efficient surveillance tools, methods, and strategies 
to integrate with visual inspections and aid in biosecurity 
capacity (reviewed by Augustin et al. 2012).

Here, we review the existing literature on biosecurity 
tools and strategies that are currently available for border 
surveillance, post-border surveillance and containment, in 
order to identify: (a) strengths and weaknesses; (b) bios-
ecurity surveillance categories and environments in which 
each may be most useful; (c) an approach to integrating dif-
ferent tools in a comprehensive biosecurity program; and 
(d) steps to improve biosecurity. We broadly reviewed the 
scientific literature, proceedings, and technical reports on 
biosecurity surveillance and detection of  non-native species 
and highlighted examples of different tools, strategies, and 
applications. We did not use specific criteria to select articles 
included in this review.

Baited traps

Traps baited with attractants are commonly used for active 
surveillance of non-native species because traps and lures 
are efficient, commercially available at low costs, and have 
wide application across several purposes (Augustin et al. 
2012; Suckling 2015). Traps can be used in the context of 
border surveillance at points-of-entry for imported com-
modities to capture insects before they become established 
in nearby trees or forested areas (Brockerhoff et al. 2006b; 
Bashford 2008; Wylie et al. 2008; Rassati et al. 2015a; Fan 
et al. 2018), but also in the context of post-border surveil-
lance and containment around new infestations to detect the 
possible presence of non-native species in a given area or to 
assess their population level (Tobin et al. 2007; Faccoli et al. 
2016). Furthermore, baited traps can be used for specific 
surveillance to capture a certain target species (e.g., a quar-
antine species) as well as for generic surveillance to capture 
multiple species (Table 1). For instance, hundreds of thou-
sands of gypsy moth traps are deployed in grids along the 
leading edge of the infestation and in uninfested areas of the 
USA to detect and eradicate new isolated infestations (Tobin 
and Blackburn 2007). The USDA Early Detection and Rapid 
Response (EDRR) program deploys hundreds of traps target-
ing bark and ambrosia beetles (Coleoptera: Curculionidae: 
Scolytinae) at high-risk sites in the USA (Rabaglia et al. 
2008; CAPS 2018) and has led to discovery of several new 
species at the national or state level.

Planning trapping programs requires selection of the opti-
mal trapping protocols based on program objectives and the 
target species. Several variables, such as trap type (Augustin 
et al. 2012), trap color (Elkinton et al. 2010; Rassati et al. 
2018a), trap surface treatments (Graham and Poland 2012; 
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Table 1   Biosecurity categories and main advantages/disadvantages of the techniques that can be used for surveillance of non-native forest 
insects

Technique Biosecurity categories Main advantages Main disadvantages

Visual inspections Border, containment, active Allows preventive control meas-
ures (e.g., cargo rejection)

Small percentage of shipments 
inspected

Generates useful data for further 
analysis

Not practical for broadscale surveys

Baited traps Border, post-border, containment, 
specific, generic, active, passive

Efficient and relatively inexpen-
sive

Not applicable if lures are not 
available

Semiochemicals available for 
many species

Only effective for adults

Can be deployed over large areas Only effective during flight period
Can be integrated with cameras Labor intensive when many traps 

are used
Sentinel trees Post-border, containment, generic, 

specific, active
Allows detection of species for 

which lures are not available
Labor intensive if numerous trees 

have to be planted
Not applicable for insects develop-

ing in mature trees
Biosurveillance
 Sniffer dogs Border, containment, specific, 

active
Highly sensitive odor recognition Detection ability not equally effi-

cient for all insects
Can detect both larvae and adults Limited work hours per day
Can detect infestations with no 

visible symptoms
Long training for difficult situations 

(e.g., ports)
Nondestructive

 Predatory wasps Post-border, containment, generic, 
active

May detect cryptic species before 
symptoms are visible

Limited survey time period

Nondestructive Limited prey range
E-noses Border, containment, generic, 

specific, active
Nondestructive Sensor calibration and sensitivity 

constraints
Can be applied to bulk samples Training and methods development 

needed
Can detect both larvae and adults
Can detect infestations with no 

visible symptoms
Acoustic detection and laser 

vibrometry
Border, containment, generic, 

specific, active
Can detect infestations with no 

visible symptoms
Requires target insects to be active

Nondestructive Requires contact or close proximity 
with test surface

Allows repeated measurements Signal-to-noise ratio constraints
Energy loss at sensor/substrate 

interface
Genetic tools
 Barcoding Border, post-border, containment, 

generic, specific, active
May allow identification of 

unknown adults captured in 
traps

Need equipped laboratory

May allow identification of imma-
ture specimens

Missing reference sequence in 
public databases

Errors occurring in public data-
bases

Do not allow a quick response
 Portable platform Border, post-border, containment, 

generic, specific, active
Quick response may trigger rapid 

control measures
Need specific primers

May allow identification from 
frass or fecal pellets

Cost

Easy of use even by non-experts
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Allison et al. 2016), and type of collection cup (Allison and 
Redak 2017), can affect trap effectiveness. In addition, using 
the optimal attractive lure(s) is fundamental. Kairomones are 
not species specific and thus are mainly used for multiple 
species or guilds (i.e., generic surveillance; e.g., Rabaglia 
et al. 2008), when pheromones are unknown, or to synergize 
pheromone attraction (Hanks and Millar 2016; Fang et al. 
2018). Pheromones are often species specific (Wyatt 2017) 
and thus more suitable for specific surveillance, although 
some groups, such as Cerambycidae, use pheromones that 
are broadly shared among several species, which allows 
common components to be used for generic surveys (Hanks 
and Millar 2016; Millar et al. 2018). Furthermore, traps may 
be baited with a single species attractant or with multiple 
lures for several species (Schwalbe and Mastro 1988). In 
the latter case, several pheromones (Brockerhoff et al. 2013) 
or pheromones and kairomones (Hanks et al. 2012; Rassati 
et al. 2014; Fan et al. 2018) can be used simultaneously 
in the same trap to capture a broad range of species. It is 
also important to consider the attraction range of the lures 
which can vary greatly depending on the type of lure and 
target insect (Schlyter 1992; Dodds and Ross 2002; Dunn 
et al. 2016; Hanula et al. 2016). This information is essential 
for determining trap position and density. Finally, surveil-
lance may be less effective if trap placement is not optimal 
in terms of both trapping site and trap position within the 
site. For example, trapping at ports with large volumes of 
imports and in nearby broadleaf forests may detect a greater 
diversity of non-native wood-boring beetles compared with 
trapping at smaller ports and in nearby conifer forests (Ras-
sati et al. 2015a); similarly, within the same forest, more 
cerambycid and buprestid species can be captured in forest 
canopies, while more ambrosia beetles can be captured in 
the forest understory (Ulyshen and Sheehan 2017; Flaherty 
et al. 2018; Rassati et al. 2018a).

Baited traps have some limitations (Table  1). For 
instance, only adult insects are intercepted during flight. In 

addition, traps are only useful for insects for which lures, 
either generic or specific, are available. Furthermore, traps 
must be monitored frequently to prevent loss or degradation 
of captured insects, which then need to be stored, sorted, and 
identified, adding costs to trapping programs. New technolo-
gies such as incorporation of Internet- or smartphone-linked 
cameras (Rassati et al. 2016a; Potamitis et al. 2017) and 
real-time PCR analysis of bulk samples from trap catches 
(Robideau et al. 2016) may enhance efficiency of trapping 
programs. In addition, the use of simple, inexpensive traps 
and involvement of citizen volunteers can expand trapping 
surveys beyond the temporal and spatial scale currently fea-
sible for regulatory agencies (e.g., Steininger et al. 2015), 
thus allowing the use of traps also in the context of passive 
surveillance.

Sentinel trees

Biosecurity programs can incorporate the use of sentinel 
trees, whose definition is quite broad. They can be defined 
as both locally important tree species planted in the vicin-
ity of high-risk sites (Wylie et al. 2008) and trees that may 
be treated by girdling, wounding, or with semiochemicals 
to render them attractive to the target species (i.e., trap 
trees; McCullough et al. 2009) that are inspected at regu-
lar intervals for signs of infestation. This approach is espe-
cially useful for active post-border surveillance and con-
tainment. For example, sentinel trees can be exploited to 
monitor the development of an active invasion of a given 
species (i.e., specific surveillance), as demonstrated for the 
Asian longhorned beetle (Hérard et al. 2009) or the emer-
ald ash borer Agrilus planipennis (Coleoptera: Buprestidae) 
(Hughes et al. 2015), especially when artificial traps and 
lures are not available (Table 1). Nonetheless, these kinds 
of sentinel trees have limitations. They are almost inappli-
cable over vast areas, as the high cost and labor required for 
maintenance of numerous trees would strongly decrease the 

Table 1   (continued)

Technique Biosecurity categories Main advantages Main disadvantages

Remote sensing and aerial survey Post-border, containment, spe-
cific, generic, active

Efficient at large spatial scale Only useful for insects causing 
evident damage

May detect infestations before 
visual symptoms are evident

Time lag in onset of visible symp-
toms delays detection

Citizen science Post-border, containment, generic, 
specific, active, passive

Inexpensive Less useful for small or cryptic 
species

Can exploit Internet and smart-
phone technology

Requires data validation by experts

Broad educational benefits Low data quality if volunteers are 
not trained a priori

Generation of real-time reports 
and maps
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overall cost-effectiveness of the program (Bashford 2008). 
Furthermore, they are not practical for some xylophagous 
insects that develop in large mature trees and they are not 
applicable for generic surveillance. Alternatively, sentinel 
trees may be defined as tree species present in botanical 
gardens and arboreta of exporting and importing countries 
(Britton et al. 2010; Paap et al. 2017) or planted outside 
their native region that are exposed to pests and diseases of 
the new region (Roques et al. 2015; Barham 2016). Senti-
nel trees in the exporting country cannot be considered as 
a true surveillance tool, as this approach is aimed at pre-
border risk assessment through identifying those species 
most likely to become pests prior to possible introduction 
(Roques et al. 2015). On the other hand, sentinel trees pre-
sent in botanical gardens located in importing countries may 
be considered a surveillance tool for post-border detection. 
Botanical gardens can be potentially attractive for non-native 
species introduced in nearby areas, given that they present a 
high diversity of tree species, both natives and exotics. For 
instance, the invasive Polyphagous Shot Hole Borer, Euwal-
lacea sp. (Coleoptera: Scolytinae), and its fungal symbiont, 
Fusarium euwallaceae, were first detected in South Africa 
during routine surveys of tree health in botanical gardens 
(Paap et al. 2018). Given the importance of such sites, the 
International Plant Sentinel Network (IPSN) was launched in 
2013 (Barham et al. 2016) to coordinate surveys and activi-
ties carried out at botanical gardens on a global scale, with 
the ultimate aim of providing valuable data to plant protec-
tion agencies on new potential pests and pathogens. Tree 
species present in urban areas of importing countries can 
also be considered sentinel trees (Paap et al. 2017). Urban 
areas are hubs for international trade (Colunga-Garcia et al. 
2010) and thus particularly prone to new insect introduc-
tions. Urban trees are often subject to several abiotic stresses 
that predispose them to insect attacks. Thus, inspection at 
regular intervals of these trees and sampling plant parts from 
both asymptomatic (e.g., Ryall et al. 2011) and symptomatic 
trees (Bullas-Appleton et al. 2014) can strongly increase sur-
veillance capacities. The Canadian Food Inspection Agency, 
for example, currently uses the practice of collecting and 
incubating bolts from sick and dying trees in Canada’s larg-
est cities considered most at risk of bark- and wood-boring 
beetles introduction, a strategy that led to the first detection 
of the longhorn beetle Trichoferus campestris in Ontario 
(Bullas-Appleton et al. 2014).

Biosurveillance: sniffer dogs and predatory wasps

To date, two approaches using the perception ability of 
other organisms have been investigated for active surveil-
lance: the use of dogs and the use of predatory insects. Dogs 
have an acute sense of smell and are able to detect minute 
traces of target scent, including some produced by insects 

(Brooks et al. 2003; Lin et al. 2011; Zahid et al. 2012; Hoyer-
Tomiczek et al. 2016). Thus, dogs can be used at points-of-
entry for specific border surveillance, as demonstrated for 
the Asian longhorned beetle (Hoyer-Tomiczek et al. 2016), 
and at sites near active infestations for containment of target 
species, as demonstrated for the red palm weevil Rhyncho-
phorus ferrugineus (Coleoptera: Curculionidae; Suma et al. 
2014). However, dogs are not equally efficient in detecting 
all insects (Phoon 2015) and several months are required to 
train dogs to reliably detect insects in difficult situations, 
such as those occurring at seaports (Hoyer-Tomiczek et al. 
2016). Additionally, dogs have physiological constraints that 
limit their use to just a few hours a day (Table 1).

For broadscale surveillance, predatory insects may prove 
more useful than sniffer dogs. The use of predators to survey 
for cryptic target taxa consists of analyzing the community 
of prey species found by predators, such as in the nests of 
the buprestid-hunting wasp Cerceris fumipennis (Hyme-
noptera: Crabronidae), which hunts emerald ash borer and 
other buprestid species (Rutledge et al. 2011, 2013; Care-
less et al. 2014). Although this approach is limited by the 
short period of time during which nest observations can be 
made (Dube and Chandler 2017), the limited hunting range 
of wasps (Nalepa et al. 2013), and the diversity of prey (i.e., 
mainly adult buprestids) (Careless et al. 2014), it remains 
an interesting tool for generic post-border surveillance and 
containment (Table 1), especially when combined with other 
trapping devices (Nalepa et al. 2015).

Electronic noses

Electronic noses, or E-noses, detect the presence of pests 
through the perception of odors (Röck et al. 2008). These 
odors can vary broadly, including volatiles emitted by 
stressed or damaged trees (volatile organic compounds or 
VOCs) and pheromones produced by insects (Cellini et al. 
2017). E-noses are able to characterize the odor profile of 
VOCs emitted by a damaged sample and then determine 
whether it is similar or different from a non-damaged sample 
(Jansen et al. 2011). These features make the E-nose a suit-
able tool for several applications in agricultural and forestry 
sectors (Wilson 2013) as well as for border surveillance 
and containment (Table 1). Portable models, for example, 
can be used for distinguishing between healthy and dam-
aged plants at points-of-entry, nurseries, or infested areas, as 
demonstrated for the red palm weevil (Rizzolo et al. 2015). 
In addition, E-noses are able to distinguish insects based on 
their chemical emissions (Lan et al. 2008; Negri and Bernik 
2008; Henderson et al. 2010) and therefore could be used 
to detect the presence of a given non-native species inside 
shipping containers. The main advantages of E-noses are 
that they allow for repeated nondestructive analyses, can 
be applied to bulk samples, and can detect both adult and 
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larval damage even if symptoms are not visible (Cellini et al. 
2017; Table 1). Nonetheless, there are several issues that 
limit routine adoption of E-noses for biosecurity including 
occurrence of drift effects over time due to sensor degrada-
tion, loss of sensitivity in the presence of high water vapor, 
and need for considerable development of the methodol-
ogy prior to application (Harper 2001; Cellini et al. 2017). 
Further progress might overcome these limitations and lead 
to development of E-nose models that can be attached to 
drones to detect insect-produced volatiles or stress-induced 
host volatiles across a broad spatial scale.

Acoustic detection and laser vibrometry

Thousands of insects communicate using sounds or vibra-
tions (Mankin et al. 2011). Humans began developing appli-
cations to detect insects exploiting acoustic signals soon 
after sound recording became possible, and acoustic systems 
are now available for many agricultural and stored prod-
uct insects (Mankin 2012). Acoustic technology may also 
detect insects feeding inside imported wood products and 
plants for planting, as well as inside trees without external 
symptoms around infested areas, providing opportunities for 
both border surveillance and containment of cryptic non-
native species (Chesmore and Schofield 2010; Juanes 2018; 
Table 1). Although promising, the use of passive acoustics 
monitoring has not reached full potential due to limitations 
in observation technologies, data processing capacity, and 
acoustics software development. Furthermore, one main 
limitation of this technology is that acoustic sensors must 
be mounted on or attached to the target surface which is 
time-consuming, can damage the host material being tested, 
and can influence accuracy of measures (Zorović and Čokl 
2015; Liu et al. 2017).

Detection instruments that do not require contact with the 
test surface, such as microphones, have also been developed 
(Zorović and Čokl 2015). However, there is substantial loss 
of energy when vibration waves cross from the target sub-
strate to air, resulting in the need for amplification which, in 
turns, leads to issues with background noise (Mankin et al. 
2011). To overcome these limitations, laser vibrometry has 
recently been tested. A laser Doppler vibrometer (LDV) 
measures vibrations without contacting the test surface, 
so that no interference with the substrate is involved, and 
recordings are carried out directly from the vibrating surface 
via the laser beam (Zorović and Čokl 2015). The main limi-
tation of laser vibrometry and other acoustic techniques is 
the requirement that the insects are actively moving or feed-
ing and therefore creating vibrational signals. Nonetheless, 
interesting applications of the above-described techniques 
have been developed, i.e., laser vibrometry approaches for 
detection of Asian longhorned beetle larvae (Zorović and 

Čokl 2015) and bioacoustic sensors for detection of red palm 
weevil larvae (Hetzroni et al. 2016).

Genetic tools for species identification

One important requirement of early detection programs is 
the need for rapid and accurate identification of captured 
insects. In the case of generic surveillance, the first screen-
ing is performed morphologically by expert taxonomists. 
However, problems arise when individuals of unknown spe-
cies or immature stages are found (Wu et al. 2017). Larval 
identification, for example, requires very specific expertise 
and may be impossible due to the lack of identification keys; 
therefore, rearing adults is necessary to determine species. 
In such cases, laboratory-based DNA barcoding provides a 
powerful tool for identification (Armstrong and Ball 2005; 
Darling and Blum 2007; Hodgetts et al. 2016; Wu et al. 
2017), although the lack of matching reference barcodes 
or the presence of errors in the databases can be limiting 
(Boykin et al. 2012). In specific surveillance programs, iden-
tifiers must determine whether the specimen collected is the 
target species and rapid identification is required because 
management decisions must be made quickly (Boonham 
2014). Several tools are now available for rapid identifi-
cation (Mumford et al. 2016). Progress on loop-mediated 
isothermal amplification (LAMP) technology, in particu-
lar, has overcome many limitations of PCR-based methods 
(Tomlinson and Boonham 2008). These two technologies 
are similar in terms of sensitivity and specificity, but LAMP 
does not require costly equipment, amplification is carried 
out at constant temperature, and the process is less sensitive 
to irrelevant DNA (Tomlinson and Boonham 2008). Further-
more, the availability of battery-powered portable platforms 
allows inspectors to identify pests and pathogens directly 
in the field or high-risk sites in about 20 min with little 
training (Boonham 2014). LAMP-based genetic identifica-
tion has been shown useful for quickly identifying insects 
intercepted at airports (Blaser et al. 2018), insects detected 
in traps (Chinellato et al. 2013), and even for identifying 
insects from traces (i.e., fecal pellets or frass) found on wood 
packaging (Ide et al. 2016a, b). The main disadvantages are 
the costs of portable platforms and the need for primers that 
are specific to the species of interest and which must be 
developed a priori.

Remote sensing and hyperspectral imagery

Remote sensing instruments have been investigated as a 
potential post-border surveillance tool. Detection of rapid 
changes in spectral, structural, and temporal characteristics 
of vegetation may indicate the presence of non-native spe-
cies (Asner et al. 2008). For example, Olsson et al. (2012) 
used satellite imagery to accurately map damage of Norway 
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spruce, Picea abies, caused by the invasive Hungarian 
spruce scale, Physokermes inopinatus Danzig and Kozar 
(Hemiptera: Coccidae), and the associated sooty mold 
before any damage was detected in the field. Olsson et al. 
(2016) demonstrated that remotely sensed data can be used 
for real-time monitoring of insect defoliation. Although 
useful for large-scale surveys, remote sensing and hyper-
spectral imagery have some main limitations. They can be 
applied only to insects that cause obvious damage to their 
hosts, which is a small percentage of all forest insects intro-
duced worldwide. In addition, spectral changes often do not 
become apparent until several years after initial infestation 
and they can be caused by native species or other distur-
bances, raising false alarms (Rocchini et al. 2015; Senf et al. 
2017; Table 1). Rather than a surveillance tool, remote sens-
ing can prove more useful for modeling non-native species 
distribution and spread (Rocchini et al. 2015; Juanes 2018). 
For example, Zhang et al. (2014) combined high-spatial-
resolution aerial imagery, commercial ground and airborne 
hyperspectral data, and Google Earth imagery along with 
current distribution data and spread rates to develop a pre-
diction function for emerald ash borer spread, which was 
about 63% accurate.

Citizen science

Citizen science is the participation of non-scientists in data 
collection for scientific investigations and can be particu-
larly useful for post-border surveillance and containment 
(Thomas et al. 2017). For example, the highly invasive long-
horned beetles A. glabripennis and A. chinensis (Coleop-
tera: Cerambycidae) in Europe and North America (Haack 
et al. 2010), as well as numerous infestations of emerald ash 
borer in several US states (Simisky 2017), were first found 
by the general public. Citizen science is relatively inex-
pensive (Conrad and Hilchey 2011), has wide application 
(Conrad and Hilchey 2011), has broad educational benefits 
(Bonney et al. 2009), and can be conducted over large areas 
(Whitelaw et al. 2003) (Table 1). The main limitation of citi-
zen science is the acquisition of low-quality data, especially 
when target organisms are identified by untrained people 
(Froud et al. 2008) (Table 1). Consequently, there is often 
a need for specimen identifications to be validated by taxo-
nomic experts, especially for small insects (Gardiner et al. 
2012). Nonetheless, many regulatory agencies have educa-
tional and reporting tools (e.g., hot lines, Web sites, mobile 
phone applications) that allow citizens to report potential 
sightings of non-native species. For example, reporting tools 
for emerald ash borer are available in at least 39 US states 
and Canada (EAB info 2017). Furthermore, citizen science 
may become more widely used with the growing availability 
of smartphone and Internet applications that allow for eas-
ier species identification (Graham et al. 2011; Goczał et al. 

2017), real-time reporting of the record location (Pimm et al. 
2015), and generation of near real-time distribution maps 
(EDDMapS 2017). One good example of successful citi-
zen science is the Backyard Bark Beetle project, which was 
initiated to monitor bark and ambrosia beetles, and engages 
interested citizens who install simple trapping systems in 
their gardens, collect captured beetles, and send them to the 
researchers to identify (Steininger et al. 2015).

Integrating available tools 
into a comprehensive biosecurity 
surveillance program

The tools and techniques described above are important 
resources to port inspectors, phytosanitary personnel, and 
regulatory agencies that can aid biosecurity at regional, 
national, or even international levels if used in a complemen-
tary way. Here, we provide an example of how this could be 
done, using wood-boring beetles as the target group, Europe 
as the importing region and China and the USA as primary 
trade partners (Fig. 1). Regarding the choice of the insect 
group, we selected wood-boring beetles both because they 
are known as one of the most successful groups of non-
native species worldwide and because they include some 
of the   most important invasive pests in recent decades 
(Kovacs et al. 2011; Haack 2017). Regarding the choice of 
the countries, we selected China and the USA as trade part-
ners because they represent, respectively, the first and the 
second countries in terms of value of goods exported to the 
EU (Eurostat 2018) and because they represent the source of 
several non-native wood-boring beetles that are established 
in the EU (Rassati et al. 2016b). Nonetheless, the described 
approach can be applied to any other insect group or any 
other country.

Border surveillance should focus at the sites identified 
as most at risk of arrival of non-native wood-boring beetles 
including seaports and nearby forests (Rassati et al. 2015a), 
wood-waste landfills (Rassati et al. 2015b), airports (Tatem 
2009), timber importers (Skarpaas and Økland 2009), tree 
nurseries (Liebhold et al. 2012; Eschen et al. 2015a), as 
well as industrial parks and warehouse districts of large 
urban areas (Colunga-Garcia et al. 2010). At such sites, 
visual inspections of imports (Saccaggi et al. 2016) and 
traps baited with either specific or generic lures (Brocker-
hoff et al. 2006b; Rassati et al. 2015a, b) should represent 
the first approaches to be exploited, as efficient and cheap 
(Fig. 1). For quarantine species that are easy to identify and 
for which specific attractants exist, camera-integrated traps 
could be used, but only in areas with good security to avoid 
damage from people (Rassati et al. 2016a). These can then 
be complemented with sniffer dogs (Hoyer-Tomiczek et al. 
2016), portable E-noses, laser vibrometer and bioacoustic 
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Fig. 1   Example of how to integrate available tools into a compre-
hensive biosecurity surveillance program. Here, we use wood-boring 
beetles as the target non-native species group, the European Union as 

the importing country, and the USA and China as major trade part-
ners. Nonetheless, this approach can be applied to any other insect 
group or any other country
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sensors (Zorovic and Cokl 2015) for detecting insects within 
imported wood products or plants, and genetic tools, i.e., 
barcoding and portable LAMP, for identifying unknown 
insects captured in traps or confirming the presence of target 
species, respectively (Chinellato et al. 2013; Wu et al. 2017). 
This integrated approach could allow interception of insects 
emerging from uninspected wood products or cargo pos-
sibly preventing establishment in natural areas surrounding 
points-of-entry, and detection of quarantine pests triggering 
rapid responses such as cargo rejection.

Post-border surveillance is aimed at detecting non-native 
species that were not intercepted at points-of-entry and may 
have naturally dispersed or been transported to surrounding 
forests or distant locations, and it is usually carried out at a 
landscape scale. Active surveillance can be conducted using 
generic traps deployed across the territory (Rabaglia et al. 
2008), as well as with remote sensing using aerial surveys 
and hyperspectral imagery to detect possible non-native spe-
cies damage (Juanes 2018), and biosurveillance to monitor 
beetle communities captured by predatory wasps (Nalepa 
et al. 2015). These activities can be integrated with simple 
trapping techniques in the context of citizen science pro-
grams (e.g., Steininger et al. 2015). Passive surveillance 
through reporting by the general public or industries should 
be encouraged and enhanced through outreach and educa-
tional campaigns as well as online reporting networks.

Containment surveillance activities are implemented 
surrounding known infestations to delimit the infested area 
and detect new infestations beyond the current distribu-
tion. Determining the leading edge and locating isolated 
new infestations allows implementation of management 
tactics to reduce spread and contain the infestation. When 
a target species is known to occur in a limited area, visual 
inspections integrated with sampling of potentially infested 
plant parts on symptomatic (Bullas-Appleton et al. 2014) or 
asymptomatic trees (Hérard et al. 2009; Ryall et al. 2011), 
sniffer dogs (Suma et al. 2014), acoustic detection, and laser 
vibrometry (Zorović and Čokl 2015) can be exploited to 
detect the presence of immature stages (i.e., larvae) within 
the trunk or branches and thus identify infested trees. Port-
able genetic tools can be used for quick on-site identification 
of the detected specimens. Single-lure traps, if specific lures 
are available, and sentinel trees (Hérard et al. 2009) can be 
used to intercept active beetles. Finally, the general public 
(i.e., citizen science) can be engaged to report trees showing 
signs of infestation.

Concluding remarks and further steps

In addition to the methods described above, many addi-
tional steps should be undertaken to further improve bios-
ecurity programs worldwide. A key step is harmonization 

of regulations (Eschen et al. 2015b; Allen et al. 2017) and 
inspection efforts (Eyre et al. 2018), as both vary consider-
ably among countries. It is also necessary to deploy existing 
tools and resources more effectively (Ormsby and Brenton-
Rule 2017). Cost-effective surveillance strategies are needed 
for efficient responses to biological invasions and must 
account for the trade-offs between surveillance effort and 
management costs. Mechanistic models are being developed 
to determine optimal deployment of surveillance, assuming 
that the probability of detecting a population depends on 
population size, surveillance effort, and sample sensitivity 
(Epanchin-Niell et al. 2012, 2014). For instance, greater 
surveillance effort is warranted for non-native species that 
have higher establishment rates, cause higher damages, that 
are more costly to eradicate, or for which sampling is less 
costly. Prompt sharing of interception and new establishment 
data among countries will also facilitate global surveillance 
efforts (Simpson et al. 2009). In this regard, more attention 
should be given to native species found at domestic ports or 
nearby forests, as this information could alert inspectors in 
other countries as to which species could arrive with that 
country’s exports (Rassati et al. 2018b). Efforts should focus 
not only on insects, but also on microorganisms they can 
vector, which can be done exploiting genetic tools similar 
to those available for insects (Okabe et al. 2017; Malacrinò 
et al. 2017). More attention should also be given to the social 
perceptions of insect invasions and related biosecurity strate-
gies, as prompt and accurate communication of these issues 
can have several implications at different management lev-
els and affect both policy and stakeholders (Marzano et al. 
2017).
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