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A B S T R A C T

The term shelf-life is used to characterize the elapsed time beyond which a commodity loses its usefulness. The
term is most often used with reference to foods and medicines, but herein it is used to characterize the elapsed
time beyond which airborne laser scanning (ALS) data are no longer useful for enhancing inferences for forest
inventory population parameters. National forest inventories (NFI) have a long history of using remotely sensed
auxiliary information to enhance inferences. Although the combination of model-assisted estimators and ALS
auxiliary data has been demonstrated to be particularly useful for this purpose, the expense associated with the
acquisition of the ALS data has been an argument against their operational use. However, the longer the shelf-life
of ALS data, the less the continuing acquisition costs and the greater the utility of the data.

The objective of the study was to assess the shelf-life of ALS data for enhancing inferences in the form of
confidence intervals for mean aboveground, live tree, stem biomass per unit area. Confidence intervals were
constructed using both model-assisted estimators and post-stratified estimators, four measurements of mostly the
same forest inventory plots at 5-year intervals over a 17-year period, and a single set of ALS data acquired near
the end of the 17-year period. The study area in north central Minnesota in the USA was characterized by
naturally regenerated, uneven-aged, mixed species stands on both lowland and upland sites. The primary con-
clusions were twofold. First, the shelf-life of ALS data when used with model-assisted estimators exceeded
10 years, and second, even for 12 years elapsed time between plot measurement and ALS data acquisition, the
variance of the model-assisted estimator of the mean was smaller by a factor of at least 1.75 than the variance of
the stratified estimator used by the national forest inventory.

1. Introduction

National forest inventories (NFI) have a long history of using re-
motely sensed auxiliary information to enhance inferences in the form
of confidence intervals for forest inventory parameters. Bickford (1952,
1960) in the United States of America (USA) and Poso (1972) in Finland
used interpreted aerial photography to construct strata in support of
stratified estimators. More recently, satellite imagery has been used as
the source of auxiliary information for this purpose (Poso et al., 1984,
1987; McRoberts et al., 2002, 2006; Nilsson et al., 2005; Gormanson
et al., 2017). For categorical forest attributes variables such as forest/
non-forest, stratified estimators are effective for increasing precision,
but they are less effective for continuous attributes such as above-
ground biomass. For the latter attributes, airborne laser scanning (ALS)
data are more effective as a source of stratification information. How-
ever, ALS data are even more effective when used with model-assisted
estimators (McRoberts et al., 2013).

Although ALS data are more effective than satellite spectral data
when used with both stratified and model-assisted estimators, ALS data
are also expensive to acquire, whereas MODIS, Landsat and Sentinel 2
satellite spectral data are available without charge. Some countries
including Austria (Hollaus et al., 2009), Sweden (Nilsson et al., 2017),
and the USA (Chen et al., 2016) have acquired large area, wall-to-wall
ALS data with small pulse densities for purposes of constructing digital
terrain models (DTM). Although these data have been demonstrated to
be useful for constructing inventory inferences, their utility is perish-
able in the sense that the data become less effective as the time between
the date of ALS data acquisition and the date of ground plot measure-
ments increases. Further, because DTMs are constant, multiple similar
ALS acquisitions for this purpose are unlikely.

The term shelf-life is used to characterize the time beyond which a
commodity loses its usefulness. The term is most often used with re-
ference to foods and medicines, but it is also relevant for characterizing
the utility of ALS data. Although a commodity loses usefulness because
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of change in the commodity, ALS data lose usefulness because of change
in the environment in which they are used. The important point is that
if ALS data can be demonstrated to have a long shelf-life, considerable
cost savings may be realized by extending the time between their ac-
quisitions.

The objective of the study was to assess the shelf-life of ALS data for
enhancing inferences in the form of confidence intervals for mean
aboveground, live tree, stem biomass per unit area. Confidence inter-
vals were constructed using model-assisted estimators, four measure-
ments of mostly the same forest inventory plots at 5-year intervals over
a 17-year period, and a single set of ALS data. For a study area in north
central Minnesota in the USA, average plot measurement dates for the
four datasets ranged from 12 years before to three years following the
date of the ALS acquisition. For assessing the shelf-life of the ALS data,
model-assisted estimates of means and standard errors were compared
to operational NFI estimates obtained using stratified estimators and
Landsat-based strata.

2. Data

2.1. Study area

The 7583-km2 study area consisted of the entirety of Itasca County
in north central Minnesota in the USA (Fig. 1) and is characterized as
approximately 80% forest land. Land cover includes water, wetlands
and forest consisting of uplands with deciduous mixtures of pines,
(Pinus spp.), spruce (Picea spp.), and balsam fir (Abies balsamea (L.)
Mill.) and lowlands with spruce (Picea spp.), tamarack (Larix laricina
(Du Roi) K. Koch), white cedar (Thuja occidentalis (L.)), and black ash
(Fraxinus nigra Marsh.). Forest stands in the study area are typically
naturally regenerated, uneven-aged, and mixed species.

2.2. Airborne laser scanning data

Wall-to-wall ALS data were acquired in April 2012 with a nominal
pulse density of 0.67 pulses/m2 using laser scanners with pulse re-
petition frequency of approximately 100 kHz and wavelength of

1064 nm. The Tiffs (Toolbox for Lidar Data Filtering and Forest Studies)
software was used to construct a digital terrain model using all pulse
returns for all heights (Chen, 2007). For both the 168.3-m2 plots and for
the 169-m2 square cells that tessellated the study area and served as
population units, distributions of pulse return heights were constructed
and used to calculate ALS metrics: mean (hmn), standard deviation (hsd),
skewness (hsk), kurtosis (hku), and quadratic mean height (hqm) (Lefsky
et al., 1999; Chen et al., 2012). In addition, standard height and canopy
density percentiles were calculated as per (Gobakken and Næsset,
2008). In particular, heights corresponding to the 10th, 20th, …, 100th
percentiles (h10, h20, …, h100) of the distributions were calculated as
were canopy densities expressed as the proportions of pulse returns
with heights greater than10%, …, 90%, 95% (d10, …, d90, d95) of the
range between a minimum ALS aboveground height threshold and the
95th height percentile.

2.3. Forest inventory data

Data were obtained for plots established by the Forest Inventory and
Analysis (FIA) program of the U.S. Forest Service which conducts the
NFI of the USA. The FIA program has established field plot centers in
permanent locations using a systematic unaligned sampling design that
is regarded as producing an equal probability sample (McRoberts et al.,
2010). Each FIA plot consists of four 7.32-m (24-ft) radius circular
subplots that are configured as a central subplot and three peripheral
subplots with centers located at 36.58 m (120 ft) and azimuths of 0o,
120o, and 240o from the center of the central subplot. Field crews ob-
serve species and measure diameter at breast-height (dbh, 1.37 m,
4.5 ft) and height for all trees with dbh of at least 12.7 cm (5 in).

Subplot-level aboveground, live tree, stem biomass was predicted
for individual measured trees using allometric models, aggregated at
subplot level, scaled to a per unit area basis, designated AGB, and as-
sociated with ALS metrics for the subplot. Uncertainty associated with
the allometric model predictions was ignored for this study. Data were
used for only the central subplots of the 359 plots measured in 2014,
2015, and 2016 because these were the only subplots and years for
which plot coordinates were obtained using survey grade GPS receivers

Fig. 1. Study area in Itasca County, Minnesota, USA.
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with sub-meter accuracy. For future reference, the central subplots are
hereafter designated plots.

FIA plots in the study area were measured at 5-year intervals be-
ginning in 1999. Thus, the survey grade GPS coordinates obtained for
plots measured in 2014–2016 are also applicable for the same plots
measured in 1999–2001, 2004–2006, and 2009–2011. For the four 5-
year measurement intervals, the 5th percentile of non-zero AGB ranged
from 1.86 to 2.54 Mg/ha, the median ranged from 13.18 to 17.90 Mg/
ha, and the 95th percentile ranged from 43.91 to 58.95 Mg/ha. Four
datasets were constructed by combining the ALS data for the single
2012 acquisition with plot-level AGB for the four time periods.

3. Methods

3.1. Data outliers

Multiple factors affected the utility of observations for some plots.
First, the FIA program classifies plots with respect to forest use, not
forest cover. Therefore, plots with substantial tree-based AGB but
classified as non-forest use (e.g., orchards, parkland, residential prop-
erty) would not be measured in the field and would have AGB = 0
recorded. To alleviate this discrepancy, plots were deleted from further
analyses if they had AGB = 0 and hmn ≥ 2.0 m. The 2.0-m threshold
was selected to be slightly larger than the 1.37-m breast-height
threshold for measuring trees but is acknowledged to be arbitrary. In
addition, 2.0 m is often used as an ALS threshold for distinguishing
between trees and ground vegetation (Gobakken and Næsset, 2008).
Second, some plots classified as having forest use had AGB = 0 for one
or more measurements but AGB > 0 for a subsequent measurement
near the date of the ALS acquisition. These plots were likely harvested
before the first measurement but had regenerated to the degree that
they had measureable biomass by the date of the ALS acquisition; these
plots were also deleted from further analysis. Third, some plots classi-
fied as having forest use had AGB > 0 prior to the date of the ALS
acquisition but AGB = 0 subsequent to the date of ALS acquisition. To
alleviate this discrepancy, plots were deleted from further analyses if
they had AGB > 0 before the ALS acquisition, AGB = 0 subsequent to
the ALS acquisition, and hmn ≥ 2.0 m. The latter criterion indicates the
harvest was subsequent to the ALS acquisition. All deletions were
considered to be observations missing at random in the sense that there
was nothing unique about them relative to factors such as forest type
and geographical location.

3.2. Model

An initial model of the relationship between AGB as the dependent
variable and the ALS metrics as independent variables was formulated
using a power model as,

= ⋅ +y β x ε ,i 0 i
β

i1 (1a)

where i indexes plots, yi is AGB, xi is an ALS metric, εi is a random
residual, and the βs are parameters to be estimated. An advantage of
this model is that when the ALS metrics are zero, as is the case for
typical non-forest plots, the prediction will also be zero. A forward
selection procedure was used to select additional independent variables
for inclusion in the exponential component of the modification of the
model of Eq. (1a) expressed as,

= ⋅ ⋅ ⋅ + ⋅ +⋯+ ⋅ +y β x exp(β x β x β x ) ε ,i 0 1i
β

2 2i 3 3i p pi i1 (1b)

where p is the number of independent variables selected. The effect of
the exponential component of Eq. (1b) is simply to increase or decrease
the prediction based on Eq. (1a) by small increments. Additional in-
dependent variables were included if they statistically significantly in-
creased the quality of fit of the model to the data at the α= 0.05 level.
Inclusion of additional independent variables terminated when either

no additional independent variable statistically significantly increased
the quality of fit of the model to the data or the increase in pseudo-R2

(R2⁎) was less than0.01 where,

=∗R SS ‐SS
SS

,2 mn res

res (2)

SSmn is the sum of squared differences between AGB observations and
their mean, and SSres is the sum of squared residual deviations between
AGB observations and their respective model predictions. Minor var-
iations of this model form have been previously used successfully by
Andersen et al. (2014), Chen (2015), Chen et al. (2016), and McRoberts
et al. (2016).

3.3. Inference

For NFI purposes, the ultimate analytical objective is a statistical
inference in the form of a confidence interval expressed as
 ̂± ⋅μ t Var μ( ) where μ is the estimator of the population mean,

̂Var μ( )is the estimator of the variance of the estimator of the mean, and
t corresponds to the confidence level. Thus, technical estimation for the
study focused on μ and its standard error,  ̂=SE μ Var μ( ) ( ) .

3.3.1. Model-assisted estimators
Model-assisted estimators capitalize on the relationship between

observations and their predictions to increase precision. A synthetic
estimator of the population mean is,

̂ ̂∑=
=

μ 1
N

y ,Syn
i 1

N

i
(3a)

where N is the population size and yi is the model prediction of AGB for
the ith population unit. Hansen et al. (1983) note that models that do
not “represent the state of nature” induce bias into estimators which,
for equal probability samples, can be estimated as,

̂ ̂ ∑=
=

B i as(μ ) 1
n

ε ,Syn
i 1

n

i
(3b)

where n is the sample size, and = −ε y yi i i. The model-assisted, gen-
eralized regression (GREG) estimator is then,

  ̂= −μ μ Bi as μ( )GREG Syn Syn

∑ ∑= −
= =

N
y

n
ε1 1

i

N

i
i

n

i
1 1 (3c)

(Särndal et al., 1992; Särndal, 2011). The corresponding GREG variance
estimator is,

̂ ∑=
−

−
=

Var μ
n n p

ε ε( ) 1
( )

( ) ,GREG
i

n

i
1

2

(3d)

where p is the number of model parameters and = ∑
=

ε εn
i

n

i
1

1
(Särndal

et al., 1992; Särndal, 2011).

3.3.2. Stratified estimators
Because the FIA program uses post-stratified estimators for the

study area, estimates based on these estimators were also calculated for
comparison purposes. The FIA program's post-stratified estimators are
based on five strata derived from the 2011 National Land Cover Dataset
tree canopy cover dataset which includes percent tree canopy cover
values in the range of 0%–100% percent for 30-m × 30-m pixels
(Huang et al., 2001). For the study area, FIA strata consist of pixels
within specified percentage tree canopy cover ranges: 0–5%, 6–50%,
51–65%, 66–80% and 81–100% (Gormanson et al., 2017). Estimates of
population means are calculated using the unbiased stratified estimator,
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̂ ̂∑=
=

μ w μ ,Str
h 1

H

h h
(4a)

where

̂ ∑=
=

μ 1
n

y ,h
h i 1

n

hi

h

h = 1, …H denotes strata; yhi is the ith sample observation for the hth

stratum; wh is the weight for the hth stratum calculated as the propor-
tion of population units assigned to the stratum; nh is the number of
plots assigned to the hth stratum; μhand ̂σh

2 are the sample estimates of
the within-stratum mean and variance, respectively (Cochran, 1977).

Because the FIA program uses permanent plots and a spatially
constant sampling intensity, stratifications are constructed in-
dependently of the sampling, a technique characterized as post-sam-
pling stratification or simply post-stratification. Cochran (1977, p. 135)
provides a post-stratified estimator of the variance that accommodates
the random within-strata sample sizes,
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where

̂ ̂∑=
=
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(y ‐μ ) ,h
2

h i 1

n

hi h
2

h

and n is the total sample size over all strata.
Because the basis for deleting outliers (Section 3.1) is related to

differences between the dates of plot measurements and the ALS ac-
quisition date, and because the post-stratified estimators do not use the
ALS data, no outliers were deleted when applying these estimators.

4. Results and discussion

4.1. Outliers

Three categories of plots were deleted from the analyses. First, 50
plots with trees but classified as non-forest by FIA field crews were
deleted from the analyses; however, these deletions represented only 29
different plots, because some plots were deleted for multiple datasets.
For these deleted plots, mean ALS heights ranged from 2.07 to 9.34 m
and 95th percentiles of ALS heights ranged from 6.11 to 25.02 m, both
of which indicate measurable trees on the plots. Second, 25 forest plots
with AGB = 0 but with ALS heights consistent with AGB > 0 were
deleted; these deletions represented only 20 different plots, because
some plots were deleted for multiple datasets. At the time of their
measurements, these plots had AGB = 0, but by the later ALS acquisi-
tion date had measurable trees and AGB > 0 as indicated by their 95th
percentiles of ALS heights which ranged from 4.21 to 20.52 m. Third,
seven forest plots with AGB > 0 at the ALS acquisition date but
AGB = 0 at the plot measurement date were deleted; these were all
different plots. For these deleted plots, the 95th percentiles of ALS
heights ranged from 10.68 to 24.88 m, clearly indicating the presence
of measurable trees at the ALS acquisition date. For the four datasets,
the proportions of plots deleted ranged from 0.04 to 0.09 with greater
proportions for datasets whose plot measurement dates deviated more
from the ALS acquisition date.

4.2. Models

The fits of the models to the data produced R2⁎ ranging from 0.61
for the 1999–2001 dataset to 0.77 for the 2014–2016 dataset (Table 1)
(Fig. 2). These R2⁎ values are similar to those reported by Næsset et al.
(2011) and McRoberts et al. (2013) for two Norwegian study areas, by
Strunk et al. (2012) for a study area in Washington, USA, and by
d'Oliveira et al. (2012) for a Brazilian study area. The final forms of the

models as represented by Eq. (1b) included either three or four in-
dependent variables. For the initial, power form of the model as re-
presented by Eq. (1a), hqm was always the independent variable se-
lected. R2⁎ for this power form of the model ranged from 0.47 for the
1999–2001 dataset to 0.68 for the 2014–2016 dataset; these R2⁎ values
represented 66–97% of the R2⁎ values obtained for the final model form
represented by Eq. (1b). The additional selected independent variables
varied considerably but were generally lower and middle height and
density metrics. Finally, deletion of some plots as described in Sections
3.1 and 4.1 did not increase R2⁎ by more than0.11.

4.3. Inference

For the GREG estimators, two sets of bias estimates as per Eq. (3b)
were calculated, one set for the datasets used to fit the models and a
second set that also included the non-forest plots with trees. Subtraction
of the first set of bias estimates produced AGB estimates for all lands,
whereas subtraction of the second set of bias estimates produced AGB
estimates consistent with the FIA program's definition of forest land: (i)
minimum area 0.4 ha (1.0 ac), (ii) minimum tree cover of 10%, (iii)
minimum width of 36.58 m (120 ft), and (iv) forest land use. As ex-
pected, estimates for all lands were larger than estimates for forest land
(Table 1). The differences in the estimates, with mean 2.58 Mg/ha and
ranging from 1.32 to 4.22 Mg/ha, can be interpreted as mean biomass
on non-forest land with trees. The GREG estimates of AGB for forest
land were slightly larger than the FIA estimates but were not statisti-
cally significantly different (Table 1).

The GREG standard errors for all lands were slightly smaller than
the GREG standard errors for forest land. This result is as expected
because the model predicts positive AGB for non-forest land with trees,
whereas the FIA program assigns AGB = 0 for these lands. When cal-
culating variances using Eq. (3d), the larger residuals for the plots on
non-forest lands with trees are included for forest land but not for all
lands.

For forest land, the GREG standard errors were substantially smaller
than the stratified standard errors by 26.6% for 1999–2001 to 41.0%
for 2014–2016. As expected, standard errors increased as elapsed time
between the plot measurement dates and the ALS acquisition date in-
creased. Of importance, sample sizes to achieve selected precision cri-
teria are proportional to variances calculated as squares of standard
errors, not to the standard errors themselves. Thus, the ratios of var-
iances which ranged from 1.79 to 2.87 represent the factors by which
sample sizes for the stratified estimators would have to have been in-
creased to achieve the same standard errors as were achieved using the
GREG estimators. Alternatively, the latter ratios represent the factors by
which sample sizes could be reduced with no loss of precision when
using the GREG estimators rather than the stratified estimators.

4.4. Consequences

The most important consequence is that for NFIs such as the FIA
program, model-assisted estimators with ALS auxiliary data have the
potential to reduce sampling costs with no loss of precision. For plot
measurement dates within 2–3 years of the ALS acquisition date, GREG
variances were smaller than stratified variances by factors greater
than2.5, and for plots measured 7–12 years before the ALS acquisition
date, smaller by factors greater than1.75. Further, the relative diversity
of the naturally regenerated, uneven-aged, mixed species forests with
more than25 observed species on both lowland and upland sites sug-
gests that the results may be generally applicable for temperate forests.

Several caveats must be observed, however. First, the ALS data must
be available. If not, then the cost of ALS acquisition could be offset by
reductions in sampling intensities. Although the natural inclination
would be to synchronize ALS acquisitions with the FIA program's 5-year
cycle, the results of this study suggest that elapsed time between ac-
quisitions could be extended to as many as 10 years. For purposes of
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stratification, the FIA program currently uses a tree canopy cover pro-
duct that is only updated approximately every 10 years (Homer et al.,
2015), so there is a precedent for 10-year intervals between acquisitions
of auxiliary data. Second, if sampling intensities are reduced to offset
ALS acquisition costs, sufficient sample sizes must remain to construct
the models. As elapsed time between ALS acquisitions and plot mea-
surements increases, more plots will need to be deleted as outliers as a
result of more harvesting, deforestation, and regeneration. Although
deletions were less than10% for this study, percentages will differ de-
pending on factors such as harvest rates, forest composition, fragmen-
tation, and the distribution of land uses. Third, from an operational
perspective, plot measurements would typically follow rather than
precede the ALS acquisition as is the case for some datasets for this
study. Although similar results would be expected, the issue should be
investigated in greater detail.

Finally, interest is increasing in attributes of non-forest land with
trees, also characterized internationally as trees outside forests (TOF, de
Foresta et al., 2013). For example, Meneguzzo et al. (2013) note that
TOF protect soil and water resources, provide wildlife habitat, con-
tribute to farmstead energy efficiency and aesthetics, and sequester
carbon. Johnson et al. (2014) reported that in Maryland in the mid-
Atlantic region of the USA, 21–27% of predicted live tree biomass was
on land the FIA program classifies as non-forest. For agricultural states
in the Midwestern region of the USA, Perry et al. (2009) estimate the
area of all tree-covered lands exceeds the area of forest land by 25–38%.
Thus, methods such as developed for this study that can produce esti-
mates for all land, not just forest land, but use only plot observations for

forest land, merit consideration.

5. Conclusions

Two primary conclusions were drawn from the study. First, in the
context of inventory inferences, the shelf-life of airborne laser scanning
data when used with model-assisted estimators was at least 10 years. If
so, the cost of acquiring these auxiliary data, often regarded as limiting
factor for their operational use, can be substantially reduced. Second,
even for 12 years elapsed time between plot measurement and airborne
laser scanning data acquisition, the model-assisted estimators reduced
the variance of the estimator of mean aboveground, live tree, stem
biomass by 75% relative to variances obtained using stratified estima-
tors.

Three options for offsetting the costs of airborne laser scanning data
acquisition by reducing sampling can be considered: (i) reduce the
number of plots measured each year, (ii) reduce the number of subplots
measured for each plot, and (iii) use a single slightly larger plot at each
sampling location. As previously, sampling intensity reductions by
factors of 1.75–2.50 would not adversely affect precision. Because of
the large correlations among observations for subplots of the same FIA
plot, reduction of the aggregated area of FIA's four subplots by a factor
of 2.0 via either the second or third option would reduce precision by a
factor considerably< 2.0. Further, if a single plot with twice the area
of a current FIA subplot were used at each sampling location, the re-
sulting 335-m2 FIA plot would still be smaller than the much more
commonly used 500-m2 NFI basic sampling unit (Tomppo et al., 2010,
NFI Reports). Further, the larger plot size would be more amenable for
use with remotely sensed auxiliary data (Vauhkonen et al., 2014, p. 6).
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