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Abstract
The ability to harmonize data sources with varying temporal, spatial, and ecosystemmeasurements
(e.g. forest structure to soil organic carbon) for creation of terrestrial carbon baselines is paramount to
refining themonitoring of terrestrial carbon stocks and stock changes. In this study, we developed and
examined the short- (5 years) and long-term (30 years) performance ofmatrixmodels for
incorporating light detection and ranging (LiDAR) strip samples and time-series Landsat surface
reflectance high-level data products, withfield inventorymeasurements to predict aboveground
biomass (AGB) dynamics for study sites across the easternUSA—Minnesota (MN),Maine (ME),
Pennsylvania-New Jersey (PANJ) and SouthCarolina (SC). The rows and columns of thematrixwere
stand density (i.e. number of trees per unit area) sorted by inventory plot and by species group and
diameter class. Throughmodel comparisons in the short-term, we found that average stand basal area
(B) predicted by threematrixmodels all fell within the 95% confidence interval of observed values.
The threematrixmodels were based on (i) onlyfield inventory variables (inventory), (ii) LiDAR and
Landsat-derivedmetrics combinedwithfield inventory variables (LiDAR+Landsat+inventory),
and (iii) only Landsat-derivedmetrics combinedwithfield inventory variables (Landsat+inventory),
respectively. In the long term, predictedAGBusing LiDAR+Landsat+inventory and Land-
sat+inventory variables had similar AGBpatterns (differences within 7.2Mg ha−1) to those
predicted bymatrixmodels with only inventory variables from2015–2045.When considering
uncertainty derived from fuzzy sets all threematrixmodels had similar AGBs (differences within
7.6Mg ha−1) by the year 2045. Therefore, the use ofmatrixmodels enabled various combinations of
LiDAR, Landsat, andfield data, especially Landsat data, to estimate large-scale AGBdynamics (i.e.
central component of carbon stockmonitoring)without loss of accuracy fromonly using variables
from forest inventories. Thesefindings suggest that the use of Landsat data alone incorporating
elevation (E), plot slope (S) and aspect (A), and site productivity (C) could produce suitable estimation
of AGBdynamics (ranging from67.1–105.5Mg ha−1 in 2045) to actual AGBdynamics usingmatrix
models. Such a frameworkmay afford refinedmonitoring and estimation of terrestrial carbon stocks
and stock changes from spatially explicit to spatially explicit and spatially continuous estimates and
also provide temporalflexibility and continuity with the Landsat time series.
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Introduction

Forest ecosystems have the largest terrestrial carbon
(C) stock and represent a majority (∼80%) of all
aboveground C (Pacala et al 2001, Houghton et al
2009, Pan et al 2011). In concert with international
efforts to reduce greenhouse gas (GHG) emissions,
nations such as the US have been monitoring and
mapping forest aboveground biomass (AGB)
dynamics using data from the national forest inven-
tory (NFI) conducted by the US Department of
Agriculture (USDA) Forest Service, Forest Inventory
and Analysis (FIA) program in the US (e.g. Heath et al
2011, Woodall et al 2015a). Recent work has high-
lighted that the accuracy and precision of AGB
dynamics over a range of spatial scales could be further
improved by incorporating vegetation indices as pre-
dictors derived from remotely sensed data that are
temporally consistent and spatially continuous (Deo
et al 2017a). Providing spatially continuous and
temporally consistent estimates of AGB dynamics in
forests at large-scales is crucial for evaluating existing
land use policies and land management practices
intended to help mitigate GHG emissions (Woodall
et al 2015b, Deo et al 2017b). Antiquated approaches
to predict AGB dynamics have been extensively used
to provide robust estimates relying solely on forest
inventory plots (Hall et al 2006, Ma et al 2018), but
they are inefficient and difficult to implement over
large spatial and temporal scales. Indeed the technolo-
gies of light detection and ranging (LiDAR) and time-
series Landsat surface reflectance high-level data
products provide not only relatively cost-effective
means, but also accuracy and spatial resolution to
predict AGB dynamics over large domains of space
and time (Powell et al 2010, Wulder et al 2012,
Babcock et al 2018).

Generally, tree- and stand-level attributes from forest
inventory data have been recognized as themost accurate
method to provide information onbiomass prediction at
local or regional scales (Fang et al 2001, Brown 2002).
However, these methods are usually labor-intensive and
costly when applied to large regions (Houghton 2005)
and are often logistically prohibitive in remote areas.
The approach of linking ground measurements with
remotely sensed data has greatly improved efficiency and
cost-effectiveness of AGB estimation in forests, and can
directly provide AGB estimates based on regression
models (Running et al 1999, Hu et al 2016). Such a pro-
cess has become increasingly popular with the advent of
LiDAR and synthetic aperture radar (Lefsky et al 2002,
Goetz andDubayah 2011, Avitabile et al 2012,Neigh et al
2013, Tanase et al 2014,Margolis et al 2015, Babcock et al
2016, Fayad et al2016,Hu et al2016, Treuhaft et al 2017),
the public-release of Landsat time-series data (Hall et al
2006, Labrecque et al 2006, Blackard et al 2008, Powell
et al 2010), and the incorporation of both LiDAR and
Landsat time-series imagery (Babcock et al 2018, Deo
et al 2017b) in the context of growing awareness of the

role of terrestrial systems in the global carbon balance
(e.g. Pan et al 2011). However, approaches for quantita-
tively predicting large-scale AGB dynamics in the long-
term through incorporation of remotely sensed data,
especially Landsat surface reflectancehigh-level datapro-
ducts and forest inventoryplots are limited.

To quantitatively evaluate AGB dynamics at
national scales, it is crucial to develop a relationship
between field inventory variables related to ABG, such
as live tree basal area, and co-located spatial predictors
extracted from LiDAR and Landsat time-series data
(Margolis et al 2015). The relationship between inven-
tory plot estimates and co-located auxiliary variables
can then be exploited to achieve a reduction in error
variance (when compared to an absence of auxiliary
data) in the estimates of population dynamics (Powell
et al 2010, Gregoire et al 2016). Because Landsat spec-
tral data can characterize forest cover types (Hall et al
2006) and LiDAR provides highly visible three-dimen-
sional profile of canopy structures, improved estima-
tion of forest AGB can be attained when LiDAR data
are combined with Landsat-derived fine resolution
metrics (Hudak et al 2002, White et al 2016, Deo et al
2017b). However, it is not easy to implement more
suitable AGB dynamic predictions to actual AGB
dynamics for anymodel-assisted estimator (e.g. Forest
Vegetation Simulator) that depends on field plots and
remote sensing data being established as control vari-
ables (Babcock et al 2018).

Substantial improvement in computational envir-
onments and techniques have led to enhancements
and flexibility in prediction models. For example,
matrix models apply transition matrices to estimate
the dynamics of ecological populations based on three
main components including forest growth, mortality,
and recruitment (e.g. Solomon et al 1987, Caswell
2001, Fieberg and Ellner 2001, Liang and Picard 2013).
Since the 1940s (Lewis 1942, Leslie 1945), researchers
have widely employed matrix models to study forest
ecosystem dynamics (Usher 1969). Although matrix
models vary in their degrees of complexity related to
capturing forest growth, recruitment, and mortality,
they have been applied to estimate forest population
dynamics and associated forest C dynamics under dif-
ferent disturbance, management, and climate scenar-
ios (Solomon et al 2000, Liang and Zhou 2014, Wear
andCoulston 2015,Ma et al 2016,Ma andZhou 2017).
Therefore matrix models afford an opportunity to
predict AGB dynamics through incorporation of for-
est inventory attributes with co-located remotely
sensed variables.

As signatories to the United Nations Framework
Convention on Climate Change (UNFCCC), the Uni-
ted States (US) reports economy-wide GHG emissions
and removals, which includes the land sector, each
year from 1990 to near present. This report is intended
to be a tool to evaluate the US contributions to global
emissions but also to evaluate the effectiveness of poli-
cies and practices within the US (Hockstad and
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Hanel 2018). Given that most land use polices and
land management practices occur at local or regional
scales, having spatially and temporally resolved infor-
mation is critical to evaluate existing policies and prac-
tices that can be used to inform future activities. The
objective of this study was to evaluate whether remo-
tely sensed variables, especially Landsat time series,
can be used in place of forest inventory estimates (i.e.
stand basal area [B]) in matrix models to predict AGB
dynamics without substantial loss of accuracy and pre-
cision under uncertainty. The row and column vectors
of thematrix were number of trees per unit area classi-
fied by field plot and by species group and diameter
class. To test this we (1) developed matrix models
using parameters from LiDAR strip samples, Landsat
time-series, and forest inventory plots (i.e. stand basal
area [B], elevation [E], plot slope [S] and aspect [A],
and site productivity [C]) for specific study sites in the
eastern US - Maine (ME), Minnesota (MN), Pennsyl-
vania and New Jersey (PANJ), and South Carolina
(SC), (2) predicted short-term stand basal area and
long-term AGB changes amongmatrix models at each
site and across sites, (3) adopted fuzzy sets to represent
variability in predictions caused by uncertainty, and

(4) compared the accuracy and precision of the predic-
tions from each matrix model to evaluate whether
remotely sensed variables could be used in place of
field variables when such plots are missing across spa-
tial and temporal domains of interest.

Data andmethods

Research region
The research region is located in the eastern USA and
contains a wide range of climatic conditions, ecore-
gions, and species composition, and covers four Land-
sat scenes corresponding to the WRS-2 paths/rows
of 12/28, 27/27, 14/32 and 16/37. In which scenes
12/28, 27/27 and 16/37 lie completely within theME,
MN and SC while scene 14/32 covers parts of PANJ,
respectively (figure 1).

Forest data
We included 322 remeasured permanent ground plots
from theUSDA, Forest Service, FIA database (previous
measurement period was 2007–2010 with the same
plots re-measured in 2012–2015, which resulted in an

Figure 1. Location of four study sites represented by FIA plots, LiDAR strip samples, and Landsat scenes in the easternUSA—Maine
(ME),Minnesota (MN), Pennsylvania-New Jersey (PANJ) and SouthCarolina (SC), respectively.
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inconsistent time gap between plot measurements,
USDA Forest Service 2017). The number of FIA plots
was 96 in ME, 109 in MN, 42 in PANJ, and 75 in SC.
The FIA plots were selected such that each represents a
single condition and stand basal area is above zero.
Each permanent ground plot is made up of four
smaller fixed-radius (7.32 m) subplots spaced 36.6 m
apart in a triangular arrangement with one subplot in
the center (USDA Forest Service 2015). For model
calibration and validation purposes, 258 permanent
ground plots (80% of each state, 77 in ME, 87 in MN,
34 in PANJ, and 60 in SC) were used to establish the
matrix model and the rest 64 permanent ground plots
(20%of each state, 19 inME, 22 inMN, 8 in PANJ, and
15 in SC) were randomly selected to test the matrix
model’s performance.

For each permanent ground plot, plot-level attri-
butes included site productivity, trees per hectare,
basal area per hectare, slope, aspect, and elevation.
Tree-level data, including species, diameter at breast
height (DBH), and status (recruitment, live, or dead),
was also collected on each plot. Tree height data was
not included in the study as only certain trees’ height
were collected in the FIA database. The four states
(ME, MN, PANJ, and SC) were largely dominated by
several species in terms of stand basal area. These spe-
cies included: balsam fir (Abies balsamea), red spruce
(Picea rubens), and northern white-cedar (Thuja occi-
dentalis) in ME; quaking aspen (Populus tremuloides),
balsam fir (Abies balsamea), and black spruce (Picea
mariana) in MN; pitch pine (Pinus rigida), red maple
(Acer rubrum), and white ash (Fraxinus americana) in
PANJ; and loblolly pine (Pinus taeda), sweetgum
(Liquidambar styraciflua), and redmaple (Acer rubrum)
in SC (table S1 is available online at stacks.iop.org/
ERL/13/125004/mmedia). For simplicity and com-
putational efficiency, we classified all tree species into
two species groups from the FIA program for each
state: Deciduous and Coniferous (table S1). Within
each species group, trees were further categorized into
15 DBH classes of 5 cm increments, except for the first
class (2.54–7 cm) and the last (72 cmand above).

LiDARand landsat data
LiDAR strip samples were acquired in summer (28
June–3 September) 2014 at the four sites and co-
located Landsat time-series data, captured between
1984–2015, were obtained from the Earth Resources
Observation and Science (EROS) Center Science
Processing Architecture (ESPA) on-demand interface
(http://espa.cr.usgs.gov/). The LiDAR strips covered
about 2590, 3056, 4454 and 3571 square kilometers in
24, 24, 35 and 29 flight lines for ME, MN, PANJ, and
SC, respectively. The average width of the strips was
about 1.2 km. The LiDAR datasets were summarized
to obtain the gridmetrics for canopy cover and vertical
strata density as defined in Deo et al (2017a, 2017b). In
addition, the Landsat time-series data were acquired by

Landsat-5 Thematic Mapper (TM) and Landsat-8
Operational Land Imager (OLI) sensors at the peak of
the growing seasons (July–September) from1984–2015.
The high-level products included surface reflectance of
individual bands (visible and infrared), some derived
spectral indices, and cloud masks for each image
(https://landsat.usgs.gov/cdr-ecv) at 30 m spatial reso-
lution (Deo et al 2017b).

Description of thematrixmodels
We used matrix models to predict AGB dynamics in
this study. Recently, matrix models have been
extended to account for forest management, distur-
bances and climate change due to their accuracy and
robustness in depicting forest populations (see Liang
and Picard 2013 and references therein). In this study,
matrix models were used to control for tree growth,
mortality and recruitment as follows (Liang et al 2005):

y G y R 1t t t t1 e= + ++ · ( )

in which yt and yt+1 are stand density (i.e. number of
trees per unit area) vectors by species group and
diameter class at time t and t +1, respectively. Rt is a
regeneration vector. ε is an error term. Gt and Git are
state- and time-dependent transition matrices
describing how trees grow or die tomodel dynamics of
forest population,Git is a submatrix ofGt, where:
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in which aijt represents the probability that a tree of
species group i and diameter class j stays alive in the
same diameter class between t and t+1. The trans-
ition probability of upgrowth, bijt, represents a tree of
species i and diameter class j stays alive and grows into
diameter class j+1 between t and t+1, assuming
that trees were evenly distributed within a diameter
class. bijt was estimated as the annual tree diameter
growth, gijt, divided by the width of the diameter class.
aijt and bijt are related by:

a b m1 , 3ijt ijt ijt= - - ( )

wheremijt is the probability of treemortality between t
and t+1.

Rt is a state- and time-dependent recruitment vec-
tor representing the number of trees naturally recrui-
ted in the smallest diameter class of each species group,
between t and t+1.Rit is a sub vector of Rt represent-
ing recruitment of species group i at time t, where:
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The annual diameter growth of the tree of species
group i and diameter class j from t and t+1 is repre-
sented by the following model (Liang et al 2007; all
notations defined in table 1):

g B E S A

A C

cos

sin

5

ijt i i i i i

i i ij

1 2 3 4 5

6 7

a a a a a

a a l

= + + + +

+ + +
( )

in which αi’s are parameters to be estimated with the
generalized least squares (GLS, see Rao 1973) for
diameter growth of species group i and diameter class
j.λ is an error term.

Tree mortality of species group i and diameter
class j at time t, m P M x1 ,ijt ijt= =( ∣ ) is estimated
with a Probit function (Albert and Anderson 1981).
Mijtk is a binary variable representing whether a tree of
species i and diameter class j died (Mijtk=1) or not
(Mijtk=0):
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where Φ is the standard normal cumulative function,
δi’s are parameters estimated by maximum likelihood
formortality of species group i and diameter class j. ξ is
an error term.

Recruitment of species group i at time t, Rit is esti-
matedwith a Tobitmodel (Tobin 1958):

R x x x 7it i it i i it i i it i
1 1b s b s f b s= F +- -( ) ( ) ( )
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where Φ is the standard normal cumulative distribu-
tion function andj is the standard normal probability
density function. The Tobit model explicitly accounts
for unobserved recruitment values that are left-
censored at the preset diameter limit (2.54 cm).βi’s are
parameters estimated for recruitment of species group
i.μ is an error term.

The AGB is estimated with the following model
(all notations defined in table 1,Ma et al 2018):

B E S C 9it i i i i i i1 2 3 4 5y w w w w w q= + + + + + ( )

in which iy is a column vector of AGB for all plots,ωi’s
are parameters to be estimated with the GLS for AGB.
θ is an error term and iy is calculated with
equation (9).

In order to explore whether remotely sensed vari-
ables, especially Landsat variables, can be used in place
of forest inventory estimates in matrix models to pre-
dict AGB dynamics, LiDAR and Landsat variables
were used to replace stand basal area in the above
models, resulting in three types of matrix models for
this study (all variables defined in table 1). The first is a
matrix model using only forest inventory variables
(matrix1), the second matrix model used LiDAR and
Landsat variables to replace basal area of matrix1
(matrix2), and the thirdmatrixmodel used only Land-
sat variables to replace basal area of matrix1 (matrix3)
in ME, MN, PANJ and SC. The accuracy of all matrix
models was examined using FIA inventory data. To
avoid compromised type I error rates, we used hier-
archical partitioning (HP) for the screening of expla-
natory variables. Explanatory variables were selected
by the average independent contribution of each vari-
able to the overall goodness-of-fit (Chevan and
Sutherland 1991, Mac Nally 2000). The HP method is
useful since it can be applied to all regression methods
such as ordinary least squares, probit, logistic, and log-
linear regression (Chevan and Sutherland 1991). The
HP analysis was conducted with the hier.part package
of the R program (Nally andWalsh 2004).

Fuzzy sets representing uncertainty
Uncertainty inducing from disturbances led to high
variability in predicted values of AGB. The averages of
predicted AGB are important point estimations but to
understand the associated risk, ranges or sets indicat-
ing uncertainty in predictions are essential. Here we
used fuzzy sets which involved defining membership
functions that determined the level of uncertainty
(Zadeh 1965). Membership degree of an element,
which may fall anywhere in the interval [0, 1], is
expressed by a membership function. A trapezoidal
fuzzy set was used, mathematically expressed as
f (x; a, b, c, d)=max (min (x–ab–a, 1, d–xd–c), 0)
(Zadeh 1965). a, b, c, d were four threshold values
representing range of uncertainty. [b, c] represented
the certainty interval for which the membership
degree is 1. [a, b) and (c, d] were the uncertainty
intervals with membership degrees ranging from 0 to
1. [a, d] was a measure of total range of uncertainty
arising from disturbances. Following Weckenmann
and Schwan (2001), given the average value of
predicted AGB X( ) and its relative standard deviation
(Sr) from simulations, a, b, c, d values can be calculated
as follows (MaandZhou 2017,Ma et al 2018):
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Table 1.Definitions and units of variables used in the study.

Variable Unit Definition/explanation

Forest inventory data

B m2ha−1 Total stand basal area

C Site productivity class

AGB Mgha−1 Aboveground biomass

g cm yr−1 Annual diameter growth

A ° Plot aspect

S ° Plot slope

E km Elevation

m yr−1 Annual treemortality

N trees ha−1 Number of trees per hectare

R trees ha−1 yr−1 Recruitment, the number of trees per hectare growing into the smallest diameter class (2.54–7 cm) in
a year

LiDAR data

DenStra1 Total returns in the vertical height interval of 1–4 mdivided by 3

DenStra2 Total returns in the vertical height interval of 4–8 mdivided by 4

DenStra3 Total returns in the vertical height interval of 8–16 mdivided by 8

DenStra4 Total returns in the vertical height interval of 16–32 mdivided by 16

DenStra5 Total returns in the vertical height interval of 32–64 mdivided by 32

Stratum0 Total return proportion in the vertical height interval 0–1 m

Stratum1 Total return proportion in the vertical height interval 1–4 m

Stratum2 Total return proportion in the vertical height interval 4–8 m

Stratum3 Total return proportion in the vertical height interval 8–16 m

Stratum4 Total return proportion in the vertical height interval 16–32 m

Stratum5 Total return proportion in the vertical height interval 32–64 m

CovMean Percentage of all returns abovemean (all returns abovemean×100/total count of all returns)
CovMode Percentage of all returns abovemode per pixel (all returns abovemode×100/total count of all

returns)
CovDBH Percentage of all returns aboveDBHper pixel (all returns aboveDBH×100/total count of all

returns)
ElevAAD Average absolute deviation of elevations of all returns aboveDBH

ElevAv Average of elevations of all returns aboveDBH

CRR Canopy relief ratio ((mean—min)/(max—min)) of elevations of all returns
ElevCM Cubicmean of elevations of all returns

ElevCV Coefficient of variation of elevations of all returns aboveDBH

ElevIQ Interquartile range of elevations of all returns aboveDBH
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Table 1. (Continued.)

Variable Unit Definition/explanation

ElevKurt Kurtosis of elevations of all returns aboveDBH

ElevL1 First L-moment of elevations of all returns aboveDBH

ElevL2 Second L-moment of elevations of all returns aboveDBH

ElevL3 Third L-moment of elevations of all returns aboveDBH

ElevL4 Fourth L-moment of elevations of all returns aboveDBH

ElevLCV L-moment coefficient of variation of elevations of all returns aboveDBH

ElevLkurt L-moment kurtosis of elevations of all returns aboveDBH

ElevLskew L-moment skewness of elevations of all returns aboveDBH

EMADmed Median of the absolute deviations from the overallmedian of elevations

EMADmod Mode of the absolute deviations from the overallmode of elevations

ElevMax Maximumof elevations of all returns aboveDBH

ElevMin Minimumof elevations of all returns aboveDBH

ElevMod Mode of elevations of all returns aboveDBH

ElevPi ith percentile of elevations of all returns aboveDBH,where i=1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75,
80, 90, 95 and 99

ElevQM Quadraticmean of elevations of all returns

ElevSkew Skewness of elevations of all returns aboveDBH

ElevSD Standard deviation of elevations of all returns aboveDBH

ElevVar Variance of elevations of all returns aboveDBH

FPV Filled potential volume (ratio of the volume under the canopy to volume under a surface anchored at

themax height in the cell)
rumple Ratio of the surface area of the canopy surface to theflat area of the cell

CHM Canopy heightmodel (canopy surfacemodel normalizedwith bare-earthmodel)
Landsat data

SWIR Shortwave infrared surface reflectance

NDVI Normalized difference vegetation index

NBR Normalized burn ratio

IFZ Integrated forest z-score

TCB Tasseled cap brightness

TCG Greenness indices

TCW Wetness indices

TCA Tasseled cap angle

DI Disturbance index

EVI Enhanced vegetation index

NDMI Normalized differencemoisture index

SAVI Soil adjusted vegetation index
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d c X S2 . 10r= + · ( )

Integrated framework
It is important to comprehensively assess forest AGB
dynamics using LiDAR, Landsat and forest inventory
data under uncertainty using matrix models. The
predictions of large-scale AGB dynamics may be
further improved by including LiDAR and Landsat
variables that are temporally consistent and spatially
continuous facilitating estimation over large spatial
domains. In this study, we developed an integrated
matrix-modeling framework to project the forest AGB
dynamics of eastern US forests under uncertainty with
(1) the forest inventory measurements, (2) the LiDAR
strip samples, (3) the Landsat time-series.We synchro-
nously coupled the three datasets to predict stand basal
area in the short-term and used remotely sensed
variables, especially Landsat variables, to replace stand
basal area to project AGB in the long-term with fuzzy
sets under uncertainty (figure 2).

Results

Summary statistics of forest data
Among the plot level variables studied for the four
states, the PANJ had the highest basal area and AGB
whileMNhad the lowest values (table S2). The average
recruitment (R) was the highest for coniferous species
in ME and lowest for coniferous species in MN (table
S2). At the individual tree level, deciduous species in
PANJ had the largest DBH (D) and annual mortality
(m) (table S3). Coniferous species in ME had the

Figure 2.Conceptual diagram showing how thematrixmodels integrated remotely sensed datawith LiDAR strip samples, Landsat
time-series, and the forest inventorymeasurements with stand- and tree-level attributes and used remotely sensed variables to replace
stand basal area to project the large-scale AGBdynamics of easternUS forests (ME,MN, PANJ, and SC)under uncertainty.

Table 2. Independent contribution (%) of selected independent
variables fromboth LiDAR and Landsat and only Landsat to the
goodness-of-fit of stand basal area.

ME MN PANJ SC

LiD.LS

CHM 16.9 **
— 6.9 *

—

CovMean 6.5 ** 6.8 ** 16.7 ** 5.9 *

CovDBH 4.2 * 6.1 *
— 7.3 **

ElevMax 6.4 * 5.4 * 7.9 * 18.3 *

ElevP05 — 18.3 ** 12.9 ** 16.8 **

ElevCM 6.1 * 25.6 ** 11.0 ** 24.5 ***

Stratum1 26.3 **
— 6.2 * 4.6 *

Stratum2 — 3.2 * 14.1 **
—

Stratum3 19.2 ** 4.5 * 4.3 *
—

Stratum4 — 26.4 ** 14.2 *** 17.7 ***

SWIR 7.6 * 3.7 *
— 4.9 *

TCB 6.8 *
— 5.8 *

—

LS

TCB 26.2 * 19.9 *
— —

DI 20.3 * 25.4 *
— 8.6 **

EVI 24.5 **
— 20.8 *

—

IFZ 6.7 *
— — —

TCG — 8.2 * 7.6 ** 28.9 *

NDMI — 5.7 * 9.3 * 6.7 *

TCA — 19.8 * 7.2 * 8.2 *

SWIR 5.9 *
— 15.7 ** 25.8 **

NDVI 8.8 * 7.5 * 23.9 * 6.4 *

NBR 7.6 * 5.4 ** 8.1 * 7.5 *

TCW — 8.1 * 7.4 * 7.9 *

Note. The predictors were selected by applying the stepwise

regression for pruning the collinear variables and themultiple linear

regressions at significance level α<0.05; LiD.LS uses both LiDAR

and Landsat predictors, and LS uses only Landsat predictors;

significance levels: *<0.05; **<0.01; ***<0.001; bold numbers

represent independent contribution (%) of each explanatory

variable that are larger than the average contribution.
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smallest DBH (D) while coniferous species in SC had
the highest annual growth rate (g). Coniferous species
inMNhad the lowest annual growth rate (g) (table S3).
The average interval between two inventories was five
years.

Parameters of the threematrixmodels
The dependent variables (i.e. the average annual rates
of growth, mortality, recruitment, and AGB) were
estimated from field, LiDAR, and Landsat attributes
using repeated measurements of 258 permanent
ground plots in the four statesME,MN, PANJ, and SC
(tables 2–9). The explanatory variables were selected
based on statistical and biological significance. The
primary control variables for the matrix1, stand basal
area (B), slope (S), and site productivity (C) were all
significant (α�0.05) except for mortality models.
The other variables elevation (E), and aspect (cos A
and sin A)weremostly significant (α�0.05) (tables 4,
6, 8). The rate of tree growth was significantly higher
for lower stand basal areas, higher site productivity,
lower elevation, and lesser slopes across all species
groups in all states (table 4). Mortality rate declined
significantly with site productivity, and increased
significantly with stand basal area, elevation, and slope

(table 6). Recruitment strongly declined with increas-
ing stand basal area (table 8). In AGB models, greater
stand basal area, lower elevation, and lesser slope had
greater potential for AGB sequestration (table 10).

Control variables from LiDAR and Landsat were
used to replace stand basal area in the matrix1 includ-
ing diameter growth,mortality, recruitment, and AGB
models (matrix2 and matrix3). In the matrix2 and
matrix3, starting from a large amount of attributes
from both LiDAR and Landsat and only Landsat
(table 1), the predictors were selected by applying step-
wise regression for pruning collinear variables and
multiple linear regressions at significance level
α<0.05. Based on those selected variables (table 2),
we further chose a subset in the final models of the
matrix2 and matrix3 with adjusted R2 (0.78–0.88 and
0.37–0.51, table 3) based on statistical and biological
significance and contribution to the goodness-of-fit as
determined through HP. In the matrix2, we selected
the final predictors from both LiDAR and Landsat to
replace stand basal area, such as canopy height model
(CHM), total return proportion in the vertical height
interval 1–4 m (Stratum1), and total return proportion
in the vertical height interval 8–16 m (Stratum3) in the
ME; 5th percentile of elevations of all returns above

Table 3.Estimated parameters of each explanatory variable to the goodness-of-fit of the response
variables fromboth LiDAR and Landsat and only Landsat for the stand basal area.

ME MN PANJ SC

LiD.LS

Intercept 13.18 *** 2.92 * 9.54 9.44 *

CHM 0.42 **
— — —

CovMean — — 0.26 **
—

CovDBH — — — —

ElevMax — — — −0.65 *

ElevP05 — −0.03 ** −0.15 * 0.48 **

ElevCM — 0.56 ** 0.02 * 0.99 **

Stratum1 −26.2 **
— — —

Stratum2 — — −41.3 **
—

Stratum3 −1.80 **
— — —

Stratum4 — 35.66 *** 7.57 * 2.17 ***

SWIR — — — —

TCB — — — —

Adj.R2 0.81 0.87 0.78 0.88

LS

Intercept 5.63 * 6.89 ** 9.23 * 10.57 **

TCB 0.29 ** 0.53 *
— —

DI −12.8 * −11.5 *
— —

EVI 13.21 *
— 10.25 **

—

IFZ — — — —

TCG — — — 0.52 *

NDMI — — — —

TCA — 1.53 *
— —

SWIR — — −8.56 * −2.46 **

NDVI — — 12.31 **
—

NBR — — — —

TCW — — — —

Adj.R2 0.46 0.51 0.37 0.42

Note. LiD.LS model uses both LiDAR and Landsat predictors, and LS model uses only Landsat

predictors; Significance levels: *<0.05; **<0.01; ***<0.001.
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DBH (ElevP05), cubic mean of elevations of all returns
(ElevCM), and total return proportion in the vertical
height interval 16–32 m (Stratum4) in the MN;
percentage of all returns above mean (CovMean),
ElevP05, ElevCM, total return proportion in the ver-
tical height interval 4–8 m (Stratum2), and Stratum4
in the PANJ; andmaximum of elevations of all returns
above DBH (ElevMax), ElevP05, ElevCM, and Stra-
tum4 in the SC (tables 5, 7, 9, 10). While in the
matrix3, we used the final predictors from only Land-
sat to replace stand basal area, such as tasseled cap
brightness (TCB), disturbance index (DI), and
enhanced vegetation index (EVI) in the ME; TCB, DI,
tasseled cap angle (TCA) in the MN; EVI, shortwave
infrared surface reflectance (SWIR), and normalized
difference vegetation index (NDVI) in the PANJ; and
greenness indices (TCG), SWIR in the SC (tables 5, 7,
9, 10). These selected final variables were all statisti-
cally significant at theα�0.05 level.

Predictions and errors
For the 64 validation plots of the four states, the average
stand basal area by species and diameter class predicted
by the matrix1, matrix2, and matrix3 in the short term
all fell within the 95% confidence interval of the
observed values in all species-diameter classes, demon-
strating high accuracy of the matrix models (figure 3).
Predicted basal area were well aligned with the mean
observed values. Based on the root mean square error
(RMSE) of basal area, the three matrix models with
diameter class (matrix1, matrix2, and matrix3) had a
high accuracy as well (figure 3). The matrix1 had the
lowest RMSE (7.53–10.58m2 ha−1), while the matrix3
had the highest (9.34–11.68 m2 ha−1). Based on the
30 years prediction from 2015 onward, average pre-
dicted AGB of the three matrix models increased over
time and converged to ranges of 84–90, 65–69, 99–106,
and 78–85Mg ha−1 in the ME, MN, PANJ, and SC,

respectively, at the year 2045 (figure 4). Average AGB
increase per year would reach to ranges of 0.93–1.13,
1.03–1.18, 1.02–1.12, and 1.01–1.19Mg ha−1 in the
ME, MN, PANJ, and SC, respectively. The AGB
predicted by the matrix2 andmatrix3 all fell within the
95% confidence interval of the AGB predicted by the
matrix1 (figure 4).

Uncertainty analysis
To account for variability in the simulation results,
fuzzy sets were constructed for three matrix models
based on equation (10) (figure 5). Matrix1, matrix2,
and matrix3 could lead to similar AGBs in the ME,
MN, PANJ and SC, given the amount of overlapping
among the fuzzy sets. In sum, the existing overlaps
among threematrixmodels in theME,MN, PANJ and
SC (figure 5) suggested the possibility of similar
disturbance effects on AGB for the three matrix
models across study region when taking account of
uncertainty.

Discussion

It is critically important to improve predictions and
projections of C estimates over large forest areas by
developing matrix models that accurately characterize
C dynamics based on empirical forest inventories and
remotely sensed data or only Landsat data. Impor-
tantly, such work can serve as a key refinement of the
US National GHG Inventory for improvement of the
consistency and accuracy of GHG emission and
removal estimates from the forestland category of
UNFCCC reporting. In this study, we developed and
tested the performance of a matrix-modeling frame-
work that can predict AGB dynamics with forest field
data in combination with LiDAR strip samples and
Landsat time-series, especially Landsat data (all fell
within the 95% confidence interval of observed

Table 4.Estimated parameters of the diameter growthmodels using variables fromFIAplots.

Diameter growthmodels

ME (Deciduous)
1.346**−0.005B**−0.113E*−0.003S*−0.137cosA*+0.002sinA*+0.026C**

ME (Coniferous)
1.423***−0.003B***−0.265E**−0.001S*−0.137cosA**+0.023sinA+0.031C*

MN (Deciduous)
1.168***−0.016B***−0.134E*−0.003S*−0.116cosA**+0.028sinA*+0.036C**

MN (Coniferous)
1.563**−0.028B**−0.264E**−0.005S*−0.118cosA+0.034sinA*+0.059C**

PANJ (Deciduous)
1.264**−0.021B**−0.237E*−0.009S**−0.129cosA+0.163sinA*+0.067C*

PANJ (Coniferous)
1.648**−0.037B**−0.215E***−0.014S*−0.237cosA**+0.161sinA*+0.056C*

SC (Deciduous)
1.751**−0.067B**−0.239E*−0.086SS *−0.138cosA**+0.095sinA**+0.082C*

SC (Coniferous)
1.862*−0.061B***−0.295E*−0.095S*−0.156cosA*+0.137sinA*+0.006C*

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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Table 5.Estimated parameters of the diameter growthmodels using remotely sensed variables to replace basal area fromboth LiDAR and Landsat predictors and only Landsat predictors.

Diameter growthmodels

ME (Deciduous)
0.264**−0.013CHM*−0.862Stratum1*+0.613Stratum3***−0.245E***−0.001S*−0.028cosA+0.034sinA*+0.016C*

0.293**−0.012TCB *−0.027DI *+0.039EVI**−0.246E*−0.531S*−0.064cosA*+0.046sinA+0.097C*

ME (Coniferous)
0.813**−0.027CHM**−0.137Stratum1*+0.229Stratum3**−0.334E*−0.003S*−0.198cosA*+0.034sinA*+0.026C*

0.592**−0.134TCB*−0.062DI **+0.027EVI*−0.621E**−0.862S*−0.264cosA**+0.642sinA+0.389C*

MN (Deciduous)
0.347+0.003ElevP05*−0.042ElevCM**−0.319Stratum4**−0.308E*−0.056S*−0.094cosA**+0.277sinA+0.389C*

0.384***−0.026TCB *−0.031DI**+0.134TCA*−0.386E***−0.029S*−0.064cosA**+0.321sinA*+0.548C*

PANJ (Deciduous)
0.542*+0.004CovMean*−0.053ElevP05**+0.046ElevCM**+0.526Stratum2**+0.624Stratum4*−0.348E*−0.143S−0.226cosA**+0.254sinA*+0.183C*

0.567*−0.024EVI *−0.033SWIR *+0.046NDVI*−0.381E*−0.042S*−0.086cosA*+0.164sinA*+0.426C
PANJ (Coniferous)

0.526*+0.034CovMean*−0.084ElevP05**+0.131ElevCM**+0.751Stratum2**+0.261Stratum4*−0.856E***−0.145S*−0.342cosA+0.386sinA+0.512C**

0.486−0.037EVI*−0.026SWIR**+0.042NDVI**−0.854E*−0.006S*−0.354cosA+0.561sinA*+0.621C*

SC (Deciduous)
0.851*−0.094ElevMax**−0.642ElevP05*+0.264ElevCM*+0.426Stratum4*−0.851E*−0.034S*−0.125cosA***+0.161sinA*+0.153C**

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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values). In thematrixmodels, our study suggested that
forestland with lower stand basal area, higher site
productivity, flatter slopes, and lower elevation may
have lower mortality rates, greater diameter growth
rates, and greater recruitment generating a higher
potential for forest carbon sequestration across our
study sites. In the AGB simulation models, AGB
density was found to be positively correlated with
stand basal area, supporting the conclusion that forest
AGB increases with forest stocking. Additionally, we
also demonstrated the strength of LiDAR and Landsat
dependent matrix models in their application to
predicting regional AGB dynamics. Among the
selected variables from both LiDAR and Landsat data,
LiDAR metrics were much more influential to stand
basal area and associated AGB than Landsat variables.
This finding is consistent with previous studies (Deo
et al 2017a, 2017b). Nevertheless, we found that
Landsat variables alone can also be used to replace
stand basal area to predict AGB in the study region
although with higher RMSE (9.34–12Mg ha−1). This
finding may improve the ability to predict AGB
dynamics across large scales with the Landsat time
series.

Model accuracy has been significantly influenced
by spatial and temporal matching of field sampling
and remote sensing data given they are site- and spe-
cies-specific and scale-dependent (McRoberts 2010,
Huang et al 2015, Deo et al 2017b). Furthermore, pre-
cise short- and long-term prediction is possible with
these accurate models. Prior to this study, previous
work had estimated AGB employing LiDAR (Lefsky
et al 2002, Zolkos et al 2013, Babcock et al 2015) and
Landsat (Zheng et al 2004, Lu 2005, Hall et al 2006).
However, more accurate predictions of site- and spe-
cies-specific AGB dynamics that combined both
LiDAR and Landsat with forest inventory were rare
(Babcock et al 2018, Deo et al 2017b). Stand basal area

was a statistically significant and frequently used pre-
dictor in the matrix model for diameter growth, mor-
tality, and recruitment in the previous studies (Liang
et al 2005, 2011, Liang 2010, Ma et al 2016, Ma and
Zhou 2017). Hence, it was logical to assume that the
matrix1 would perform better than the matrix2 and
matrix3. This assumption was consistent with our
results and the differences of short- and long-term
prediction (differences within 7.2 Mg ha−1) and
RMSE (8.34–12.12 Mg ha−1) among the three models
were not obvious. This result suggested that stand
basal area can be replaced by selected variables from
both LiDAR and Landsat and only Landsat in the
matrix models while the accuracy of AGB prediction
was not highly impacted. This implies that the matrix
models can be formulated by integrating field and
remotely sensed data of closely matching resolutions,
and subsequently provide accurate large-scale predic-
tions of AGB dynamics. Therefore, it revealed that
plot-level (e.g. E, S, and A) and remotely sensed infor-
mation or only Landsat data might be used to project
large-scale forest AGB dynamics without the detailed
basal area calculations that would be more costly in
terms of measurement and processing time. The phy-
siographic variables (E, S, and A) can be directly
obtained from the digital elevation model of the US
Geological Survey (USGS). In the future, the dynamics
of larger area AGB and other carbon pools (below-
ground biomass, soil carbon, dead wood carbon, litter
carbon) should be investigated usingmatrix models to
allow for the inclusion of more field and remote sen-
sing samples, especially Landsat time series, to
improve pixel-level prediction under land-use change
and disturbances. Such refinements would enable
large-scale GHGmonitoring to move from only being
spatially explicit to both spatially explicit and spatially
continuous with the addedtemporal flexibility enabled
by the Landsat time series.

Table 6.Estimated parameters of themortalitymodels using variables fromFIAplots.

Mortalitymodels

ME (Deciduous)
6.251*+0.003B**+0.152E+0.002S*+0.181cosA*−0.032sinA*−0.126C*

ME (Coniferous)
6.892**+0.005B**+0.234E*+0.003S+0.168cosA*−0.052sinA*−0.134C*

MN (Deciduous)
7.624*+0.011B**+0.326E*+0.002S*+0.161cosA*−0.046sinA*−0.196C**

MN (Coniferous)
5.152*+0.026B**+0.342E+0.003S+0.165cosA*−0.057sinA*−0.162C**

PANJ (Deciduous)
6.562*+0.024B**+0.164E*+0.007S*+0.181cosA*−0.027sinA**−0.169C*

PANJ (Coniferous)
6.262**+0.061B**+0.349E*+0.006S+0.196cosA*−0.031sinA*−0.561C*

SC (Deciduous)
7.562**+0.029B**+0.384E*+0.005S+0.156cosA*−0.063sinA*−0.264C**

SC (Coniferous)
7.516**+0.034B**+0.152E*+0.008S*+0.195cosA*−0.061sinA*−0.511C*

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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Table 7.Estimated parameters of themortalitymodels using remotely sensed variables to replace basal area fromboth LiDAR and Landsat predictors and only Landsat predictors.

Mortalitymodels

ME (Deciduous)
5.264*−0.023CHM**+0.346Stratum1*−0.256Stratum3*+0.116E*+0.003S*+0.153cosA−0.124sinA*−0.029C
5.526**−0.034TCB *−0.267DI **+0.164EVI *+0.297E*+0.162S**+0.264cosA*−0.264sinA*−0.126C**

ME (Coniferous)
6.621−0.026CHM*+0.195Stratum1*−0.264Stratum3*+0.264E*+0.007S*+0.052cosA*−0.526sinA*−0.162C*

5.526*−0.029TCB *−0.164DI *+0.008EVI **+0.894E*+0.562S*+0.264cosA−0.286sinA**−0.126C*

MN (Deciduous)
4.862*−0.516ElevP05*+0.082ElevCM*+0.262Stratum4*+0.116E*+0.009S+0.131cosA*−0.152sinA**−0.163C**

4.526*−0.163TCB *−0.053DI *+0.052TCA **+0.146E*+0.007S**+0.162cosA−0.186sinA*−0.062C*

MN (Coniferous)
4.526**−0.282ElevP05*+0.216ElevCM**+0.082Stratum4*+0.756E*+0.041S*+0.082cosA−0.062sinA**−0.134C*

PANJ (Deciduous)
7.562*−0.162CovMean*−0.267ElevP05*+0.082ElevCM*−0.167Stratum2*+0.295Stratum4**+0.267E*+0.126S*+0.781cosA−0.467sinA*−0.256C*

6.521*+0.029EVI *−0.017SWIR **+0.037NDVI **+0.162E*+0.739S*+0.128cosA−0.174sinA*−0.279C*

PANJ (Coniferous)
5.962**−0.816CovMean*−0.157ElevP05**+0.126ElevCM*−0.258Stratum2*+0.137Stratum4*+0.263E*+0.142S*+0.386cosA*−0.224sinA−0.534C**

6.529**+0.156EVI**−0.027SWIR*+0.031NDVI*+0.252E*+0.245S*+0.524cosA−0.184sinA*−0.133C*

SC (Deciduous)
5.526**−0.024ElevMax*+0.162ElevP05*−0.025ElevCM*−0.264Stratum4*+0.523E**+0.537S*+0.241cosA*−0.589sinA*−0.121C*

6.924*+0.075TCG *−0.021SWIR**+0.484E*+0.297S**+0.388cosA−0.167sinA*−0.156C**

SC (Coniferous)
5.859−0.153ElevMax*+0.127ElevP05*+0.238ElevCM*−0.326Stratum4**+0.174E*+0.463S**+0.275cosA−0.328sinA*−0.641C*

6.562**+0.063TCG **−0.042SWIR *+0.137E*+0.126S+0.327cosA*−0.166sinA*−0.327C*

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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Considering uncertainty is imperative in large-scale
predictions of forest carbon dynamics (Miehle et al
2006) and is a requirement in UNFCCC reporting.
Disturbances could affect carbon sequestration
through rapid flux of carbon from living biomass to
dead organic matters or via combustion to the atmos-
phere (Hicke et al 2012). In our study, we only exam-
ined the possible ranges in AGB predictions as an
index of uncertainty (AGB differences of three matrix
models within 7.6 Mg ha−1 at the year 2045)while not
explicitly examining individual sources of uncertainty
resulting from climate change, wildfire, wind damage,
insect, disease, or other natural disturbances. As such,
caution should be extended to applying this study’s
models in the context of individual drivers of carbon
flux. How to combine all these sources of uncertainty
into AGB predictions largely remains an open issue.
Large-scale ecological modeling studies can gain cred-
ibility in the prediction of AGB dynamics following
equally dynamic disturbance regimes through the use
of suitable uncertainty analysis techniques.

This study’s matrix models made it possible to
provide explicit AGB dynamics of eastern US forests.
Prediction of AGB using LiDAR, Landsat, and forest
inventory plots, which has been seldom studied but is
key to local, regional, and national forest Cmonitoring
programs, can now be analyzed bymatrixmodels. Due
to their simplicity and accuracy, thematrix models are
also applicable to estimate forest population dynamics
under climate change (Liang et al 2011), assessments
of fire regime responses to changing climate (Ma et al
2016) and assessments of harvesting regimes under cli-
mate and fire uncertainty (Ma and Zhou 2017). In
addition, the matrix models may also be incorporated
with adaptive management of timber and biomass
resources (Zhou et al 2008), land-use change (Woodall

et al 2015b), and detailed regimes of natural dis-
turbances (Wear and Coulston 2015). The presented
model illustrates the benefit of including physio-
graphic variables (E, S, and A) in the matrix models
which can control for large-scale spatial variations in
regions while still being able to achieve adequate pre-
diction accuracy (Peterson et al 2014).

Matrix models maybe a convenient tool to predict
forest C dynamics (Ma et al 2017). Not unlike other
models, the matrix models have their limitations, and
our results should be interpreted in appropriate con-
texts (Liang et al 2011). One weakness of our study’s
matrix models is that their geographic coverage was
limited to the study region in the eastern US. Another
limitation is that the models were unable to reflect
land-use change (i.e. from non-forest to forest or from
forest to non-forest) and major natural disturbances
such as wildfires, insects, hurricanes, and widespread
diseases. Therefore, their long-term simulations were
subject to the bias caused by the changes in land use, if
there was any. However, the matrix models can pro-
vide a useful baseline tool for the estimation of future
AGB dynamics across the entire reporting period from
1990 to the present. Future work should focus on
addressing the impacts of land-use change and
detailed regimes of natural disturbances on AGB
dynamics through incorporating the present models
with a transition matrix of land use change (Woodall
et al 2015b) and stochastic elements of disturbances
(Zhou and Buongiorno 2006, Wear and Coul-
ston 2015) at a national scale. More importantly, the
matrix models can be used in the future to map spa-
tially continuous and temporally explicit forest popu-
lation dynamics across scales with a geospatial matrix
over long-term periods (Liang 2012, Liang and
Zhou 2014).

Table 8.Estimated parameters of the recruitmentmodels using variables fromFIA plots.

Recruitmentmodels

ME (Deciduous)
−8.153

*−0.537B ***−0.264E *−0.526S *−0.541cosA *+0.513sinA *+0.184C **

ME (Coniferous)
−7.541

*−0.894B **−0.647E *−0.645S **−0.563cosA *+0.781sinA *+0.196C *

MN (Deciduous)
−8.547

*−0.854B **−0.523E *−0.748S *−0.496cosA *+0.767sinA *+0.137C **

MN (Coniferous)
−8.856−0.924B

**−0.684E *−0.589S *−0.574cosA+0.631sinA+0.179C *

PANJ (Deciduous)
−9.524

*−0.841B ***−0.563E−0.642S *−0.486cosA *+0.482sinA *+0.264C *

PANJ (Coniferous)
−7.269−0.674B

**−0.631E *−0.216S *−0.745cosA+0.485sinA *+0.259C *

SC (Deciduous)
−6.647

*−0.643B **−0.654E *−0.641S *−0.257cosA *+0.536sinA+0.267C **

SC (Coniferous)
−6.644−0.597B

***−0.559E *−0.234S *−0.554cosA *+0.484sinA+0.514C *

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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Table 9.Estimated parameters of the recruitmentmodels using remotely sensed variables to replace basal area fromboth LiDAR and Landsat predictors and only Landsat predictors.

Recruitmentmodels

ME (Deciduous)
−3.243**−0.584CHM*+0.731Stratum1*+0.287Stratum3*−0.762E**−0.638S*−0.368cosA*+0.339sinA+0.816C***

−4.961+0.642TCB *−0.637DI **−0.229EVI *−0.367E**−0.638S*−0.162cosA**+0.615sinA*+0.237C**

ME (Coniferous)
−6.624−0.553CHM***+0.284Stratum1*+0.267Stratum3**−0.418E*−0.127S**−0.163cosA*+0.248sinA*+0.262C*

−6.548**+0.528TCB *−0.156DI *−0.231EVI **−0.556E*−0.142S*−0.259cosA*+0.166sinA+0.327C*MN (Deciduous)
MN (Deciduous)

−5.247*−0.562ElevP05*+0.284ElevCM*−0.227Stratum4*−0.561E**−0.349S*−0.367cosA*+0.252sinA*+0.354C
−4.364**−0.257TCB **+0.153DI *−0.059TCA **−0.931E**−0.354S*−0.368cosA*+0.597sinA*+0.264C*

MN (Coniferous)
−5.862**−0.123ElevP05**+0.727ElevCM*−0.520Stratum4**−0.334E**−0.226S**−0.184cosA+0.459sinA*+0.183C**

−5.337*−0.026TCB *+0.384DI *−0.061TCA *−0.327E**−0.233S**−0.164cosA*+0.124sinA**+0.135C*

PANJ (Deciduous)
−4.156*−0.137CovMean*+0.146ElevP05*+0.937ElevCM*−0.198Stratum2*+0.327Stratum4**−0.519E*−0.466S**−0.147cosA***+0.269sinA*+0.794C*

−4.861*+0.154EVI *−0.036SWIR *+0.082NDVI *−0.166E*−0.337S*−0.295cosA+0.524sinA*+0.934C*

PANJ (Coniferous)
−5.562**−0.346CovMean*+0.981ElevP05*+0.764ElevCM*−0.253Stratum2**+0.179Stratum4***−0.637E*−0.162S**−0.349cosA**+0.372sinA+0.155C*

−4.694*+0.156EVI *−0.254SWIR *+0.365NDVI *−0.454E*−0.595S*−0.533cosA*+0.141sinA+0.286C*

SC (Deciduous)
−6.521*+0.352ElevMax*+0.242ElevP05***−0.285ElevCM**−0.136Stratum4*−0.226E**−0.135S*−0.226cosA+0.159sinA+0.382C**

−5.268*+0.152TCG *−0.159SWIR **−0.032E*−0.185S**−0.034cosA*+0.022sinA+0.586C**

SC (Coniferous)
−4.356**+0.423ElevMax**+0.148ElevP05**−0.298ElevCM*−0.167Stratum4**−0.153E*−0.395S*−0.134cosA**+0.826sinA+0.284C*

−4.062*+0.084TCG **−0.034SWIR *−0.166E*−0.242S*−0.584cosA*+0.633sinA+0.452C*

Note. Significance levels: *<0.05; **<0.01; ***<0.001.
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Conclusion

In the short-term, average stand conditions predicted
by three matrix models considered in this study were
well aligned with the mean observed values in the
eastern USA—ME, MN, PANJ, and SC and consistent
with the broad differences in forest ecological condi-
tions between these regions (e.g. greatest diameter
growth in SC, highest recruitment in ME). Based on
the 30 years prediction, predicted AGB using matrix
models incorporating both LiDAR and Landsat attri-
butes and only Landsat attributes to replace stand basal
area in the field sample variables (LiDAR+Landsa-
t+inventory and Landsat+inventory) had similar
patterns of the AGB predicted by the matrix models

with all forest inventory variables (inventory). After
making comparisons of predictions of AGB dynamics
among inventory, LiDAR+Landsat+inventory,
and Landsat+inventory, we found that stand basal
area of the matrix models can be replaced by selected
variables from LiDAR and Landsat in terms of predict-
ing AGB dynamics over short-and long-term periods
without loss of accuracy. Similar predicted AGBs were
found in the fuzzy sets using inventory, LiDAR +
Landsat + inventory, and Landsat + inventory when
taking account of uncertainty. Therefore we con-
cluded that remotely sensed attributes, especially for
Landsat variables, can be used to replace stand basal
area in the matrix models over our study’s time period
and domain. In addition, Landsat data alone

Figure 3.Predicted and observed basal area andRMSE at the second inventory for thematrix1 (inventory), matrix2
(LiDAR+Landsat+inventory), andmatrix3 (Landsat+inventory)with diameter class of the 95% confidence interval of the
observedmean for common forest types inMaine (ME),Minnesota (MN), Pennsylvania-New Jersey (PANJ) and SouthCarolina (SC),
respectively, USA.
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incorporating elevation, plot slope and aspect, and site
productivity is able to produce useful estimates of
AGB dynamics using matrix models. More impor-
tantly, the ability to predict AGB dynamics over large
scales was improved using Landsat time series which
suggests the ability to move beyond the spatially
explicit NFI plots to all pixels within the study regions.
Such a refinement may move GHG monitoring from
being only spatially explicit to being spatially explicit
and spatially continuous estimates while also provid-
ing temporal flexibility with the Landsat time series.

Technical advances such as this may pave the way for
researchers to start quantifying biomass dynamics
beyond that observed on plots at a particular measure-
ment date towards assessing the interaction between
disturbances, land use change, and other activitiesmay
influence those dynamics (i.e. attribution) across space
and time. Given the availability of Landsat variables,
the opportunity exists to further refine quantification
of AGB dynamics over large spatial domains in a
relatively cost-effective manner in consideration of
disturbances and land use change while enabling

Figure 4.Average predicted AGB for thematrix1 (inventory), matrix2 (LiDAR+Landsat+inventory), andmatrix3 (Land-
sat+inventory) inMaine (ME),Minnesota (MN), Pennsylvania-New Jersey (PANJ) and SouthCarolina (SC), respectively, USA
from 2015 to 2045. (Note: the error bars of AGBpredicted bymatrix1might be overestimated as limited sample plots were used in this
study.)

Figure 5. Fuzzy sets representing uncertainty in the AGB for thematrix1 (inventory), matrix2 (LiDAR+Landsat+inventory), and
matrix3 (Landsat+inventory) inMaine (ME),Minnesota (MN), Pennsylvania-New Jersey (PANJ) and SouthCarolina (SC),
respectively, USA from2015–2045.
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valid comparisons with domains that have limited
field data.
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