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Extreme sensitivity to ultraviolet light in the fungal
pathogen causing white-nose syndrome of bats

Jonathan M. Palmer® ', Kevin P. Drees?, Jeffrey T. Foster® 23 & Daniel L. Lindner® '

Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus
destructans, has decimated North American hibernating bats since its emergence in 2006.
Here, we utilize comparative genomics to examine the evolutionary history of this pathogen
in comparison to six closely related nonpathogenic species. P. destructans displays a large
reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome
(~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme,
UVET, in the alternate excision repair (AER) pathway, which is known to contribute to repair
of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER
pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent
methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light
in comparison to other hibernacula-inhabiting fungi represents a potential “Achilles’ heel” of
P. destructans that might be exploited for treatment of bats with WNS.
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hite-nose syndrome of bats (WNS) continues to dec-

imate hibernating bat populations in North America.

The fungal disease was first documented in 2006 in
eastern North America (New York) and the fungus has advanced
west across the continent, most recently being detected on the
West coast of North Americal. WNS can result in >90% mor-
tality in local hibernating bat populations® and is caused by the
psychrophilic fungus Pseudogymnoascus destructans>*. The fun-
gus has a strict temperature growth range of ~4-20°C and
therefore can only infect bats during hibernation®. WNS is not a
systemic infection, but rather is characterized by P. destructans
colonization of the skin of hibernating bats, which manifests as
cupping skin erosions based on histopathology®. Frequent arousal
from hibernation, depletion of fat reserves, and dehydration
appear to contribute to mortality in infected individuals’~'?. P.
destructans has been found throughout Eurasia and occasionally
causes mild WNS symptoms; however, no mass mortality events
have been observed in Eurasia'l. P. destructans has spread in a
“bulls eye” pattern in North America and has only been found in
environments where WNS-infected bats are found, strongly
suggesting that the fungus is not native to North America and
represents a classic examPle of an introduced pathogen deci-
mating a naive population'>'3, P. destructans is a member of the
under-studied Pseudeurotiaceae family; while recent studies have
resulted in several draft genome assemblies within this group,
much of the biology of the fungal pathogen and its relatives
remains unknown.

Here, we present functionally annotated genomes for P.
destructans, as well as six closely related nonpathogenic Pseudo-
gymnoascus species. Comparison of the pathogen with the non-
pathogenic species provides an opportunity to obtain insight into
the origins and adaptations of the fungal pathogen of WNS.

Results

Sequencing, assembly, and annotation. Recent phylogenetic
work that aimed at identification and resolution of closely related
species to P. destructans resulted in moving this species from
genus Geomyces to Pseudogymnoascus*. Moreover, sampling for
fungal isolates from hibernacular soil resulted in identification of
other closely related Pseudogymmnoascus species that are not
known to be pathogenic!?2. We previously described the hybrid
genome assembly of P. destructans'®; in addition, we chose six
closely related species and sequenced these isolates using Illumina
chemistry, resulting in ~x250 coverage for each genome (strains
listed in Supplementary Table 1). All seven Pseudogymnoascus
genomes were within the expected genome size for haploid
ascomycetes (~30-36 MB) with ~50% GC content (Table 1).
Genome annotation was completed using funannotate v0.1.8
(https://github.com/nextgenusfs/funannotate), resulting in 9335
protein-coding genome models for P. destructans and a range of
10,252-11,033 protein gene models for the nonpathogenic Pseu-
dogymnoascus species (Table 1). Genome functional annotation

(see “Methods” section) was added to each gene model; complete
functional annotation is available in Supplementary Data 1-7.

Orthology and evolutionary phylogeny. Due to the importance
of WNS, as well as interest in cold-tolerant fungi, there has
recently been several draft genomes sequenced in the genus
Pseudogymnoascus. To delineate relationships between these
genomes, we acquired all Pseudogymnoascus genomes deposited
in NCBI, as well as several outgroup species: Aspergillus nidulans,
Botrytis cinerea, Fusarium fujikuroi, Penicillium chrysogenum,
and Neurospora crassa (Supplementary Table 2). Single-copy
BUSCO orthologs'®> were extracted using Phyloma (https://
github.com/nextgenusfs/phyloma) and were used to generate a
maximum likelihood phylogeny in RAXxML v8.29 (PROTGAM-
MALG; 1000 bootstrap replicates) from 822 concatenated gene
models. To estimate time of evolutionary divergence, node cali-
brations from Beimforde et al.l® were used in r8s v1.80'7;
Leotiomycetes—Sordariomycetes 267—430 MYA, Eurotiomycetes
273-537 MYA, Sordariomycetes 207-339 MYA, and Pezizomy-
cotina 400-583 MYA (Supplementary Data 8). This analysis
illustrates that the nonpathogenic Pseudogymnoascus species
sequenced here are among the closest known relatives of P.
destructans (Fig. 1). Additionally, these data suggested that the
last known common ancestor of P. destructans diverged
approximately 23.5 MYA. The oldest known chiropteran species
in the fossil record, Palaeochiropteryx, was estimated to have lived
50-40 MYA!®19, while the most recent adaptive speciation of
Eurasian Mpyotis bat species occurred 9-6 MYA and the North
American Myotis species emerged more recently at 6-3.2 MYA?°,
Thus, Eurasian Myotis species were present at the time when P.
destructans diverged from its relatives, suggesting that it could
have coevolved alongside modern-day Eurasian chiropteran
species.

ProteinOrtho5?! was used to identify 3949 single-copy
orthologous groups between seven Pseudogymmnoascus species
used in this study, representing only 42.3% of the protein-coding
genes in P. destructans. Relationships among these species were
inferred from a maximum likelihood RAXML phylogeny based on
the concatenated alignment of 500 orthologous proteins using
Botrytis cinerea as an outgroup (Fig. 2). The orthologous
proteome analysis identified 1934 unique proteins in P.
destructans that were not found in any of the nonpathogenic
Pseudogymnoascus species (Fig. 2 and Table 1), making P.
destructans the species with the most unique proteins in our
study. To identify orthologous proteins under positive selection,
dN/dS ratios for all orthologous groups were calculated using the
codeml M0 model from PAML?*. Likelihood ratio tests compar-
ing the MI/M2 models, as well as M7/M8 models with
significance at <0.05 were calculated to validate the estimated
dN/dS ratios greater than 1, ratios that suggest positive selection is
occurring??. Forty-six orthologous groups displayed evidence of
positive selection. Of those orthologous groups under positive

Table 1 Genome summary statistics of P. destructans and nonpathogenic Pseudogymnoascus species

Species Isolate Assembly Largest Average Num Scaffold Percent Repetitive Num Num Num Unique
size scaffold scaffold scaffolds N50 GC DNA genes proteins tRNA proteins

P. destructans ~ 20631-21 35,818,201 2,552,699 431,545 83 1,168,637 4924%  3817% 9575 9335 240 1934

P.sp. 23342-1-11 23342-1-1 32,900,320 990,412 33,640 978 289,626 4994%  735% 10,914 10,762 152 1275

P. sp. 24AMN13  24MN13 30,179,533 129,019 10,675 2827 24,078 50.17% 3.45% 10,368 10,269 99 1090

P. sp. WSF3629 WSF3629 35,517,105 741,06 86,839 409 189,864 48.85% 10.78% 11,193 1,033 160 1053

P. sp. 3VT5 03VTO05 33,292,640 361,480 38,893 856 115,508 49.09% 15.94% 10,393 10,252 41 795

P. sp. 5NY8 O5NY08 32,206,663 867,888 56,403 571 205,172 49.74% 10.22% 10,669 10,514 155 480

P. verrucosus UAMHI0579 30,174,856 1,768,408 199,833 151 446,342 50.36% 4.60% 10,715 10,573 142 515
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Fig. 1 Maximum likelihood phylogeny of Pseudogymnoascus draft genomes and several outgroup Ascomycetes calibrated using fossil evidence. The six
nonpathogenic Pseudogymnoascus species sequenced here are among the closest known relatives of P. destructans. P. destructans was estimated to have
diverged from its last common ancestor around 23.5 MYA. Node support values are derived from 1000 bootstrap replicates

selection, only 14 contained a protein from P. destructans
(Supplementary Data 9). However, functional annotation for
these orthologous groups did not provide sufficient information
to predict a function for any of these orthologs.

Genome-level comparisons. Carbohydrate-activating enzymes
(CAZymes) are a group of proteins involved in the breakdown
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and/or utilization of carbon. Genomes of fungi associated with
plants, either plant pathogens or decomposers, generally harbor a
greater number of CAZymes than those causing disease in ani-
mals?®. The six nonpathogenic Pseudogymnoascus species on
average harbored 493 CAZymes, ranging from 463 to 544;
however, the genome of P. destructans contains only ~36% of the
average number of CAZymes (179 in total) for the group (Fig. 2;
Supplementary Data 10). The CAZymes can be further broken
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Fig. 2 Comparative genomic analyses of orthologous proteins of Pseudogymnoascus destructans and six close relatives. Maximum likelihood phylogeny
illustrates relationships between fungi used in this study. Genome-level comparisons made based on number of gene models, number of CAZymes,
number of proteases, and the number of secreted proteins as described in Methods

down into enzyme classes/modules. In comparison to the average
of the nonpathogenic Pseudogymnoascus species, the genome of
P. destructans harbors ~69% (22) of auxiliary activity (AA)
enzymes, ~17% (4) of proteins containing carbohydrate-binding
modules (CBM), ~20% (13) of the carbohydrate esterases (CE),
~30% (82) of the glycoside hydrolases (GH), ~10% (2) of the
pectin lyases (PL), and ~95% (52) of the glycosyltransferases
(GT). Moreover, there were no specific CAZy families that were
expanded in P. destructans that would indicate enhanced ability
to utilize certain carbohydrate sources. Due to the large decrease
in CAZymes, we hypothesized that P. destructans would have
limited growth on complex and/or different carbon sources in
comparison to the nonpathogenic Pseudogymnoascus species. To
test this hypothesis, we compared growth on 190 carbon sources
using a modified Biolog Phenotype Array Platform. Consistent
with the large reduction in CAZymes in its genome, P. destruc-
tans was unable to utilize many carbon sources that the non-
pathogenic Pseudogymnoascus species could readily utilize (Fig. 3,
Supplementary Data 11). These data are consistent with a recent
report comparing growth characteristics of P. destructans to
closely related soil fungi®*. The reduced CAZyme repertoire is a
shared characteristic of other fungal pathogens of animals,
including the dermatophytes, the true fungal dimorphic patho-
gens, as well as skin-inhabiting yeasts®>. Presumably, the reduc-
tion in CAZymes reflects a change in carbon availability/
acquisition during the evolution from an ancestral saprobe to a
bat pathogen, i.e., P. destructans may have shed CAZyme path-
ways necessary for living in soil/sediments but are not required
for growth on hibernating bats.

A group of subtilisin serine endopeptidases (MEROPS family
S08A) of P. destructans have previously been described as PdSP1,
PdSP2,%°> and one of them (PdSP2; destructin-1) was subse-
quently shown to degrade collagen, suggesting a potential role in
colonization of bat skin?®. Using the MEROPS protease database,
230 predicted proteases were identified from the P. destructans
genome, which represents a 28% reduction compared to the
average of the nonpathogenic Pseudogymnoascus species (average:
321; range: 308-330) (Fig. 2; Supplementary Data 12). The
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subtilisin proteases appear to be conserved in the Pseudogym-
noascus species analyzed here and therefore is consistent with the
observation from Vrany et al.%” that collagen-degrading enzymes
are present in several nonpathogenic soil microorganisms. While
proteases are likely to be involved in colonization of bat skin
tissue by P. destructans, the previously identified subtilisin
proteases (e.g., PdSP2; destructin-1) do not appear to have
evolved specifically for this purpose. Moreover, PdSP2 has
recently been shown to be more hi%hly expressed in laboratory
culture medium than during WNS?®%%, indicating that it may not
play a large role during pathogenesis.

Secreted proteins are generally important for fungi as digestion
of nutrients using secreted enzymes occurs outside the fungal cell.
Recently, fungal effectors have been described in plant pathogens
(some of which can enter animal cells), an example of the
intricate competitive arms race between pathogen and host
(reviewed in refs. 3%31). The predicted secretome of P. destructans
is also reduced by more than 50% in comparison to the
nonpathogenic Pseudogymnoascus species (452 vs. average of
970 secreted proteins; range: 848—1033) (Fig. 2). The trend of
fewer secreted proteins in fungal pathogens of animals has been
previously described®3?, with one hypothesis being that losing
unnecessary secreted proteins is an evolutionary strategy to evade
vertebrate immune systems>2. Previous reports indicate that
fungal secretomes can be lineage specific, consistent with the
observation that 56 of the 362 predicted soluble secreted proteins
in P. destructans (~15%) do not have orthologs in the
nonpathogenic Pseudogymnoascus species.

To visually depict the functional variation between species, we
generated count data of InterProScan Domain and Pfam domains
for each genome in our study (Supplementary Data 13-14). The
resulting matrices were visualized using a nonmetric multi-
dimensional scaling (NMDS) ordination, which consistently
identified P. destructans as distinct from the nonpathogenic
Pseudogymnoascus species (Supplementary Fig. 2). To identify
functional groups and processes that were enriched (positively or
negatively), which could help explain the shift in functional
domains between P. destructans and the nonpathogenic
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Pseudogymnoascus species, we used a Gene Ontology (GO) term
enrichment method. As expected and consistent with the
ordinations, no enrichment of GO terms was found for any of
the six nonpathogenic Pseudogymnoascus species. Two very broad
biological processes (BP) were enriched in P. destructans: cellular
processes  (GO:0009987) and cellular metabolic processes
(GO:00044327) (Supplementary Table 3). On the other hand,
some more specific BP terms were underrepresented in P.
destructans: transmembrane transport (GO:0055085), carbohy-
drate metabolic process (GO:005975), and oxidation—reduction
process (GO:0055114). This is consistent with reductions in the
secretome, as well as CAZymes using alternate methods as
previously discussed. Additionally, the GO enrichment identified
a trend in underrepresented BP terms related to transcription
(GO:0006351, GO:0097659, and GO:0032774) (Supplementary
Table 3). Generally, these data suggest that major genome-level
differences between P. destructans and the nonpathogenic
Pseudogymnoascus species are driven by the large differences in
carbohydrate utilization enzymes, as well as a reduction in the
putative secretome.

A hallmark of many ascomycete fungi is their ability to
produce bioactive small molecules, such as the pharmaceuticals
lovastatin and penicillin®%, These small molecules are also known
as secondary metabolites and many are produced by the
coordinated effort of gene clusters (genes physically located in
proximity to each other on a chromosome). Secondary metabo-
lites have been hypothesized to be involved in niche exploitation
by fungi, includin§ evasion of vertebrate immune systems®.
AntiSMASH v3.0%° was used to predict secondary metabolite
gene clusters from each genome. Based on antiSMASH predic-
tion, P. destructans harbors 14 predicted secondary metabolite
gene clusters, while the average for the nonpathogenic Pseudo-
gymnoascus species was 27 gene clusters, with a range of 14-36
(Supplementary Table 4, Supplementary Data 15-21). Despite
having fewer putative secondary metabolism clusters, the P.
destructans genome encodes for the two non-ribosomal-
polyketide synthetase enzymes required to produce the iron-
scavenging siderophores that have previously been characterized
chemically: ferrichrome and triacetylfusarinine C3’ (Supplemen-
tary Data 15). Additionally, P. destructans harbors a putative
melanin cluster that has been shown to be involved in
pathogenicity in other fungi such as the opportunistic human
pathogen Aspergillus fumigatus; four of the six nonpathogenic
Pseudogymnoascus species also harbor a similar melanin-like
cluster, which in A. fumigatus is physically located in the cell wall
of spores of the fungus and has been hypothesized to function as
protection from ultraviolet (UV) light and reactive oxygen species
(ROS) damage®®*. The secondary metabolite arsenal of the
Pseudeurotiacae fungi in this study is less than some other groups
such as the Eurotiomycetes, which can have 70 or more
secondary metabolism clusters. However, several of the secondary
metabolites produced by P. destructans warrant future study as
they could contribute to the development and persistence of WNS
in bats.

An interesting characteristic of the P. destructans genome is
that it contains a large expansion of repetitive DNA sequences,
accounting for 38.17% of the genome, a significant expansion in
comparison to the nonpathogenic Pseudogymnoascus species
(Table 1). Coinciding with this repeat expansion is a reduction
in total gene models, as well as a general trend toward a reduction
in several gene families, driven largely by a massive
reduction in CAZymes, secreted proteins, and proteases. At the
same time, P. destructans contains more lineage- specific genes
than the nonpathogenic Pseudogymmnoascus species (Fig. 2). The
observation of expanded repetitive elements and increasing
numbers of lineage-specific genes is reminiscent of the lineage-
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specific regions/chromosomes in Fusarium oxysporum®’. How-
ever, in contrast to F. oxysporum, analysis of the repetitive
sequences across the P. destructans genome suggests a uniform
distribution (Supplementary Fig. 2A) and lineage-specific genes
were not colocalized with repetitive regions (Supplementary
Fig. 2B). Similarly to fungal pathogens in the Onygenales, P.
destructans lacks proteins containing the fungal cellulose-binding
domain (CBM18)*!; however, this does not seem to be tied to
pathogenicity as 5 of the 6 nonpathogenic Pseudogymnoascus
species also lack this functional domain. We were unable to
identify protein families that were expanded in P. destructans,
somewhat reminiscent of Coccidioides, which have very few
expanded protein families*!. This is in stark contrast to the
amphibian chytrid pathogens (Batrachochytrium dendrobatidis
and Batrachochytrium salamandrivorans), which have undergone
an expansion of protease gene families, as well as their genomes
en route to pathogenicity*?. Given the evolutionary distance
between the chytrids and ascomycete fungi, it is perhaps not
surprising that these devastating fungal pathogens have different
evolutionary trajectories.

Light and DNA repair pathways. Taken together, our data
suggest that P. destructans has been a pathogen of bats for

millions of years and thus has likely coevolved in the absence of
light. Most organisms that have been found in the absence of light
maintain the ability to repair DNA caused by UV light radiation,
including most microbes that have been isolated from hiberna-
cula****, Moreover, a metagenomics analysis of a cave ecosystem
identified an overrepresentation of DNA repair enzymes, despite
the absence of UV light*>. We challenged the fungal species
studied here with four different DNA-damaging agents that
included UV, methyl methanesulfonate (MMS), 4-nitroquinoline
(4-NQO), and camptothecin (CPT). While we observed slight
differences in sensitivity among species (and even between iso-
lates of P. destructans) with 4-NQO and CPT, the most dramatic
differential sensitivity was seen with UV light and MMS (Fig. 4a).
To further characterize the sensitivity to UV light, we employed a
quantitative conidial survival assay and exposed the fungi to three
different wavelengths of UV light and three different exposure
levels (Fig. 4b). These data show that none of the fungi tested
were sensitive to UV-A (366 nm) light at the dosage tested, while
P. destructans is differentially sensitive to the higher-energy UV-B
(312 nm) and UV-C (254 nm). Remarkably, a low dose of 5 m]/
cm? exposure of UV-C light resulted in only ~15% survival, while
a 10mJ/cm? UV-C exposure resulted in <1% survival of P.
destructans (Fig. 4b).

Control 0.5 ug/ml 4-NQO 25 uM CPT 0.01% MMS 25 mJ Uy254nm
104 10% 102 10" 10° 104 10% 102 10' 100 10* 10% 102 10' 10° 10% 10 102 10' 10°  10% 10% 102 10" 100
CCF3941 (MAT1-1) : w ‘
§ CCF3942 (MAT1-2)
§ CCF4125 (MAT1-1)
ﬁ CCF4124 (MAT1-2)

20631-21 (MAT1-1)

P. sp. 5NY8
P. sp. 23342-1-I1
P.sp. 3VT5

P. verrucosus

Non-pathogenic
Pseudogymnoascus

P. sp. WSF3629 &

P sp. 24MN13
b
750 nm l >
@
c
i)
= UV-C (254 nm) sensitivity UV-B (312 nm) sensitivity UV-A (366 nm) sensitivity
120 - 120 120 4
% 600 nm = 1101 . ,€110. 1 ’_5110'
P £ 100 A £ 100 A £ 100 4
2 8 90+ 8 90 8 9071
S T 804 T 801 D 801
500 nm g 704 S 70 S 70+
S 601 T 60 T 60
= > >
S 50 S 50 S 50
@ 40 1 3 40 @ 401
g 30 € 30 € 301
400 nm S 20- S 20+ 8 204
) o ©
< 104 \ € 104 & 104
= | 366 nm 0 T f t 0 T T T T T T
2 312 nm 5mJ 10mJ 25md 4md 8mJ 20 mJ 70 mJ 175 mJ 350 mJ
3 o5 UV-C light (254 nm) UV-B light (312 nm) UV-A light (366 nm)
nm
— P. destructans -+ P. verrucosus - P.sp. WSF3629 - P. sp. 3VT5 + P. sp. 5NY8 P. sp. 23342-1-11 = P. sp. 24MN13

Fig. 4 Sensitivity of Pseudogymnoascus species to DNA-damaging agents. a Qualitative plate assay measuring the effects of four DNA-damaging agents on
the growth of each fungal species (4-nitroquinoline (4-NQO), camptothecin (CPT), methyl methanesulfonate (MMS), and 254-nm ultraviolet light (UV-
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survival of each fungus under different wavelengths of UV light (254 nm (UV-C), 312 nm (UV-B), and 366 nm (UV-A)). CFU assays were conducted in

biological triplicate (n=3) and error bars represent standard deviations
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photolyase |, although it harbors a cyr-DASH photolyase (VC83_00225). The genomes of Pseudogymnoascus verrucosus, P. sp. 24MN13, and P. sp. 0OSNY08
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UV light damages DNA by inducing the formation of topoisomerase I function, which results in stalled replication
pyrimidine dimers (cyclobutane dimers and 6-4 photoproducts), ~ forks; thus, lethal mutations can accumulate during S phase*’. On
while MMS alkylates guanine and adenine nucleotides?®. the other hand, 4-NQO induces single base pair mutations with a
Damaged or modified nucleotides result in mispairing and/or  bias toward guanine to thymine transversions*® and thus can
replication fork blockage and therefore can result in mutations. cause direct mutagenesis. To combat DNA damage, organisms
Camptothecin’s mode of action is similar as it inhibits have employed several DNA repair pathways, including
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photoreactivation, base excision repair (BER), nucleotide excision
repair (NER), double-strand break repair, mismatch repair, as
well as alternate excision repair (AER) (reviewed in refs. 4951y,
Using fission yeast (Schizosaccharomyces pombe) as a model
organism, we extracted 169 proteins annotated as involved in
DNA repair from www.pombase.org and queried them against
the Pseudogymnoascus proteomes using BLAST (Supplementary
Data 22). Six putative hits, UVEl, MAGI, MAG2, CENP-X,
SWI5, and PIF1, were identified on the basis that they were
absent in P. destructans but present in most of the six
nonpathogenic Pseudogymnoascus. To validate that orthologous
proteins were in fact missing as opposed to being misannotated,
we queried the corresponding Pfam hidden Markov model
(HMM) profiles from (http://www.pfam.org/) using an exhaustive
HMM model search in Phyloma (https://github.com/nextgenusfs/
phyloma), which can identify truncated and/or unannotated
genes. These results indicated that MAG1, MAG2, and CENP-X
orthologs were missing from all Pseudogymnoascus genomes
(which is consistent with the low scores of the BLAST hits), while
partial matches were found for SWI5 and PIF1, indicating either
missed gene models during annotation or nonfunctional proteins.
Finally, we were unable to find any trace of UVEL in the P.
destructans genome, despite finding clear homologs in the six
nonpathogenic Pseudogymnoascus species, suggesting that UVE1
plays a large role in the repair of UV-damaged DNA in
Pseudogymnoascus.

P. destructans harbors a putative DNA photolyase
(VC83_00225); thus, photoreactivation could be a mechanism
the fungus uses to repair UV-induced DNA lesions. However,
DNA photolyases require light for function and therefore are
unlikely to be a major contributor to DNA repair in hibernacula.
Preliminary testing of survivability of P. destructans incubated in
either light or dark indicated that light was insufficient to repair
DNA lesions (Supplementary Fig. 3). There are several known
classes of DNA photolyases in fungi, including the canonical CPD
photolyase I family shown to directly repair cyclobutane dimers,
as well as a cyr-DASH family shown to be involved in light-
sensing phenotypes®>>>, A maximum likelihood phylogeny shows
that P. destructans VC83_00225 is a member of the cry-DASH
family of DNA photolyases and is thus unlikely to contribute to
direct photorepair of cyclobutane dimers (Fig. 5a). To be
thorough, we tested photoreactivation in the laboratory and
found no phenotype in P. destructans, while two of the
nonpathogenic Pseudogymnoascus species that harbored at least
one CPD photolyase I (P. verrucosus and P. sp. 24MN13) showed
increased survival when exposed to UV-A (366 nm) light after
DNA damage (Fig. 5b).

In fission yeast, UVEL is a key component of the AER pathway;
therefore, our data suggest that most UV-damaged DNA in
Pseudogymnoascus is repaired through AER. A small percentage
of repair can be attributed to photoreactivation in P. verrucosus
and P. sp. 24MN13; however, this appears to not occur in P.
destructans as it lacks a cyclobutane-dimer photorepair enzyme.
The P. destructans genome harbors clear homologs for the major
enzymes involved in NER pathway (Supplementary Data 22), and
thus, more work is needed to determine why the general NER and
BER pathways are unable to compensate for loss of AER in P.
destructans. Nevertheless, the extreme sensitivity to UV-C light in
P. destructans represents a genetic pathway that could be
exploited for active management of WNS of bats. Currently,
UV-A (366 nm) light is being used as a WNS noninvasive field
diagnostic tool because the characteristic cupping skin lesions
fluoresce under this wavelength>*, While UV-A light tested under
laboratory conditions had no effect on survival of P. destructans
(Fig. 4), the use of UV-A as a diagnostic tool suggests that treating
individual bats with a dosage of UV-C light is feasible. The
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relatively low dose (~10 mJ/cm?2) of UV-C light required to kill P.
destructans conidia could be applied to bats in a few seconds of
exposure from a portable light source. More work is needed to
understand the physiological effect of UV-C light on bats;
however, it is encouraging that treatment of mammal fungal skin/
nail infections with UV-C light has been used for dermatophyte
fungi causing onychomycosis®®, as well as wound infections
caused by Candida albicans®.

Discussion

WNS represents one of the most severe wildlife diseases ever
recorded. Currently, there are no practical treatment options for
containing the spread of WNS in North America and thus the
fungus has moved rapidly across the continent. Survivor popu-
lations of affected bat species can still be found near the disease
outbreak epicenter, so that there is hope that species extinction
will be avoided, albeit with a prolonged recovery®”. However, the
long-term effects on ecosystems involving bats will not be
understood for decades. Comparative genomics analyses pre-
sented here suggest that P. destructans is likely a true fungal
pathogen of bats, evolving alongside Eurasian bat species for
millions of years. The annotated genome of P. destructans in
addition to several nonpathogenic closely related species provides
a framework for understanding the pathobiology of WNS. The
serendipitous discovery that P. destructans lacks a UVE1 homolog
and is therefore extremely sensitive to pyrimidine dimer inducing
DNA-damaging agents is a vulnerability that could be exploited
for WNS management.

Methods

Growth conditions, DNA extraction, and sequencing. Fungal strains were grown
in liquid-stationary culture®® for several days at 15 °C, mycelia were lyophilized,
and subsequently genomic DNA (gDNA) was extracted as previously described®.
High-molecular-weight gDNA was confirmed by gel electrophoresis. For sequen-
cing on the Ion Torrent Personal Genome Machine (PGM), a random 400-bp size
fractionated library was constructed using Ion Plus Fragment Library Kit
(#4471257), templated using the Ion PGM Template OT2 400 Kit (#4479878),
loaded on a 318v2 chip (#4484354, and sequenced using the Ion 400 bp Sequencing
Kit (#4482002) (all kits were used according to the manufacturer’s recommenda-
tions). Library construction for sequencing using the Illumina GAx II and Illumina
MiSeq was done using the NEBNext Library Prep Kit, purified using QIAQuick
Cartridge Kit, and size fractionated using E-gel 2% size select gel electrophoresis
system (ThermoFisher). For obtaining RNA-seq reads to assist with genome
annotation, fungi were grown in liquid-shaking cultures at 15 °C for 3 days, mycelia
were lyophilized, total RNA was extracted using TriZol (Invitrogen), and poly-
adenylated RNA was selected using the DynaBeads PolyA Cleanup Kit (Ambion).
The poly-A RNA was then used to make libraries using the Ion RNA-seq Kit 2.0
and sequenced on the Ion Torrent PGM using Ion 200 bp Sequencing Kit
(#4482006).

Genome assembly. Initial attempts to build a high-quality assembly for P.
destructans using paired-end MiSeq (2 x 250 bp) data resulted in heavily frag-
mented assemblies with several different assembly software (Discovar DeNovo,
Abyss, Spades, CLC, etc.). We generated a highly contiguous assembly using a
combination of PacBio reads, MiSeq, Roche 454 mate-pair reads, and Sanger end
sequences from a 100-kb BAC library'4. For five of the nonpathogenic Pseudo-
gymnoascus species (UAMH10579, 03VT05, 05NY08, WSF3629, and 23342-1-11),
acceptable assemblies were generated using the de novo assembler in CLC Geno-
mics Workbench 7.5 (Qiagen) using paired-end MiSeq reads (2 x 300 bp). For
Pseudogymnoascus sp. 24MN13, the paired-end Illumina (2 x 100 bp; GAIIx) data
were found to have some bacterial contamination, thus, we generated a second
sequencing library from a clean gDNA extraction for the Ion Torrent PGM, which
was used for an initial assembly and scaffolding using the paired-end Illumina
reads. Contamination was removed from the assemblies using DeconSeq® and was
subsequently error corrected using Pilon®!. Small repetitive contigs from each
assembly were identified using Mummer®? and were removed if they were 95%
identical over 95% of their length with other contigs in the assembly (achieved
using “funannotate clean” command).

Genome annotation and functional characterization. Detailed information on
annotation and functional characterization is presented in Supplementary
Methods.
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Biolog phenotyptic microarray. Pseudogymnoascus species were tested for the
ability to utilize 190 different carbon sources in the Biolog Phenotyptic Microarray
platform (plates PM1 and PM2A). Fungal spores at a density of 1 x 10* spores were
inoculated into 100 pl of carbon-free minimal medium (MM lacking glucose®®) and
then subsequently aliquoted into 96-well Biolog plates (PM1 and PM2A). Cultures
were grown at 15°C and the nonpathogenic Pseudogymnoascus species were
incubated for 7 days, while P. destructans was incubated for 14 days. The plates
were then photographed and growth was quantified using the Fiji/ImageJ plug-in
ColonyArea 1.5, Relative growth was then normalized to growth on glucose and
plotted in heatmap.2 from the gplots package in R®°.

DNA damage assays. Conidia were harvested from fungal isolates from solid
medium agar plates using sterile 0.01% Tween-80 water, purified by filtering over
sterile miracloth (EMD Millipore #475855), and enumerated using a hemocyt-
ometer. For spot plate assays, conidia were serially diluted and 5 pl was pipetted
onto the surface of glucose minimal agar medium®?. Treatment with UV light was
accomplished by exposing the spotted agar plate to 25 mJ/cm? of UV-C (254 nm)
light using a UV cross-linker (UVP CL-1000). Sensitivity to chemical DNA
mutagens was done by preparing GMM agar medium that contained 25 uM CPT,
0.01% MMS, or 0.5 ug/ml of 4-nitroquinolone (4-NQO). Control and treated plates
were incubated at 15 °C for 1 week prior to imaging. Colony-forming unit (CFU)
assays were done by spread plating ~50 conidia on the surface of a GMM agar plate
and were subsequently exposed to UV light in a UV cross-linker, and surviving
colonies were counted after incubation at 15 °C for 1 week. Quantification of
photoreactivation for each species was done using a very similar CFU assay
comparing varying UV-C treatments followed by 1-h exposure to UV-A (366 nm)
light in a UV cross-linker. Conidia were allowed to germinate for 24 h in the dark
prior to UV-C (254 nm) treatments and subsequent UV-A (366 nm) treatment.
Surviving colonies were counted after incubation in the dark at an appropriate
temperature (15 °C for P. destructans and 25 °C for nonpathogenic Pseudo-
gymmnoascus species). All CFU assays were done in biological triplicates (n=3) for
each experimental condition.

Data availability. Sequencing data and genome assemblies are available via NCBI
under BioProject PRINA276926 and SRA project SRP055906. All other relevant
data supporting the findings of the study are available in this article and its Sup-
plementary Information files, or from the corresponding author upon request.
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