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A B S T R A C T

National forest inventories routinely report estimates of parameters related to aboveground biomass (AGB), but
sample sizes are often insufficient to satisfy precision guidelines and reporting requirements. Aerial photo-
graphy, satellite imagery, and increasingly airborne laser scanning (ALS) data are all used as sources of auxiliary
information to address this challenge.

Combining inventory ground plot and ALS data requires that the data be co-registered to a common co-
ordinate system. When measuring plots, inventory field crews typically obtain estimates of plot coordinates
using global positioning system (GPS) receivers of varying degrees of accuracy. GPS-related errors in plot co-
ordinates contribute to a sequence of adverse effects: (i) plot data are associated with erroneous ALS metrics, (ii)
statistical models fit to such data may not adequately represent the true relationship between the plot data and
the ALS metrics; and (iii) bias may be induced into model-assisted statistical estimators of population para-
meters.

The primary objectives of the study focused on assessing the effects of GPS receiver inaccuracies on the
estimated bias and precision of model-assisted estimators of mean AGB per unit area. The underlying motivation
was to determine if the advantages of using ALS data as auxiliary information can be achieved apart from the
substantial additional expense of purchasing GPS receivers with sub-meter accuracy. The analyses focused on
comparing estimates based on three variations of plot coordinates obtained using field crew GPS receivers with
maximum location errors on the order of 5–10 m to estimates based on plot coordinates obtained using survey
grade GPS receivers with sub-meter accuracy. The study area was in north central Minnesota in the USA and is
characterized by both upland and lowland forest areas interspersed with lakes and wetlands. The primary results
were twofold. First, estimates of mean AGB per unit area based on plot coordinates obtained using the less
accurate field crew GPS receivers varied little from estimates based on the much more accurate survey grade
receivers. Second, standard errors were greater by as much as 20% when using field crew GPS receivers than
when using survey grade GPS receivers. However, even though the ALS-assisted standard errors obtained using
field crew GPS receivers were greater than when using survey grade receivers, they were still substantially
smaller than satellite image-assisted standard errors. Thus, the operational conclusion is that avoiding the
substantial additional cost of providing a survey grade GPS receiver for each of more than 100 field crews likely
outweighs the adverse consequences of somewhat larger standard errors.

1. Introduction

National forest inventories (NFI) routinely report estimates of
parameters related to aboveground biomass and growing stock volume
on which it is based. The estimates are used for multiple purposes in-
cluding strategic planning (USDA-FS, 2012), national reporting, and
reporting for an increasing number of international agreements such as
the Global Forest Resources Assessment (FAO, 2016) and Annex 1 of the
United Nations Framework Convention on Climate Change (UNFCCC,

2006). However, for important inventory parameters, particularly those
related to aboveground biomass and growing stock volume, NFI sample
sizes are often not large enough to produce precision that satisfies
guidelines and reporting requirements. Remotely sensed data are in-
creasingly used as a source of auxiliary information to address this
challenge.

From as early as the 1950s, aerial photography was used with
double sampling for stratification to increase the precision of inventory
estimators (Bickford, 1952; Poso, 1972; Poso and Kujala, 1978). In
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recent years, satellite imagery has replaced aerial photography as a
source of information for constructing strata in many countries
(McRoberts et al., 2002, 2006; Nilsson et al., 2005). With the latter
approaches, the satellite imagery is often classified with respect to se-
lected forest attributes, and the classes or aggregations of the classes
serve as strata for stratified estimation (Miles et al., 2011, p. 62). More
recently, metrics derived from distributions of airborne laser scanning
(ALS) height data have been shown to be excellent predictors of forest
attributes such as growing stock volume and biomass. The resulting
spatial products depicting the model predictions have then been used to
increase the precision of estimators of inventory parameters, often to an
even greater degree than satellite spectral data (Næsset et al., 2011;
McRoberts et al., 2012, 2013; Steinmann et al., 2013; Saarela et al.,
2015).

Multiple recent studies have documented the utility of combining
NFI or NFI-like field plot data and ALS data with small pulse densities.
In 2002 and 2004, Austria acquired nationwide ALS data with densities
of 1–4 pulses/m2 to construct a DTM. Hollaus et al. (2009) combined
these ALS data with NFI data to construct volume models with
R2 = 0.79. Between 2009 and 2015, Sweden acquired nationwide ALS
data with densities of 0.5–1.0 pulses/m2 for construction of a DTM.
Nilsson et al. (2017) combined these ALS data with NFI data obtained
from 300-m2 plots and constructed volume models that produced re-
lative RMSEs of 20–25%. In the United States of America (USA), ALS
data, mostly for constructing DTMs, have been acquired for most of the
eastern half of the country. For study areas in Minnesota, Chen et al.
(2016) and McRoberts et al. (2016, 2017) combined these ALS data
with densities of approximately 0.67 pulses/m2 with NFI data and
constructed biomass-ALS models with pseudo-R2 as great as 0.80. These
studies have multiple features in common: (i) large study areas; (ii) ALS
data with small pulse densities acquired for the primary purpose of
constructing DTMs; (iii) NFI or NFI-like ground plot data; and (iv)
models for predicting forest volume or biomass using ALS metrics as
independent variables. However, only Chen et al. (2016) and
McRoberts et al. (2016, 2017) extended the analyses from model con-
struction to assessment of the utility of the ALS data for inferences for
population parameters. A crucial finding of the latter studies was that
use of ALS data as auxiliary information decreased the variances of
estimators of AGB-related parameters by factors as great as 3.5.

An assumption underlying use of ALS metrics based on distributions
of pulse return heights as model independent variables is that the
number of pulse returns per plot is sufficiently large that the height
distributions are adequately characterized and that metrics derived
from the distributions are reliably estimated (Magnussen and
Boudewyn, 1998). Of importance, it is the number of pulses per plot
that is crucial, not just the plot size or the pulse density individually.
Vauhkonen et al. (2014) reported that numbers of pulses per plot as
small as 50 may have no adverse effects on the quality of fit of volume
or biomass models.

Combining ground plot and ALS data requires that the data be co-
registered to a common coordinate system. Coordinates for inventory
ground plots are typically acquired by field crews using global posi-
tioning system (GPS) receivers whose maximum location errors may be
as small as sub-meter but also may be as great as 5–10 m. A crucial
effect of GPS errors is that the area of the ground plot does not corre-
spond exactly with the ground area for which the ALS metrics are
calculated. As the ratio of GPS error to plot radius increases from 0 to 2,
the common area of the plot and the circular area for which the ALS
metrics are calculated decreases nearly linearly from 100% to 0%. For
statistical modelling purposes, this condition violates the regression
assumption that independent variables are observed without error and
is characterized as errors-in-variables. An effect of errors in variables is
that estimated models, regardless of the qualities of fit of the models to
the data, may not adequately represent the relationships between the
dependent variable and the independent variables when the latter are
observed without error. If so, bias is induced into population parameter

estimators that rely on the model predictions. For simple linear models,
independent random errors in the independent variable cause the es-
timate of the slope to tend to zero, an effect characterized as regression
dilution or regression attenuation. For nonlinear models and non-para-
metric prediction techniques such as Random Forest and k-Nearest
Neighbors, the effects are difficult to generalize and must be assessed on
a case-by-case basis.

The adverse consequences of plot positional errors were confirmed
by Gobakken and Næsset (2009) and Mauro et al. (2011) who assessed
the effects on ALS metrics, by Frazer et al. (2011) who assessed the
effects on lidar-based model predictions, and by Saarela et al. (2016)
who assessed the effects on estimated bias of large area ALS-assisted
estimators. Although the results of these studies are not entirely com-
parable, in general the effects of positioning errors were minimal when
plot radii were 10 m or greater and maximum positioning errors were
less than 5 m.

An important operational issue for NFIs is the degree to which use of
GPS receivers with maximum errors on the order of 5–10 m adversely
affects the utility of ALS data for enhancing forest inventory inferences.
If a large portion of the potential utility of ALS data for enhancing forest
inventory inferences can be realized using GPS receivers with maximum
errors on the order of 5–10 m, then considerable cost savings may be
possible; if not, substantial expense may be necessary to provide large
numbers of field crews with GPS receivers with sub-meter accuracies.
Thus, the primary objective of the study was to assess the effects of
errors-in-variables induced by GPS location error on estimated bias and
precision of model-assisted estimators of mean aboveground biomass
per unit area (AGB, Mg/ha) using ALS data with small pulse densities as
auxiliary information. A secondary objective was to investigate a pos-
sibility for mitigating the effects of errors-in-variables. Assessments
were based on comparisons of estimates based on ALS metrics corre-
sponding to locations obtained using GPS receivers with maximum lo-
cation errors of 5–10 m to estimates based on ALS metrics corre-
sponding to locations obtained using GPS receivers with sub-meter
accuracy. Although pseudo-R2 was used to compare the accuracies of
predictions for models of relationships between AGB and ALS metrics,
the primary assessment criteria were inferences expressed by estimates
of population means and their standard errors for AGB obtained using
model-assisted estimators.

2. Data

2.1. Study area

The 7583-km2 study area consisted of the entirety of Itasca County
in north central Minnesota in the USA (Fig. 1) and is characterized
topographically by low plains, rolling hills, wetlands and water with
elevations ranging from 113 to 164 m above sea level. Land cover in-
cludes approximately 80% forest land consisting of uplands with mix-
tures of pines (Pinus spp.) spruce (Picea spp.) and balsam fir (Abies
balsamea (L.) Mill.) and lowlands with spruce (Picea spp.), tamarack
(Larix laricina (Du Roi) K. Koch), white cedar (Thuja occidentalis (L.)),
and black ash (Fraxinus nigra Marsh.).

2.2. Forest inventory data

Data were obtained for plots established by the Forest Inventory and
Analysis (FIA) program of the U.S. Forest Service which conducts the
NFI of the USA. The FIA program has established field plot centers in
permanent locations using a systematic unaligned sampling design that
is regarded as producing an equal probability sample (McRoberts et al.,
2010). Each FIA plot consists of four 7.32-m (24-ft) radius circular
subplots that are configured as a central subplot and three peripheral
subplots with centers located at 36.58 m (120 ft) and azimuths of 0°,
120°, and 240° from the center of the central subplot. Field crews ob-
serve species and measure diameter at breast-height (dbh, 1.37 m,
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4.5 ft) and height for all trees with dbh of at least 12.7 cm (5 in) on each
7.32-m radius subplot and for all trees with dbh of at least 2.54 cm
(1 in) on 2.07-m (6.8-ft)-radius microplots with centers at subplot
centers. Allometric model predictions of individual tree aboveground
biomass are aggregated at plot-level and scaled to a per unit area basis.
For this study, uncertainty associated with the allometric model pre-
dictions of individual tree stem biomass was ignored. Subplot-level AGB
for trees with dbh of at least 12.7 cm was estimated, scaled to a per unit
area basis, designated AGB5, and associated with ALS metrics for the
entire subplot. Subplot-level AGB for trees with dbh of at least 2.54 cm
but less than 12.70 cm was also estimated, scaled to a per unit area
basis, added to AGB5 to obtain AGB1, and associated with ALS metrics
for the entire plot. Thus, apart from plot location error, AGB5 corre-
sponds exactly with the ALS metrics, whereas AGB1 corresponds
somewhat inexactly because the small tree component of AGB1 is based
on an area that is smaller than the area on which the ALS metrics are
based. However, this use of smaller concentric circular plots for smaller
trees is characteristic of most NFIs.

Data were used for only the central subplots of the 242 plots mea-
sured in 2014 and 2015, because these were the only subplots and years
for which plots coordinates were obtained using survey grade GPS re-
ceivers with sub-meter accuracy. The large correlations among ob-
servations for subplots of the same plot mean that little information is

lost by considering only the central subplot. In addition, preliminary
analyses indicated that residual variation around model predictions was
less when using only the central subplot than when using all four
subplots separately and their associated ALS metrics or when using data
aggregated for all four subplots and ALS metrics corresponding to a
circle circumscribing the four subplots.

2.3. Plot coordinates

Four sets of plot coordinates were used for the study. First, co-
ordinates of centers of plots measured in 2014 and 2015 were estimated
using survey grade GPS receivers with sub-meter accuracy and were
designated survey coordinates. Second, each time an FIA plot is mea-
sured, field crews independently estimate the coordinates of the centers
of forested, partially forested, or previously forested plots using GPS
receivers for which maximum location errors are generally less than
5 m but may be as large as 10 m (Table 1). For future reference, the plot
coordinates most recently estimated using the latter GPS receivers are
designated field crew coordinates.

Because the combination of 7.32-m radius plots and maximum po-
sitioning errors of 5 m are not within the intervals for which the effects
of positioning errors have been reported to be negligible (Gobakken and
Næsset, 2009; Mauro et al., 2011; Frazer et al., 2011), two additional
sets of plot coordinates were considered. Between 1999 and 2015, plots
in the study area were measured every five years with the result that
most plots were measured at least three times. An underlying question
is whether the means over multiple independently obtained field crew
coordinates converge to the survey coordinates; if so, means of field
crew coordinates may ameliorate or even circumvent the adverse ef-
fects on estimated bias and precision of errors-in-variables induced by
GPS location error. Thus, the third approach to estimating plot co-
ordinates entailed calculating the mean of the field crew coordinates for
each plot over all measurements. These means over multiple field crew
coordinates were designated mean field crew coordinates. The fourth
approach is based on the premise that one or more individual sets of
field crew coordinates may be seriously in error. For all plots with three
or more sets of field crew coordinates, the deviations between the

Fig. 1. Study area in Itasca County, Minnesota, USA.

Table 1
GPS receiver attributes.

Attribute GPS receiver

Field crew Survey

Vendor Emtac Trimble Trimble
Model Mini S3 Geo 7x Geo Explorer 6000
Channels 20 220 220
Dimensions 3D 3D 3D
Acquisitions 60 180 60
Antenna Internal External External
Post-processing No Yes Yes
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individual sets of field crew coordinates and their respective means were
calculated. If the common area between a 7.32-m radius circle with
center at the mean field crew coordinates and a similar circle with center
at coordinates with the maximum deviation from the mean was pro-
portionally less than 0.25, those field crew coordinates were removed
from consideration, and the mean field crew coordinates were re-
calculated. The resulting coordinates based on the recalculated means
were designated adjusted mean field crew coordinates. For a variety of
reasons including establishment of new plots, inability to measure a
small number of existing plots, and missing data, a small number of
plots had only one or two sets of field crew coordinates. For these plots,
no such analysis was possible and the mean field crew coordinates were
used.

2.4. Airborne laser scanning data

Wall-to-wall ALS data were acquired in April 2012 with a nominal
pulse density of 0.67 pulses/m2. Ground returns were classified by the
provider and were used to construct a digital terrain model via inter-
polation using the Tiffs (Toolbox for Lidar Data Filtering and Forest
Studies) software (Chen, 2007). Multiple factors affect the validity of
the assumption that the number of pulses per plot is sufficient to
characterize plot-level distributions of pulse return heights. First,
minimum ALS height thresholds in the range of 1.0–2.0 m are often
used to discriminate between pulses returned from trees and pulses
returned from non-tree ground vegetation (Næsset et al., 2011; Saarela
et al., 2015; Chirici et al., 2016; Hopkinson et al., 2016). Greater
thresholds reduce the number of returns per plot and thereby exacer-
bate the adverse effects of small plots and small pulse densities. Second,
for analysis purposes, ALS data are often restricted to first or only pulse
returns rather than all returns (Saarela et al., 2015; Babcock et al.,
2015; Cao et al., 2016). This practice also reduces the number of pulses
per plot and similarly exacerbates the same adverse effects. Therefore,
for this study that uses relatively small plots and ALS data characterized
by small pulse densities, all pulse returns from all heights were used.

Distributions of all pulse return heights were constructed for the
168.3-m2 plots using each of the four sets of plot coordinates (survey,
field crew, mean field crew, adjusted mean field crew). Distributions were
also constructed for 169-m2 square cells that tessellated the study area
and served as population units. ALS metrics for each plot and cell in-
cluded the mean (hmn), standard deviation (hsd), skewness (hsk), kur-
tosis (hku), and quadratic mean height (hqm) of the distributions of
heights for all pulse returns (Lefsky et al., 1999; Chen et al., 2012). In
addition, heights corresponding to the 10th, 20th, …, 100th percentiles
(h10, h20, …, h100) of the distributions were calculated as were canopy
densities expressed as the proportions of pulse returns with heights
greater than 10%, …, 90%, 95% (d10, …, d90, d95) of the range between
a minimum ALS above ground height threshold and the 95th height
percentile (Gobakken and Næsset, 2008).

3. Methods

3.1. Data outliers

The objective focused on estimating the effects of GPS location error
on inferences, particularly means and SEs. To isolate the effects of this
source of uncertainty, other sources whose effects are confounded with
them must be identified and eliminated. In this regard two sources of
confounded uncertainty related to plot-level AGB observations were
addressed.

First, because the ALS data were acquired in 2012 but the plots were
not measured until 2014 and 2015, some plots were harvested or
otherwise substantially disturbed between the two dates. To alleviate
this discrepancy, plots were deleted from further analyses if they sa-
tisfied three criteria: (i) 2009 or 2010 AGB greater than the 20th per-
centile of distribution of observed AGB for forest plots, (ii) AGB = 0 for

2014 or 2015, and (iii) hqm greater than the 20th percentile of the
distribution of observed hqm for plots satisfying the first two criteria. To
evaluate the effects of GPS location error on the latter criterion, two
subordinate investigations were conducted; for the first, the hqm cri-
terion was eliminated from consideration, and for the second, plot-level
hqm was replaced with mean hqm for a 3 × 3 block of cells centered on
the plot location. Second, the FIA program classifies plots with respect
to forest use, not forest cover. Therefore, plots with substantial tree-
based AGB but classified as non-forest use (e.g., orchards, parkland,
residential property) would not be measured in the field and would
have AGB = 0 recorded. To alleviate this discrepancy, plots were de-
leted from further analyses if they satisfied two criteria: (i) AGB = 0 for
2014 or 2015, and (ii) hqm greater than the 20th percentile of the dis-
tribution of observed hqm. Because GPS receivers were not used to
obtain coordinates of centers for non-forest plots, no subordinate ana-
lyses were conducted for this factor. Selection of the 20th percentile for
both factors is arbitrary, albeit conservative because it leads to fewer
deletions than smaller percentiles. In addition, distributions of observed
hqm, and therefore deletions, are affected by the particular set of plot
coordinates used.

3.2. Model

A basic model of the relationship between AGB1 and AGB5 as de-
pendent variables and the ALS metrics as independent variables was
formulated as,

= ⋅ +y β x ε ,i 0 i
β

i1 (1)

where i indexes plots, yi is either AGB1 or AGB5, xi is an ALS metric, εi
is a random residual, and the βs are parameters to be estimated. An
advantage of this model is that when the ALS metrics are zero, as is the
case for many non-forest plots, the prediction will also be zero.
Preliminary analyses indicated that hqm was the individual ALS metric
that produced the most accurate predictions. This result has been in-
dependently confirmed by Nelson et al. (2009), Boudreau et al. (2008),
Chen et al. (2012), and Chen et al. (2015). All possible combinations of
one, two, and three additional independent variables beyond hqm were
considered for inclusion into a modification of the model, but none
contributed to statistically significantly improving the quality of fit of
the model to the data.

As with most biological data, residual heteroscedasticity in the form
of greater residual variances for larger observations was evident.
Although the mathematical form of Eq. (1) readily lends itself to a log-
log transformation for purposes of either linearization or reduction of
heteroscedasticity, weighted nonlinear least squares were used for these
analyses. The heterogeneous model residual variance, σi2, was char-
acterized using a 5-step procedure (McRoberts et al., 2016, Section
3.2.2): (i) calculate the model prediction residuals as ̂= −ε y yi i where

̂ ̂ ̂
= ⋅y β xi 1 i

β2; (ii) order the pairs (xi, εi) with respect to xi; (iii) aggregate
the ordered pairs into groups of size 5 or more; (iv) for each group, g,
calculate the mean, xg, of the predictor variable and the standard de-
viation, ̂σg, of the grouped residuals; and (v) model the relationship
between ̂σg and xg as,

̂ = ⋅ +σ λ x ε ,g g g (2)

where λ is a model parameter estimated using ordinary least squares
techniques. Each observation was weighted inversely to its residual
variance estimated by substituting hqm for xg in Eq. (2).

Residuals analysis included calculating standardized residuals as
ratios of εi and ̂σi. Plot-level observations with standardized residuals
greater than 3.5, a very conservative criterion, were deleted, and the
model was refit to the data. F-tests based on the extra sum of squares
principle were used to assess whether inclusion of additional in-
dependent variables contributed to statistically significantly improving
the quality of fit of the models to the data (Draper and Smith, 1981,
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Section 2.7). Fits of the model to the data were characterized using
pseudo-R2,

=
−∗R SS SS

SS
,2 mn res

mn (3)

where SSmn is the sum of squared differences between AGB observations
and their mean, and SSres is the sum of squared residual differences
between AGB observations and their corresponding model predictions.

3.3. Inference

For forest inventory purposes, the ultimate analytical objective is a
statistical inference in the form of a confidence interval calculated as

̂ ̂ ̂± ⋅μ t Var(μ) where ̂μ is the estimate of a population mean, ̂ ̂Var(μ) is
an estimate of the variance of the estimator of the mean, and t corre-
sponds to the confidence level. Thus, analytical components of the
study focused on ̂μ and its standard error, ̂ ̂ ̂=SE(μ) Var(μ) .

3.3.1. Simple random sampling estimators
With equal probability sampling designs, the simplest approach to

inference is to use the familiar simple random sampling (SRS) estimators
for means and their variances,

̂ ∑=
=

μ 1
n

ySRS
i 1

n

i
(4a)

and

̂ ̂ ̂
=

∑ −

−
=Var(μ )

(y μ )
n(n 1)

,SRS
i 1
n

i SRS
2

(4b)

where i indexes the n sample units, and yi is the observation for the ith
sample unit. The primary advantages of the SRS estimators are that they
are intuitive, simple, and unbiased when used with an SRS design; the
disadvantage is that variances are frequently large, particularly for
small sample sizes and/or populations with large variability among
population unit observations. Although ̂ ̂Var(μ )SRS from Eq. (4b) may be
biased when used with systematic sampling, it is usually conservative in
the sense that it over-estimates the variance (Särndal et al., 1992). For
this study, finite population correction factors were ignored because of
the small sampling intensity of approximately one 168-m2 plot per
3100 ha.

3.3.2. Model-assisted, generalized regression estimators
A synthetic estimator of the population mean is,

̂ ̂∑=
=

μ 1
N

y ,Syn
i 1

N

i
(5a)

where N is the population size and ̂yi is the model AGB prediction for
the ith population unit. Hansen et al. (1983) note that models that do
not “represent the state of nature” induce bias into this estimator which,
for equal probability samples, can be estimated as,

̂ ̂ ∑=
=

B i as(μ ) 1
n

ε ,Syn
i 1

n

i
(5b)

where ̂= −ε y yi i i. The model-assisted, generalized regression (GREG) es-
timator is then defined as (Särndal et al., 1992; Särndal, 2011),

̂ ̂ ̂ ̂

̂∑ ∑

= −

= −
= =

μ μ B i as(μ )

1
N

y 1
n

ε .

GREG Syn Syn

i 1

N

i
i 1

n

i
(5c)

When least squares techniques are used to estimate the model
parameters, the bias estimate will be zero for linear models and is often
small for nonlinear models (McRoberts et al., 2013). The corresponding
GREG variance estimator is,

̂ ̂ ∑=
−

−
=

Var(μ ) 1
n(n p)

(ε ε) ,GREG
i 1

n

i
2

(5d)

where p is the number of model parameters and = ∑ =
ε ε1

n i 1
n

i (Särndal
et al., 1992; Särndal, 2011). The primary advantage of the GREG esti-
mators is that they capitalize on the relationship between the sample
observations and their model predictions to reduce the variance of the
estimator of the population mean.

4. Results and discussion

4.1. Plot coordinates

Of the 242 FIA plots used for this study: (i) 46 non-forest plots had
never been measured in field and, therefore, had no survey or field crew
coordinates; (ii) 44 plots had only one or two sets of field crew co-
ordinates; (iii) 145 plots had two or more sets of field crew coordinates,
but required no adjustment of mean field crew coordinates, and (iv) 17
plots had two or more sets of field crew coordinates and required ad-
justment of the mean field crew coordinates. For mean field crew and/or
adjusted mean field crew coordinates, the primary results were twofold
(Fig. 2). First, the large proportion of data points falling below the 1:1
line indicates that mean field crew and adjusted mean field crew co-
ordinates were generally closer to the survey coordinates than were the
field crew coordinates. Second, for plots with three or more sets of field
crew coordinates of which one deviated substantially from its respective
mean (red data points), deleting the deviating field crew coordinates and
recalculating the mean field crew coordinates brought the adjusted mean
field crew coordinates (green points) much closer to the 1:1 line and,
therefore, closer to the field crew and survey coordinates. Thus, the mean
field crew and adjusted mean field crew coordinates were generally closer
to the survey coordinates than were the original field crew coordinates.

4.2. Outliers

Three factors affected decisions as to whether plot observations
should be considered outliers and deleted from the analyses. The first
factor as described in Section 3.1 pertained to the disturbance of plots
between ALS acquisition and field measurement. For the eight combi-
nations of four kinds of plot coordinates and two response variables
(AGB1, AGB5), 5–6 plots were deleted in consideration of this factor.

Fig. 2. The effects of adjusting mean field crew coordinates. Horizontal axis is distance
from original field crew to survey coordinates; vertical axis is distance from original
survey to mean field coordinates. Red and green data points represent the same plots,
with mean coordinates before and after adjustment, respectively.
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The effect of GPS location error on this factor was deletion of 1–2 ad-
ditional plots as outliers. Because the effect was to delete more plots,
albeit a small number, the original criterion based on hqm for the plot
location was used for all subsequent analyses. For the second factor,
also described in Section 3.1 and pertaining to discrepancies between
land use and land cover, 11–14 plots were deleted. The third factor as
described in Section 3.2 related to large absolute values of standardized
residuals. For this factor, 1–2 plots were deleted when using survey
coordinates, whereas 3–5 plots were deleted when using the field crew-
based coordinates. Overall, the less accurate field crew-based co-
ordinates produced greater numbers of outliers for the first and third
factors, but not for the second factor.

4.3. Model construction

For the eight combinations of kinds of plot coordinates and response
variables, hqm was the ALS metric that contributed most to statistically
significantly improving the quality of fit of the models to the data. For
models based on hqm, R2⁎

ranged from 0.765 to 0.802 for AGB1 and
from 0.776 to 0.864 for AGB5 with the greatest values, as expected, for
the survey coordinates. Of importance, R2⁎

values obtained prior to
deleting outliers as discussed in Section 4.2 were proportionally 0.19 to
0.29 smaller than R2⁎

values obtained after deleting outliers.

4.4. Inference

The overarching technical objective of the study was to estimate the
degree to which use of ALS metrics corresponding to the field crew,
mean field crew, and adjusted mean field crew coordinates induces bias
into the GREG estimator of mean AGB per unit area and the degree to
which uncertainty as expressed by the standard error of the mean is
affected. For the nonlinear models used for this study, the effects of
errors-in-variables on bias and precision are similar conceptually to
regression dilution for linear models. If the bias is non-negligible and/
or uncertainty is substantially increased, then operational use of ALS
data for the inventory program would require purchasing expensive
survey grade GPS receivers for all field crews. However, because the
true mean is not known and only a single sample was available, a
formal assessment of bias is not possible. Therefore, means and stan-
dard errors obtained for the survey coordinates were used as the stan-
dard for comparison.

The most important result was that estimates of mean AGB obtained
using ALS metrics corresponding to field crew, mean field crew, and
adjusted mean field crew coordinates deviated very little from estimates
obtained using survey coordinates (Table 2). Estimates of mean AGB1
for the field crew-based coordinates deviated proportionally by no more
than 0.01 from estimates for survey coordinates, and estimates for mean
AGB5 deviated proportionally by no more than 0.04. Using only plot
observations with no deletions and no auxiliary information, the SRS
estimates of mean AGB for forest land use were ̂ =μ 47.53 Mg/haSRS
with ̂ =SE(μ ) 3.91 Mg/haSRS for AGB1 and ̂ =μ 38.10 Mg/haSRS with

̂ =SE(μ ) 3.72 Mg/haSRS for AGB5. Because the ALS-assisted estimates
for this study reflect AGB on all lands with tree cover, not just land with
forest use, ̂μSRS should be expected to be less than ̂μGREG. Nevertheless,̂μGREG for all combinations of kinds of coordinates and response vari-
ables was always within two SRS SEs of ̂μSRS.

Model prediction accuracy can be assessed not only via measures
such as R2⁎

as per Eq. (3), but also via estimated bias as per Eq. (5b). The
estimated biases were minimal, ranging from −0.36 to 0.60 Mg/ha or
proportionally to means ranging from −0.01 to 0.02 (Table 2). These
results suggest little is lost in terms of the accuracy of the population
parameter estimate as expressed by estimated bias by using field crew,
mean field crew, or adjusted mean field crew coordinates.

The expectation underlying the study was that the closer field crew-
based plot coordinates are to the survey coordinates, the closer the es-
timates obtained using the field crew-based coordinates will be to the
estimates obtained using the survey coordinates and the smaller the SEs
will be. For estimated mean AGB1, differences between the SEs corre-
sponding to the survey grade coordinates and the three sets of field
crew coordinates were small, ranging from 0.06 to 0.20 Mg/ha.
However, for the estimated mean AGB5, the differences were greater,
ranging from 0.35 to 0.44 Mg/ha. No reason for the greater differences
for the latter case is readily apparent. Although SEs for the three field
crew-based coordinates were quite similar to each other, SEs for adjusted
mean field crew coordinates were slightly greater than SEs for mean field
crew coordinates which, in turn, were slightly greater than SEs for field
crew coordinates. This result is difficult to explain given that the both
the mean field crew and adjusted mean field crew coordinates were gen-
erally closer to the survey coordinates than the field crew coordinates
(Section 4.1, Fig. 2). This result could, conceivably, be attributed to
some combination of multiple factors. First, multiple instances were
noted for which adjusted mean field crew coordinates were farther, ra-
ther than closer, to survey coordinates than mean field crew coordinates.
This condition cannot be known, however, apart from acquisition of
survey coordinates. Second, multiple instances were also noted for
which differences in hqm increased when differences between mean field
crew and survey coordinates decreased. This phenomenon may be a
consequence of forest fragmentation. Third, due to the nonlinear form
of the model, equal positive and negative differences in hqm do not
necessarily result in equal differences in model predictions; similarly,
equal differences in hqm regardless of sign do not necessarily produce
similar results for small and large predictions. Finally, the relatively
small differences in SEs could be at least partially due simply to random
effects.

4.5. Operational implications

From an operational perspective, multiple results merit emphasis.
First, use of field grade GPS receivers with maximum locations errors of
5–10 m had effects of 5% or less on estimates of mean AGB per unit
area. Second, the detrimental effects on standard errors of estimates of
the means were greater, on the order of 5–20%. However, even the

Table 2
Estimates.

Minimum tree diameter at breast-height Plot coordinates R2⁎
Mean aboveground biomass per unit area (Mg/ha)

̂μSyn ̂ ̂B i as(μ )Syn ̂μGREG ̂SE(μ )GREG

2.54 cm (1 in) Survey 0.802 54.53 −0.36 54.89 1.84
Field crew 0.796 54.78 0.08 54.70 1.90
Mean field crew 0.777 54.83 0.00 54.83 1.99
Adjusted mean field crew 0.765 55.26 0.25 55.01 2.04

12.70 cm (5 in) Survey 0.864 42.60 −0.08 42.68 1.48
Field crew 0.792 44.96 0.60 44.36 1.83
Mean field crew 0.776 44.57 0.33 44.24 1.91
Adjusted mean field crew 0.776 44.54 0.61 43.94 1.92
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latter larger ALS-assisted standard errors were still substantially smaller
than the satellite image-assisted standard errors currently reported by
the inventory program for the study area (McRoberts et al., 2017).
Third, the Northern Research Station of the U.S. Forest Service conducts
the NFI in the region containing the study area and currently uses 110
field crews. Thus, the cost of acquiring an approximate $10,000 survey
grade GPS receiver for each field crew would exceed $1 million. Fur-
ther, because the Northern Research Station is just one of four Research
Stations that conduct the inventory, the cost at the national level would
be substantially greater. Thus, the primary operational finding was that
circumventing the substantial additional cost of acquiring a survey
grade GPS receiver for each of more than 100 field crews likely out-
weighs the adverse effects of the somewhat larger ALS-assisted standard
errors corresponding to field grade GPS receivers that those corre-
sponding to survey grade receivers.

5. Conclusions

Three conclusions were drawn from the study. First, the results
benefitted considerably from deletion of observations for two kinds of
plots: (i) plots experiencing substantial disturbance between the dates
of airborne laser scanning data acquisition and plot measurement and
(ii) plots characterized as non-forest use but with substantial tree cover.
Second, although mean field crew and adjusted mean field crew co-
ordinates were generally closer to the survey coordinates than the field
crew coordinates, standard errors based on the former coordinates were
slightly larger than standard errors based on the field crew coordinates.
Nevertheless, as more sets of field crew coordinates are obtained using
more accurate GPS receivers, consideration of mean field crew and ad-
justed mean field crew coordinates should continue. Third, and most
importantly for inventory applications, estimates of mean aboveground
biomass per unit area obtained using field crew, mean field crew, and
adjusted mean field crew coordinates did not deviate substantially from
estimates obtained using survey coordinates. In particular, differences
were proportionally less than 0.01 for biomass in trees with diameters
of at least 2.54 cm (1 in) and less than 0.04 for biomass in trees with
diameters of at least 12.70 cm (5 in). In addition, although the field
crew, mean field crew, and adjusted mean field crew coordinates caused
standard errors to increase, the differences were not compelling. From
an operational perspective, these slightly larger standard errors may be
an acceptable compromise if the alternative is purchasing very ex-
pensive survey grade GPS receivers for all field crews.

Acknowledgements

The authors thank Mr. Richard McCullough, Northern Research
Station, U.S. Forest Service, Newtown Square, PA, for assisting in
documenting the specifications for the GPS receivers.

References

Babcock, C., Finley, A.O., Bradford, J.B., Birdsey, R., Ryan, M.G., 2015. LiDAR based
prediction of forest biomass using hierarchical models with spatially varying coeffi-
cients. Remote Sens. Environ. 169, 113–127.

Bickford, C.A., 1952. The sampling design used in the forest survey of the northeast. J.
For. 50, 290–293.

Boudreau, J., Nelson, R.F., Margolis, H.A., Beaudoin, A., Guindon, L., Kimes, D.S., 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Quebec. Remote Sens. Environ. 112, 3876–3890.

Cao, L., Coops, N.C., Innes, J.L., Sheppard, S.R.J., Fu, L., Ruan, H., She, G., 2016.
Estimation of forest biomass dynamics in subtropical forests using multi-temporal
airborne LiDAR data. Remote Sens. Environ. 178, 158–171.

Chen, Q., 2007. Airborne lidar data processing and information extraction. Photogramm.
Eng. Remote. Sens. 73 (12), 1355–1365.

Chen, Q., 2015. Modeling aboveground tree woody biomass using national-scale allo-
metric methods and airborne lidar. ISPRS J. Photogramm. Remote Sens. 106, 95–106.

Chen, Q., Vaglio Laurin, G., Battles, J.J., Saah, D., 2012. Integration of airborne lidar and
vegetation types derived from aerial photography for mapping aboveground live
biomass. Remote Sens. Environ. 121, 108–117.

Chen, Q., McRoberts, R.E., Wang, C., Radtke, P.J., 2016. Forest aboveground biomass

mapping and estimation across multiple spatial scales using model-based inference.
Remote Sens. Environ. 184, 350–360.

Chirici, G., McRoberts, R.E., Fattorini, L., Mura, M., Marchetti, M., 2016. Comparing
echo-based and canopy height model-based metrics for enhancing estimation of
forest aboveground biomass in a model-assisted framework. Remote Sens. Environ.
174, 1–9.

Draper, N.R., Smith, H., 1981. Applied Regression Analysis, 2nd ed. Wiley.
FAO, 2016. Global Forest Resources Assessment, 2015. Food and Agriculture

Organization of the United Nations, Rome 47 pp. Available at: http://www.fao.org/
3/a-i4793e.pdf, Accessed date: July 2016.

Frazer, G.W., Magnussen, S., Wulder, M.A., Niemann, K.O., 2011. Simulated impact of
sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-
derived estimates of forest stand biomass. Remote Sens. Environ. 115, 636–649.

Gobakken, T., Næsset, E., 2008. Assessing effects of laser point density, ground sampling
intensity, and field plot sample size on biophysical stand properties derived from
airborne laser scanner data. Can. J. For. Res. 38, 1095–1109.

Gobakken, T., Næsset, E., 2009. Assessing effects of positioning errors and sample plot
size on biophysical stand properties derived from airborne laser scanner data. Can. J.
For. Res. 39, 1036–1052.

Hansen, M.H., Madow, W.G., Tepping, B.J., 1983. An evaluation of model dependent and
probability-sampling inferences in sample surveys. J. Am. Stat. Assoc. 78, 776–793.

Hollaus, M., Dorigo, W., Wagner, Schadauer, K., Höfle, B., Maier, B., 2009. Operational
wide-area stem volume estimation based on airborne laser scanning and national
forest inventory data. Int. J. Remote Sens. 30 (19), 5159–5175.

Hopkinson, C., Chasmer, L., Barr, A.G., Kljun, N., Black, T.A., McCaughey, J.H., 2016.
Monitoring boreal forest biomass and carbon storage change by integrating airborne
laser scanning, biometry and eddy covariance data. Remote Sens. Environ. 181,
82–95.

Lefsky, M.A., Harding, D., Cohen, W.B., Parker, G., Shugart, H.H., 1999. Surface lidar
remote sensing of basal area and biomass in deciduous forests of eastern Maryland,
USA. Remote Sens. Environ. 67, 83–98.

Magnussen, S., Boudewyn, P., 1998. Derivations of stand heights from airborne laser
scanning data with canopy-based quantile estimators. Can. J. For. Res. 28,
1016–1031.

Mauro, F., Valbuena, R., Manznaera, J.A., Garcia-Abril, A., 2011. Influence of Global
Navigation Satellite System errors in positioning inventory plots for tree height dis-
tribution studies. Can. J. For. Res. 41, 11–23.

McRoberts, R.E., Wendt, D.G., Nelson, M.D., Hansen, M.D., 2002. Using a land cover
classification based on satellite imagery to improve the precision of forest inventory
area estimates. Remote Sens. Environ. 81, 36–44.

McRoberts, R.E., Holden, G.R., Nelson, M.D., Liknes, G.C., Gormanson, D.D., 2006. Using
satellite imagery as ancillary data for increasing the precision of estimates for the
Forest Inventory and Analysis program of the USDA Forest Service. Can. J. For. Res.
36, 2968–2980.

McRoberts, R.E., Hansen, M.H., Smith, W.B., 2010. United States of America. In: Tomppo,
E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (Eds.), National Forest
Inventories, Pathways for Common Reporting. Springer.

McRoberts, R.E., Gobakken, T., Næsset, E., 2012. Post-stratified estimation of forest area
and growing stock volume using lidar-based stratifications. Remote Sens. Environ.
125, 157–166.

McRoberts, R.E., Næsset, E., Gobakken, T., 2013. Inference for lidar-assisted estimation of
forest growing stock volume. Remote Sens. Environ. 128, 268–275.

McRoberts, R.E., Chen, Q., Domke, G.M., Ståhl, G., Saarela, S., Westfall, J.A., 2016.
Hybrid estimators for mean aboveground carbon per unit area. For. Ecol. Manag.
378, 44–56.

McRoberts, R.E., Chen, Q., Walters, B.F., 2017. Multivariate inference for forest in-
ventories using auxiliary airborne laser scanning data. For. Ecol. Manag. 401,
295–303.

Miles, P.D., Heinzen, D., Mielke, M.E., Woodall, C.W., Butler, B.J., Piva, R.J., Meneguzzo,
D.M., Perry, C.H., Gormanson, D.D., Barnett, C.J., 2011. Minnesota's forests 2008. In:
Resource Bulletin NRS-50. U.S. Department of Agriculture, Forest Service, Northern
Research Station, Newtown Square, PA.

Næsset, E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Ståhl, G., Weydahl, D.,
2011. Model-assisted regional forest biomass estimation using LiDAR and InSAR as
auxiliary data: a case study from a boreal forest area. Remote Sens. Environ. 115,
3599–3614.

Nelson, R., Boudreau, R., Gregoire, T.G., Margolis, H., Naesset, E., Gobakken, T., Stahl, G.,
2009. Estimating quebec provincial forest resources using ICESat/GLAS. Can. J. For.
Res. 39, 862–881.

Nilsson, M., Holm, S., Reese, H., Wallerman, J., Engberg, J., 2005. Improved forest sta-
tistics from the Swedish National Forest Inventory by combining field data and op-
tical satellite data using post-stratification. In: Olsson, H. (Ed.), Proceedings of
ForestSat 2005, Bora°s, Sweden, May 31–June 3, 2005. National Board of Forestry,
Sweden, Jönköping, pp. 22–26.

Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., Egberth,
M., Larsson, S., Nilsson, L., Olsson, H., 2017. A nationwide forest attribute map of
Sweden predicted using airborne laser scanning data and field data from the National
Forest Inventory. Remote Sens. Environ. 194, 447–454.

Poso, S., 1972. A method for combining photo and field samples in forest inventory.
Commun. Inst. For. Fenniae 76, 1–133.

Poso, S., Kujala, M., 1978. A method for national forest inventory in northern Finland.
Commun. Inst. For. Fenniae 93, 1–54.

Saarela, S., Grafström, A., Ståhl, G., Kangas, Holopainen, M., Tuominen, S., Nordkvist, K.,
Hyyppä, J., 2015. Model-assisted estimation of growing stock volume using different
combinations of LiDAR and Landsat data as auxiliary information. Remote Sens.
Environ. 158, 431–440.

R.E. McRoberts et al. Remote Sensing of Environment 207 (2018) 42–49

48

http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0010
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0010
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0015
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0015
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0015
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2800
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2800
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2900
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2900
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0025
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0025
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0025
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0030
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0030
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0030
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0040
http://www.fao.org/3/a-i4793e.pdf
http://www.fao.org/3/a-i4793e.pdf
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0050
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0050
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0050
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0055
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0055
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0055
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2600
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf2600
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0065
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0065
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0065
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0070
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0070
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0070
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0070
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0075
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0075
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0075
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0080
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0080
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0080
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0090
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0090
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0090
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0100
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0100
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0100
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0105
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0105
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0105
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0110
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0110
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0115
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0115
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0115
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0130
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0130
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0130
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0130
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0135
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0135
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0135
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0140
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0140
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0140
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0140
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0140
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0145
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0145
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0145
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0145
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0150
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0150
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0155
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0155
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0160


Saarela, S., Schnell, S., Tuominen, S., Balázs, A., Hyppä, J., Grafström, A., Ståhl, G., 2016.
Effects of positional errors in model-assisted and model-based estimation of growing
stock volume. Remote Sens. Environ. 172, 101–108.

Särndal, C.-E., 2011. Combined inference in survey sampling. Pak. J. Stat. 27, 359–370.
Särndal, C.-E., Swensson, B., Wretman, J., 1992. Model Assisted Survey Sampling.

Springer-Verlag, Inc.
Steinmann, K., Mandallaz, D., Ginzler, C., Lanz, A., 2013. Small area estimations of

proportion of forest and timber volume combining Lidar data and stereo aerial
images with terrestrial data. Scand. J. For. Res. 28 (4), 373–385.

UNFCCC, 2006. Updated UNFCCC Reporting Guidelines on Annual Inventories Following

Incorporation of the Provisions of Decision 14/CP.11. Note by the Secretariat. United
Nations Office at Geneva, Geneva, Switzerland (93 pp.).

USDA Forest Service (USDA-FS), 2012. Future of America's Forest and Rangelands: Forest
Service 2010 Resources Planning Act Assessment. General Technical Report WO-87.
(Washington, DC).

Vauhkonen, J., Maltamo, J., McRoberts, R.E., Næsset, E., 2014. Introduction to forestry
applications of airborne laser scanning data. In: Maltamo, M., Næsset, E., Vauhkonen,
J. (Eds.), Forestry Applications of Airborne Laser Scanning. Springer, Dordrecht, pp.
1–16.

R.E. McRoberts et al. Remote Sensing of Environment 207 (2018) 42–49

49

http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0165
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0165
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0165
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0170
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0175
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0175
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0180
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0180
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0180
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0185
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0185
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0185
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30458-3/rf0195

	The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass
	Introduction
	Data
	Study area
	Forest inventory data
	Plot coordinates
	Airborne laser scanning data

	Methods
	Data outliers
	Model
	Inference
	Simple random sampling estimators
	Model-assisted, generalized regression estimators


	Results and discussion
	Plot coordinates
	Outliers
	Model construction
	Inference
	Operational implications

	Conclusions
	Acknowledgements
	References




