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First global analysis based on OCO-2 and flux tower
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Abstract

Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for

terrestrial gross primary productivity (GPP). Previous work mainly evaluated the rela-

tionship between satellite-observed SIF and gridded GPP products both based on

coarse spatial resolutions. Finer resolution SIF (1.3 km 9 2.25 km) measured from

the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to exam-

ine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. How-

ever, it remains unclear how strong the relationship is for each biome and whether a

robust, universal relationship exists across a variety of biomes. Here we conducted

the first global analysis of the relationship between OCO-2 SIF and tower GPP for a

total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF

showed strong correlations with tower GPP at both midday and daily timescales, with

the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72,

p < 0.0001). Strong linear relationships between SIF and GPP were consistently

Received: 18 January 2018 | Revised: 15 April 2018 | Accepted: 18 April 2018

DOI: 10.1111/gcb.14297

3990 | © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/gcb Glob Change Biol. 2018;24:3990–4008.

http://orcid.org/0000-0002-0622-6903
http://orcid.org/0000-0002-0622-6903
http://orcid.org/0000-0002-0622-6903
http://orcid.org/0000-0003-1514-1140
http://orcid.org/0000-0003-1514-1140
http://orcid.org/0000-0003-1514-1140
http://www.wileyonlinelibrary.com/journal/GCB


found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests

(R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grass-

lands and croplands than for C3 ecosystems. The generally consistent slope of the

relationship among biomes suggests a nearly universal rather than biome-specific SIF–

GPP relationship, and this finding is an important distinction and simplification com-

pared to previous results. SIF was mainly driven by absorbed photosynthetically

active radiation and was also influenced by environmental stresses (temperature and

water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF gener-

ally had a better performance for predicting GPP than satellite-derived vegetation

indices and a light use efficiency model. The universal SIF–GPP relationship can

potentially lead to more accurate GPP estimates regionally or globally. Our findings

revealed the remarkable ability of finer resolution SIF observations from OCO-2 and

other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photo-

synthesis across a wide variety of biomes and identified their potential and limitations

for ecosystem functioning and carbon cycle studies.
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1 | INTRODUCTION

Gross primary productivity (GPP), the amount of carbon assimilated

by plants through photosynthesis, is the largest carbon flux between

the terrestrial biosphere and the atmosphere. Accurate quantification

of GPP has important implications for understanding ecosystem

functions, carbon cycling, and feedbacks to the climate. The recent

advent of satellite-based measurement of solar-induced chlorophyll

fluorescence (SIF) has provided tremendous potential for monitoring

terrestrial photosynthesis globally (Frankenberg et al., 2011, 2014;

Joiner, Yoshida, Vasilkov, & Middleton, 2011; Joiner et al., 2013).

Some previous studies have examined the relationship of SIF mea-

sured from space with gridded GPP data products at coarse spatial

resolutions (Guanter et al., 2012; Parazoo et al., 2014) and more

recently with ecosystem-level GPP estimates from eddy covariance

(EC) flux towers (Li, Xiao, & He, 2018a; Verma et al., 2017; Wood

et al., 2017). However, the relationship between SIF and GPP across

a variety of biomes is still unclear mainly due to the scale mismatch

between satellite and flux tower footprints and the lack of finer res-

olution SIF data and concurrent flux tower observations.

SIF is essentially a “glow” of plants under sunlight, and is an

energy flux emitted from plant chlorophyll molecules a few nanosec-

onds after light absorption in the wavelength range from 600 to

800 nm (Baker, 2008). Light energy absorbed by the leaf chlorophyll

molecules has three different pathways: photochemistry, nonphoto-

chemical quenching (NPQ, i.e., heat dissipation), and a small fraction

re-emitted as SIF (Baker, 2008). SIF is highly correlated with photo-

synthesis when NPQ dominates at high light levels (Baker, 2008).

SIF is directly linked to the actual plant photochemistry and is

therefore more physiologically based than the traditional vegetation

indices (VIs) such as the normalized difference vegetation index

(NDVI) and the enhanced vegetation index (EVI) (Meroni et al.,

2009; Zarco-Tejada, Morales, Testi, & Villalobos, 2013). VIs are more

indicative of vegetation “greenness” and are less sensitive to actual

variations in photosynthesis (Grace et al., 2007; Zhang et al., 2016).

SIF can be expressed in a similar way as the light use efficiency

(LUE) approach (Monteith, 1972; Monteith & Moss, 1977) for esti-

mating GPP. The LUE approach can be expressed as follows:

GPP ¼ fPAR� PAR� LUEp ¼ APAR� LUEp (1)

where fPAR is the fraction of photosynthetically active radiation

(PAR) absorbed by vegetation canopies (typically approximated by

MODIS VIs or based on satellite-derived fPAR data products), APAR

is the PAR absorbed by vegetation canopies (fPAR 9 PAR), and

LUEp denotes photosynthetic light use efficiency. SIF can be similarly

expressed (Yoshida et al., 2015) as follows:

SIF ¼ fPAR� PAR� SIFyield ¼ APAR�Hf � Xc (2)

where SIFyield is the emitted SIF per photon absorbed, the product

of the fluorescence yield at the membrane scale Θf and a structural

interference factor Ωc. SIFyield determines the fraction of SIF photons

escaping the canopy.

The ability of satellite-derived SIF to monitor terrestrial photosyn-

thesis has been investigated since global SIF products became avail-

able (Frankenberg et al., 2014; Guanter et al., 2012; Joiner et al.,

2011, 2013; Li, Xiao, & He, 2018b; Zhang et al., 2014). Commonly

used SIF measurements are derived from the Greenhouse Gases

Observing Satellite (GOSAT), the Global Ozone Monitoring Mission
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Experiment-2 (GOME-2), and the SCanning Imaging Absorption Spec-

troMeter for Atmospheric ChartographY (SCIAMACHY). Strong linear

correlation has been observed between SIF from GOSAT and GOME-

2 and gridded GPP data, suggesting that SIF is a promising proxy for

GPP at large scales (Frankenberg et al., 2011; Guanter et al., 2012,

2014; Koffi, Rayner, Norton, Frankenberg, & Scholze, 2015; Li et al.,

2018b; Parazoo et al., 2014). Other studies have also shown that SIF

has a better performance in detecting plant phenology and water

stress than conventional VIs such as NDVI and EVI (Jeong et al., 2017;

Joiner et al., 2014; Lee et al., 2013; Sun et al., 2015; Walther et al.,

2016; Yoshida et al., 2015). However, these satellite-derived SIF prod-

ucts have coarse spatial resolutions (e.g., GOME-2: 40 9 80 km2;

GOSAT: 10 km diameter; SCIAMACHY: 30 9 240 km2), and have a

large scale mismatch with the footprint of typical EC flux towers (with

longitudinal dimensions ranging from a few hundred meters to several

kilometers; Schmid, 2002). The scale mismatch hinders the direct link-

ing of satellite-derived SIF and EC tower-based GPP estimates (here-

after tower GPP) at the ecosystem scale (Li et al., 2018a). Currently,

this problem can be addressed by the release of finer resolution SIF

products from NASA’s Orbiting Carbon Observatory-2 (OCO-2)

(Frankenberg et al., 2014; Li et al., 2018a).

The OCO-2, launched on July 2, 2014, has enabled retrievals of

SIF with much smaller footprints (i.e., 1.3 km 9 2.25 km) and slightly

higher signal-to-noise ratios with an orbital track (Frankenberg et al.,

2014). The midday local overpass time (1:30 p.m.) of OCO-2 is simi-

lar to that of GOSAT but with much greater measurement frequency

(Frankenberg et al., 2014). The footprint of OCO-2 is close to that

of EC flux towers, and therefore the observatory provides the first

opportunity to directly link satellite-derived SIF to flux tower GPP at

the ecosystem scale. Several pioneering studies have examined the

relationship between OCO-2 SIF and tower GPP at individual sites

including crops (Wood et al., 2017), grassland (Verma et al., 2017),

and temperate forests (Li et al., 2018a), demonstrating strong rela-

tionships between OCO-2 SIF and tower GPP for these biomes.

Combining data from crops (Wood et al., 2017) and grassland

(Verma et al., 2017) with a deciduous temperate forest, Sun et al.

(2017) suggested a consistently strong SIF–GPP relationship across

the three sites. Despite these encouraging results, the relationship

between OCO-2 SIF and tower GPP has not yet been examined for

other major biomes such as evergreen needleleaf forests, evergreen

broadleaf forests, shrublands, and savannas due to the lack of OCO-

2 overpasses and/or concurrent flux tower observations, and there-

fore it is also unclear whether there is a robust, consistent SIF–GPP

relationship across a variety of biomes. A comprehensive analysis

based on a large number of sites encompassing a wide variety of

biomes will be timely and valuable for understanding the SIF–GPP

relationships across biomes and will be essential for extensively

using SIF observations from OCO-2 and future satellite missions in

carbon cycle studies at regional to global scales.

Here we examined the relationship between OCO-2 SIF and

tower GPP for a wide variety of biomes and assessed how the rela-

tionship varied among biomes using SIF and GPP data for a large num-

ber of flux sites across the globe. We identified and obtained data for

a total of 64 EC flux sites over the globe after screening over 800 flux

sites for the concurrent availability of OCO-2 and flux tower observa-

tions. With these observations, we examined the relationship

between SIF and GPP for eight major biomes, and assessed to what

extent the SIF–GPP relationship differed among biomes. To evaluate

the performance of SIF for estimating GPP, we also assessed the rela-

tionship between MODIS-derived VIs and tower GPP. We elucidated

the underlying causes for the strong SIF–GPP relationship by assess-

ing how SIF and GPP were correlated with fPAR, APAR, and environ-

mental stresses. Our study provides robust evidence for the value of

OCO-2 SIF in estimating terrestrial photosynthesis for a wide variety

of biomes, and demonstrates the great potential of OCO-2 SIF in

ecosystem functioning and carbon cycling studies.

2 | MATERIALS AND METHODS

2.1 | Site description and flux tower data

We screened over 800 EC flux sites across the globe for the concurrent

availability of OCO-2 SIF and flux tower observations over the period

from September 2014 to present. For each EC site, we examined the

availability of OCO-2 overpasses within the 5 km 9 5 km area sur-

rounding each tower. OCO-2 has sparse overpasses globally, which

substantially limits the availability of OCO-2 soundings at flux sites

(Figure 1a). For many EC flux sites, there were no OCO-2 overpasses

within the 5 km 9 5 km area surrounding the tower. For many of

those towers having one or more OCO-2 overpasses, flux observations

were not made during this period. For those sites having both OCO-2

and flux observations, we obtained flux data from the site principal

investigators (PIs) for some of the sites; for some other sites, however,

flux data were not shared with us at this stage. Eventually, we compiled

a database consisting of a total of 64 EC flux tower sites having both

OCO-2 and flux observations available since September 2014.

Figure 1 illustrates the OCO-2 overpasses and the location and

distribution of the 64 EC flux tower sites. A more detailed description

including site name, site code, location, biome types, and relevant ref-

erences are summarized in Supporting information Table S1. The 64

sites encompass eight major biome types: evergreen needleleaf forests

(14 sites), evergreen broadleaf forests (6 sites), deciduous broadleaf

forests (4 sites), mixed forests (5 sites), open shrublands (9 sites),

savannas (9 sites), grasslands (10 sites), and cropland (7 sites).

The EC technique continuously measures the net ecosystem

exchange of carbon dioxide (NEE) between the ecosystem and the

atmosphere at half-hourly or hourly time steps. The negative NEE val-

ues indicate ecosystem CO2 uptake, and positive values indicate CO2

release from the ecosystem to the atmosphere. The EC data analysis

procedure includes data filtering (Papale et al., 2006) to reduce bias

and to achieve high quality data and gap-filling. The data filtering leads

to gaps in the data, mostly during nighttime when the friction velocity

(u*) and the turbulent intensity are too low to allow a proper applica-

tion of the EC method. The NEE measurements are routinely parti-

tioned into GPP and ecosystem respiration (ER) using a nighttime

partitioning approach (Reichstein et al., 2005). An empirical equation is
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developed between nighttime ER (i.e., nighttime NEE) and meteoro-

logical factors, and the equation is then used to estimate ER during

the daytime; for each half-hourly or hourly time step, GPP is simply

calculated as the difference between NEE and ER (Reichstein et al.,

2005). A previous study applied 23 different partitioning methods to

examine the effects of partitioning method choice on estimated GPP,

and found that most methods differed by less than 10% in GPP esti-

mates (Desai et al., 2008). Flux data based on daytime partitioning

were also available for 10 out of the 64 sites. The daily GPP based on

the nighttime partitioning was strongly correlated with that based on

the daytime partitioning (Supporting information Figure S1;

slope = 0.94, R2 = 0.89, p < 0.001), showing that the use of daytime

versus nighttime partitioning method had small effects on GPP esti-

mates. For each of the 64 EC sites, we used tower GPP based on the

nighttime partitioning method along with meteorological data (PAR,

air temperature, vapor pressure deficit) in our analysis.

2.2 | OCO-2 SIF data

We obtained SIF data from the OCO-2 Lite products (V7r) from the

OCO-2 data archive maintained at the NASA Goddard Earth Science

Data and Information Services Center. The OCO-2 SIF data were

produced by the OCO-2 project at the Jet Propulsion Laboratory.

The OCO-2 SIF Lite files contain bias-corrected SIF along with other

select fields aggregated as daily files. The OCO-2 spectrometer mea-

sures spectra in the O2-A band, with far-red SIF retrieved at 757

and 771 nm based on the infilling of the Fraunhofer lines at 13:36

local time with data commencing on September 6, 2014 (Franken-

berg et al., 2014). Typical OCO-2 measurements are collected alter-

nately between nadir and glint viewing mode and a special target

observation mode with a repeat frequency of approximately 16 days.

The instrument views the ground directly below the spacecraft in

the nadir mode, tracks near the location with direct sunlight

reflected in the glint mode, and collects a large number of measure-

ments over calibration/validation sites in the target mode (https://oc

o.jpl.nasa.gov).

For most of flux towers, the OCO-2 SIF retrievals were extracted

within a distance of 2–5 km radius from the tower which is generally

close to the size of the flux tower footprints. Because OCO-2’s glo-

bal coverage is extremely sparse, we used a larger radius (up to

25 km) to extract SIF for some relatively homogeneous sites (Sup-

porting information Table S1) according to the MODIS land cover

F IGURE 1 OCO-2 overpasses in July,
2015 (a) and the location and distribution
of 64 EC flux sites across the globe (b).
The triangles stand for EC flux sites. These
sites were identified for concurrent
availability of OCO-2 SIF and flux tower
observations over the period from
September 2014 to present after screening
over 800 flux sites. The land cover map is
from the MODIS Land Cover Type product
(MCD12Q1) based on the University of
Maryland (UMD) classification scheme
[Colour figure can be viewed at
wileyonlinelibrary.com]
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map, which allowed us to increase the sample size of SIF retrievals

at these sites. SIF retrievals of each site were estimated by taking

the mean of all the soundings at which the grid cells had the same

land cover type as the tower site. We conducted a sensitivity analy-

sis to examine the effects of the varying radius (3, 5, 10, and 25 km)

on SIF retrievals. OCO-2 provides SIF retrievals at two bands (751

and 771 nm, denoted as SIF757 and SIF771 henceforth) and two

timescales (midday and daily).

2.3 | MODIS data

We also used MODIS-derived VIs: NDVI, EVI, and NIRv in our analy-

sis. Besides the three VIs, MODIS-derived fPAR and land cover data-

sets were also used in this study. MODIS land cover data were

obtained from the NASA Land Processes Distributed Active Archive

Center (LP DAAC), while other MODIS products were acquired from

MODIS Collection 6 Land Products Global Subsetting and Visualiza-

tion Tool.

NDVI and EVI are perhaps the most widely used VIs for monitor-

ing vegetation conditions and estimating GPP (Dong et al., 2015;

Sims et al., 2006; Sj€ostr€om et al., 2011; Xiao & Moody, 2005; Xiao

et al., 2010). The newly proposed near-infrared reflectance of vege-

tation (NIRv), the product of total scene NIR reflectance and NDVI,

has been shown to be better related to GPP than NDVI or NIR alone

(Badgley, Field, & Berry, 2017). These three VIs were derived from

two MODIS products: Terra reflectance products (MOD09A1, 8-day,

500 m) and bidirectional reflectance distribution function (BRDF)

corrected reflectance products (MCD43A4, daily, 500 m). For tem-

perate forests, the BRDF-corrected NDVI and EVI, NDVIBRDF and

EVIBRDF, were more strongly related to tower GPP than were NDVI

and EVI, respectively; EVIBRDF had the strongest correlation with

GPP among these four VIs (Li et al., 2018a). fPAR was obtained from

the combined MODIS product (MCD15A3H, 4-day, 500 m). The land

cover data were based on the MODIS Land Cover Type product

(MCD12Q1) with the University of Maryland (UMD) land cover clas-

sification scheme.

2.4 | Analysis

The relationship between OCO-2 SIF and tower GPP was evaluated

for both SIF retrieval bands (SIF757 and SIF771) and two timescales

(midday and daily) using OCO-2 and tower data for the 64 EC sites

encompassing eight biomes. The instantaneous (1:30 p.m. or midday)

SIF was evaluated against midday tower GPP. Almost all the flux

sites provided half-hourly GPP data, and the midday tower GPP was

calculated as the averaged GPP for two half-hours: 1:00–1:30 p.m.

and 1:30–2:00 p.m. For one site, EE-Jvs, the GPP at 1:15–1:45 p.m.

was considered as the midday tower GPP. Two sites (AU-Tum and

US-PFa) provided hourly GPP data, and the hourly values during the

interval 1:00–2:00 p.m. were considered as the midday tower GPP.

To evaluate the SIF–GPP relationship at the daily timescale, the mid-

day SIF retrievals were converted to daily SIF by applying the daily

correction factor provided in the OCO-2 SIF Lite product. The

different measurement modes (nadir, glint, and target) have different

viewing zenith angles. To examine whether the changing viewing

geometries affect the interpretation of SIF data and the SIF–GPP

relationship, we examined whether SIF averaged from measurement

modes is statistically different using the one-way Analysis of Vari-

ance (ANOVA) method and compared the statistical differences in

the slope of the resulting SIF–GPP relationships using a two-tailed t

test. Due to the low number of SIF retrievals collected in the target

mode, the soundings in the target and glint mode were pooled

together to compare with those in the nadir mode. To help assess

the value of OCO-2 SIF in estimating GPP, we examined the rela-

tionships between GPP and three VIs including NDVI, EVI, and NIRv

derived from two MODIS products. Unlike SIF, VIs do not contain

information on instantaneous radiation or PAR. Therefore, the rela-

tionships between tower GPP and VIs 9 PAR were also evaluated

for a fair comparison between VIs and SIF. The daily VIs for those

days having OCO-2 SIF were used in the analysis. The corresponding

daily Terra VIs were interpolated from the original 8-day products

and were then compared with tower GPP.

Previous research based on GOSAT or GOME-2 SIF showed that

the relationship between satellite-derived SIF and gridded GPP data

varied across biomes (Guanter et al., 2012; Parazoo et al., 2014;

Zhang et al., 2016). Our comparison using global flux data enables

us to investigate whether this conclusion also holds for OCO-2 SIF

and tower GPP and whether the strong SIF–GPP relationship is con-

sistent across a wide variety of biomes at the ecosystem scale. A

biome-specific SIF–GPP relationship was fitted for each biome, and

the differences in the slopes of the derived SIF–GPP relationships

between any two biomes were then examined by a two-tailed t test.

In addition, we also examined whether C3 and C4 species shared the

same SIF–GPP relationship because two previous studies showed C4

crops had a higher SIF–GPP slope than C3 crops (Liu, Guan, & Liu,

2017; Wood et al., 2017). The SIF–GPP relationship was examined

for grasslands/croplands dominated by C3 and C4 species separately,

and the difference in the slopes was then examined by a two-tailed

t-test.

We also analyzed the relationship between SIF and fPAR, APAR

(fPAR 9 tower PAR) and two environmental scalars, fTmin and

fVPD, representing low temperature and high vapor pressure deficit

(VPD) stresses, respectively, to reveal how SIF responds to these

factors. Temperature is one of the most important abiotic factors

regulating plant photosynthesis. Low temperature imposes a limit on

the activity of enzymes and effective maximum rate of carboxylation

(Vcmax) in the photosynthesis processes, and therefore decreases the

capacity and efficiency of photosynthesis (€Oquist, 1983). VPD is an

effective measure of atmospheric water stress. High VPD mainly

inhibits photosynthesis by reducing leaf stomatal conductance and

intercellular CO2 concentration (Dai, Edwards, & Ku, 1992). As the

VPD increases, the drying ability of air increases. In this case, plants

need to draw more water from the roots in an effort to avoid wilting

(Tardieu, 2013). fTmin and fVPD were calculated based on the

MODIS GPP algorithm (Running et al., 2004) using flux tower mete-

orological measurements.
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We chose two flux tower sites with a larger number of temporal

OCO-2 overpasses, Hyyti€al€a forest (FI-Hyy, 23 daily SIF observa-

tions) and Daly River Savanna (AU-Das, 19 daily SIF observations),

to examine how variations in GPP and SIF were determined by

changes in the APAR and two environmental factors. The chosen

sites have different environmental controls on photosynthesis. FI-

Hyy is located in a boreal evergreen forest with an annual mean

temperature of about 3°C. Air temperature is more important in reg-

ulating photosynthesis than water availability at the FI-Hyy site

(M€akel€a et al., 2006). AU-Das is classified as a tropical woodland

savanna that is not temperature limited and has seasonal water limi-

tation during the dry season (Rogers & Beringer, 2017). Therefore,

water availability may have a larger effect on photosynthesis at the

AU-Das site. We expected that SIF would respond in a similar way

to the temperature and water stresses (fTmin and fVPD) as GPP,

which if true would further support a strong SIF–GPP relationship.

Finally, we conducted twofold evaluations on the performance of

OCO-2 SIF for GPP estimation. Four EC flux sites covering different

biomes were first selected to compare the performance of the SIF–

GPP linear model for estimating GPP with that of the GPP-EVI linear

model and the MODIS GPP algorithm (Equation 3).

GPP ¼ εmax � PAR� fPAR� fTmin � fVPD (3)

where emax is the biome-dependent maximum LUEp.

We examined whether SIF has consistent superiority over

MODIS-derived VIs and the LUE model in GPP estimation across

biomes. These sites have a larger number of temporal SIF retrievals,

including FI-Hyy (ENF), AU-Das (SAV), Arou (GRA, 25 daily SIF

observations), and Daman (CRO, 20 daily SIF observations). For the

SIF-GPP linear model, the universal SIF–GPP relationship (derived

from all the observations for all the sites/biomes) and biome-specific

SIF–GPP relationships were both applied. We then carried out K-fold

cross-validation using all the observations to assess the predictive

ability of SIF and EVI in estimating GPP. The simulations were per-

formed 20 times, and the average value was taken as fitted GPP.

Their performance of the SIF–GPP linear model was also compared

with that the MODIS GPP algorithm. The comparative performance

was evaluated by coefficient of determination (R2) and Root Mean

Square Error (RMSE).

3 | RESULTS

3.1 | Relationships of OCO-2 SIF and MODIS VIs
with tower GPP

The OCO-2 SIF showed overall a strong linear correlation with

tower GPP regardless of retrieval bands and timescales (Figure 2). In

general, the goodness-of-fit was better for the daily timescale

(SIF757: R2 = 0.72, p < 0.0001; SIF771: R2 = 0.55, p < 0.0001) than

for the midday (or instantaneous) timescale (SIF757: R2 = 0.62,

p < 0.0001; SIF771: R2 = 0.48, p < 0.0001), and SIF757 was more

strongly correlated with tower GPP than was SIF771 at both time-

scales. The strongest relationship was observed for SIF757 at the

daily timescale (R2 = 0.72, p < 0.0001). We also examined the rela-

tionships of tower GPP and the SIF averaged from SIF757 and SIF771

(multiplying SIF771 by 1.5), and found that the averaged SIF (daily:

R2 = 0.68, p < 0.0001; midday: R2 = 0.59, p < 0.0001) exhibited

F IGURE 2 The relationships between
tower GPP and OCO-2 SIF at 64 flux
tower sites encompassing eight major
biomes. (a) GPP vs. SIF757 at the midday
(or instantaneous) timescale
(GPP = 19.97 9 SIF757 � 1.17); (b) GPP
vs. SIF771 at the midday (or instantaneous)
timescale (GPP = 26.16 9 SIF771 � 0.38);
(c) GPP vs. SIF757 at the daily timescale
(GPP = 21.38 9 SIF757 � 0.14); (d) GPP
vs. SIF771 at the daily timescale
(GPP = 28.04 9 SIF771 + 0.28) [Colour
figure can be viewed at
wileyonlinelibrary.com]
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stronger correlation with tower GPP than SIF771 but slightly weaker

correlation than SIF757 (Supporting information Figure S2). For the

10 sites also having GPP estimates based on the daytime partitioning

method, we examined the effects of nighttime versus daytime parti-

tioning on the SIF–GPP relationship, and the resulting two slopes

were not significantly different from each other (Supporting informa-

tion Figure S3).

There was no significant difference in the mean SIF between the

nadir mode (305 observations) and the glint (or target) mode (211

observations) for both midday (ANOVA: p = 0.09) and daily timescales

(ANOVA: p = 0.51) (Figure 3a,b). Consequently, the SIF–GPP relation-

ship did not significantly vary with the measurement mode at both

midday and daily timescales (Figure 3c,d). SIF in the nadir mode exhib-

ited a slightly stronger relationship with tower GPP than that in the

glint/target mode at the midday timescale but a similarly strong rela-

tionship with GPP as that in the glint/target mode at the daily time-

scale (Table 1). The difference in the slope of the SIF–GPP

relationship was not statistically significant between the two measure-

ment modes for both retrieval bands and timescales (p > 0.05) except

for SIF771 at the daily timescale (p = 0.02), suggesting that the modes

(or viewing zenith angles) generally had no significant effects on the

SIF–GPP relationships. For SIF757 at the daily timescale, the slope of

the SIF–GPP relationship based on data from both modes was not sig-

nificantly different from that based on data from either nadir or glint/

target mode. Only SIF757 was used hereafter due to its stronger corre-

lation with tower GPP relative to SIF771. In the following analyses, we

did not separate modes in order to increase the number of

observations because the measurements modes did not significantly

affect the SIF–GPP relationship for SIF757.

Our sensitivity analysis showed the extracting radius of SIF

soundings had no significant effects on the interpretation of the

SIF–GPP relationship (Supporting information Figure S4). The corre-

sponding slopes were similar to each other (18.83 to

21.07 g C m�2 day�1/W m�2 lm�1 sr�1) and did not significantly

differ (p > 0.1, two-tailed t test), which indicated that the relation-

ship was relatively stable across these scales. The R2 value of the

relationship between SIF and GPP increased from 0.64 to 0.71 with

the radius increasing from 3 to 25 km, indicating that spatial averag-

ing smoothed out the spatial variability and improved the SIF–GPP

relationship.

The three VIs (NDVI, EVI, and NIRv) derived from two MODIS

products were also strongly correlated with tower GPP (Terra:

R2 = 0.55–0.62, p < 0.0001; BRDF corrected: R2 = 0.60–0.65,

p < 0.0001) (Figure 4). The products of VIs and PAR (VIs 9 PAR)

showed similar correlations with tower GPP (Terra: R2 = 0.50–0.59,

p < 0.0001; BRDF corrected: R2 = 0.61–0.63, p < 0.0001) (Support-

ing information Figure S5) as VIs alone. The BRDF-corrected VIs

showed slightly stronger correlation with tower GPP than the Terra

vegetation indices (Figure 4). EVI and NIRv had slightly stronger cor-

relation with tower GPP than NDVI. Nevertheless, the strongest

relationship between tower GPP and MODIS-derived VIs (EVIBRDF:

R2 = 0.64, p < 0.0001; BRDF-corrected NIRv: R
2 = 0.65, p < 0.0001)

was slightly weaker than the relationship between tower GPP and

OCO-2 SIF757 (R2 = 0.71, p < 0.0001).

F IGURE 3 The distributions of OCO-2
SIF757 (a) at the midday timescale and (b)
at the daily timescale and the
corresponding relationship between OCO-
2 SIF757 and tower GPP (c) at the midday
timescale and (d) at the daily timescale for
both nadir and glint (or target) modes.
OCO-2 SIF data collected in different
modes were fitted by different lines, with
the blue dashed line for the nadir mode,
and the red solid line for the glint (or
target) mode. The slopes and intercepts of
the regression models are summarized in
Table 1 [Colour figure can be viewed at
wileyonlinelibrary.com]
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Among the 64 flux sites, some sites had a larger number of over-

passes and these sites may have larger influences on the resulting

SIF–GPP relationship. Therefore, we also evaluated the SIF–GPP and

EVIBRDF–GPP relationships at the site level by averaging SIF,

EVIBRDF, and GPP for each site, respectively (Figure 5). We found

that both SIF–GPP and EVIBRDF–GPP relationships were strong at

the site level, with the SIF–GPP relationship (R2 = 0.77, p < 0.0001)

slightly stronger than the EVIBRDF–GPP relationship (R2 = 0.67,

p < 0.0001). The EVIBRDF 9 PAR had a slightly weaker correlation

with tower GPP (R2 = 0.51, p < 0.0001), and the use of two scalars

(fTmin and fVPD) improved the relationship (R2 = 0.68, p < 0.0001)

(Supporting information Figure S6).

3.2 | Biome-specific SIF–GPP relationships

We examined the relationship between OCO-2 SIF and tower GPP for

each biome (Figure 6), and found a consistently strong relationship

between GPP and SIF for all eight biomes (R2 = 0.57–0.79, p < 0.0001)

except evergreen broadleaf forests (R2 = 0.16, p < 0.05). The

slope was the greatest for grasslands (25.43 g C m�2 day�1/

W m�2 lm�1 sr�1) and the smallest for evergreen broadleaf forests

(6.30 g C m�2 day�1/W m�2 lm�1 sr�1). The remaining six biomes

had very similar slopes: 21.19 (evergreen needleleaf forests), 20.01

(deciduous broadleaf forests), 19.92 (mixed forests), 22.07 (open shrub-

lands), 19.04 (savannas), and 20.29 g C m�2 day�1/W m�2 lm�1 sr�1

(croplands). The slope of the SIF-GPP relationship for most biomes was

not significantly different from slopes for other biomes (Supporting

information Table S2). Only the relationship for grasslands was signifi-

cantly different from that for evergreen needleleaf forests, mixed for-

ests, savannas, and croplands. C4-dominated grasslands

and crops had a significantly higher slope than C3-dominated grass-

lands and crops (29.42 g C m�2 day�1/W m�2 lm�1 sr�1 vs.

20.98 g C m�2 day�1/W m�2 lm�1 sr�1, p < 0.0001, Figure 7). The

relationships between EVIBRDF and GPP were strong for all biomes

except evergreen broadleaf forests (Supporting information Figure S7).

SIF exhibited stronger correlation with GPP than did EVIBRDF, for open

shrublands, grasslands, and croplands, while EVIBRDF had stronger cor-

relation with GPP than did SIF for deciduous broadleaf forests, mixed

forests, and savannas (Figure 6, Supporting information Figure S7).

The mean SIF and GPP values varied with biome (Figure 8a). The

one-way ANOVA test results for the differences in SIF and GPP

among biomes are provided in Supporting information Table S3.

Evergreen broadleaf forests and deciduous broadleaf forests had the

highest mean SIF and GPP; evergreen needleleaf forests, mixed for-

ests, and croplands had intermediate values, followed by savannas,

open shrublands, and grasslands had the lowest values. The biome

averaged SIF was highly correlated with averaged GPP across the

eight biomes (R2 = 0.95, p < 0.0001, Figure 8b), demonstrating the

potential of OCO-2 SIF in GPP estimation across a wide variety of

biomes.

3.3 | Relationships of OCO-2 SIF with APAR and
environmental stresses

Our results showed that APAR explained 60% of the variance

in SIF, indicating that SIF mainly depended on APAR. The

product of APAR with two environmental scaling factors

(APAR 9 fTmin 9 fVPD) explained higher variance in SIF757

(R2 = 0.70, p < 0.0001) than fPAR (R2 = 0.57, p < 0.0001) or

APAR (R2 = 0.60, p < 0.0001) alone (Figure 9). This indicates that

SIF was mainly driven by APAR and was also influenced by envi-

ronmental stresses, which explained why there was a strong rela-

tionship between GPP and SIF. These two environmental scalars

also impacted photosynthesis, specifically LUEp. Therefore, SIF

was also associated with LUEp. EVIBRDF had a much stronger

relationship with fPAR than with APAR, indicating that EVIBRDF is

mainly a proxy for fPAR and may not contain information on

PAR; EVIBRDF also contained information on environmental stres-

ses (Figure 9).

The seasonal cycles of OCO-2 SIF, flux tower GPP, two envi-

ronmental scalars (fTmin and fVPD), and APAR at the FI-Hyy site

are shown in Figure 10. Here, APAR and fTmin explained 41%

and 45% of the variance in SIF, respectively, while the product of

APAR and fTmin explained much higher variance in SIF (R2 = 0.61,

p < 0.0001). VPD is not a dominant controlling factor on photo-

synthesis in the FI-Hyy boreal ecosystem, and it was not directly

correlated with SIF (p > 0.05). APAR 9 fTmin 9 fVPD explained

slightly higher variance in SIF (R2 = 0.65, p < 0.0001) than

APAR 9 fTmin. Similar conclusions also hold for tower GPP at this

site. Tower GPP was largely influenced by APAR 9 fTmin

(R2 = 0.76, p < 0.0001). APAR 9 fTmin 9 fVPD explained the

same variance in GPP (R2 = 0.76, p < 0.0001) as APAR 9 fTmin,

showing that VPD had negligible contribution to GPP. At the AU-

Das savanna site (Figure 11), APAR also explained much of the

TABLE 1 Statistical measures for the relationships between tower GPP and OCO-2 SIF

Timescale Band (nm)

Both modes Nadir mode Glint (or target) mode

Slope Intercept R2 Slope Intercept R2 Slope Intercept R2

Midday 757 19.97 �1.17 0.62 19.79 �1.06 0.65 20.28 �1.38 0.58

Midday 771 26.16 �0.38 0.48 26.42 �0.17 0.49 25.93 �0.84 0.43

Daily 757 21.38 �0.14 0.72 20.35 0 0.73 23.37 �0.45 0.71

Daily 771 28.04 0.28 0.55 26.61 0.51 0.55 31.11 �0.23 0.58

Note: All the correlations were statistically significant (p < 0.0001). In the regression models, the units of GPP at the midday and daily timescales are

lmol m�2 s�1 and g C m�2 day�1, respectively; the units of SIF are W m�2 lm�1 sr�1.
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seasonal variation in SIF (R2 = 0.60, p < 0.0001). However, SIF

was not affected by fTmin at AU-Das; APAR 9 fVPD was more

strongly related to SIF (R2 = 0.66, p < 0.0001) than APAR alone.

Similarly, GPP also largely depended on APAR (R2 = 0.60,

p < 0.0001) and fVPD (R2 = 0.38, p < 0.0001). For this Australian

savanna site, temperature is not a limiting factor, whereas VPD is

an important controlling factor on GPP. Although the environmen-

tal controls on photosynthesis at these two sites were different,

SIF responded to the environmental stresses in a similar way as

GPP.

3.4 | Evaluating the performance of the SIF–GPP
linear relationship for estimating GPP

We evaluated the performance of the SIF–GPP linear relationship

derived from OCO-2 SIF757 and flux tower GPP for estimating GPP

F IGURE 4 Relationships between tower GPP and VIs (NDVI, EVI, and NIRv) derived from two MODIS reflectance products: (a–c)
MOD09A1 (Terra) and (d–f) MCD43A4 (BRDF corrected) [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 The relationships of OCO-2
SIF and MODIS-derived EVI with tower
GPP at the site level across the 64 eddy
covariance flux sites over the globe: (a) SIF
versus GPP; (b) EVIBRDF versus GPP. For
each site, SIF, EVIBRDF, and GPP were
averaged over all days, respectively [Colour
figure can be viewed at
wileyonlinelibrary.com]
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at four selected flux sites covering different biomes, and also used

MODIS-derived EVIBRDF and a LUE model (the MODIS GPP algo-

rithm) to estimate GPP for comparison purposes (Figure 12). In gen-

eral, GPP estimates based on the universal SIF–GPP relationship had

high consistency with tower GPP, with R2 values ranging from 0.80

to 0.96 and RMSE from 1.05 to 2.10 g C m�2 day�1. Applying

biome-specific SIF–GPP relationships (R2 = 0.80–0.96, RMSE = 1.00–

2.17 g C m�2 day�1) showed very similar performance to the

universal relationship. The EVIBRDF-based model performed as well

as the SIF-based model in predicting GPP of the four selected sites

(R2 = 0.65 for AU-Das and 0.90–0.91 for other three sites,

RMSE = 0.65–2.96 g C m�2 day�1). In addition, GPP estimates from

SIF and EVIBRDF tracked the seasonality in tower GPP well, espe-

cially SIF at FI-Hyy and Arou and EVIBRDF at AU-Das. The MODIS

GPP model overall had a slightly lower performance at these sites

(R2 = 0.69–0.96, RMSE = 2.31–4.2 g C m�2 day�1), and it largely

F IGURE 6 Scatter plots of daily tower GPP and OCO-2 SIF for individual biomes: (a) evergreen needleleaf forests (ENF); (b) evergreen
broadleaf forests (EBF); (c) deciduous broadleaf forests (DBF); (d) mixed forests (MF); (e) open shrublands (OSH); (f) savannas (SAV); (g)
grasslands (GRA); (h) croplands (CRO). The solid lines represent the fitted regression lines. The relationship between SIF and GPP for croplands
was stronger (R2 = 0.79, p < 0.0001) when the two outliers highlighted by the blue circle were removed [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 Scatter plots of daily tower
GPP and OCO-2 SIF for C3 (a) and C4 (b)
grasslands and croplands. The SIF–GPP
relationships in C4 vegetation were
examined at both Daman and AU-Stp sites.
The red solid lines represent the fitted
regression lines. The black and gray dashed
lines in (b) are regression lines for the
Daman and Au-Stp sites, respectively
[Colour figure can be viewed at
wileyonlinelibrary.com]
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underestimated GPP at higher magnitudes of GPP

(GPP > 5 g C m�2 day�1).

We also evaluated the performance of SIF and EVIBRDF for

estimating GPP using cross-validation, and then compared these

estimates to those of the MODIS GPP algorithm (Figure 13). Overall,

all the methods estimated GPP fairly well. The GPP estimates based

on SIF (R2 = 0.71, p < 0.0001, RMSE = 1.80 g C m�2 day�1) were

more strongly correlated with tower GPP and had lower RMSE

than those based on EVIBRDF (R2 = 0.64, p < 0.0001,

RMSE = 2.02 g C m�2 day�1) or the MODIS GPP algorithm

(R2 = 0.66, p < 0.0001, RMSE = 2.23 g C m�2 day�1). This shows

that the universal SIF–GPP relationship could estimate GPP

slightly better than vegetation indices and the light use efficiency

model.

4 | DISCUSSION

Using the concurrent OCO-2 SIF and flux tower observations

(2014–2017) from a total of 64 EC flux sites encompassing eight

major biomes across the globe, we found that the OCO-2 SIF

showed strong linear correlation with tower GPP in different retrie-

val bands (757 and 771 nm), timescales (midday and daily), and mea-

surement modes (nadir and glint/target). The measurements modes

had no significant effects on the slope of the SIF–GPP relationship

for both retrieval bands and timescales except for SIF771 at the daily

timescale. The strong relationships between SIF757 and GPP at the

ecosystem scale were found consistently in seven out of the eight

biomes, which supports and substantially expands the findings of the

pioneering studies on OCO-2 SIF (Li et al., 2018a; Sun et al., 2017;

F IGURE 8 The boxplots of OCO-2
SIF757 and tower GPP for each biome and
the GPP–SIF relationship at the biome
level. The boxplots (a) display the
distributions of SIF and tower GPP for
eight major biomes. (b) shows the biome
averaged SIF and GPP relationship with
error bars for the standard deviations
across all sites in the biome [Colour figure
can be viewed at wileyonlinelibrary.com]
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Verma et al., 2017; Wood et al., 2017). They reported slightly stron-

ger relationships between OCO-2 SIF and tower GPP in temperate

forests, grassland, and crops. Our results demonstrated that OCO-2

SIF was also strongly related to tower GPP for other biomes: ever-

green needleleaf forests, open shrublands, and savannas. The weak

linear relationship that we found for evergreen broadleaf forests

may have resulted from several factors. First, it is challenging for

satellite measurements to detect the canopy activity of tropical

forests. On one hand, the satellite measurements may not detect all

of the activity (understory, midcanopy located plants, and the very

large and dense canopy) (Tang & Dubayah, 2017). On the other

hand, satellite-based indicators are sensitive to atmospheric cloud/

aerosol contamination or sun–sensor geometry which can confound

the real seasonality of forests, although the SIF is considered to be

less sensitive than various VIs (Frankenberg et al., 2014). Second,

the ongoing challenges and large uncertainty in estimating GPP in

F IGURE 9 Relationships of OCO-2 SIF and EVIBRDF with fPAR, APAR, and the product of APAR with two environmental scalars: (a) SIF
versus fPAR; (b) SIF versus APAR; (c) SIF versus APAR 9 fTmin 9 fVPD; (d) EVIBRDF versus fPAR; (e) EVIBRDF versus APAR; (f) EVIBRDF versus
APAR 9 fTmin 9 fVPD [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 The seasonal cycles of
OCO-2 SIF, flux tower GPP, two
environmental scalars (fTmin and fVPD),
and APAR at the Hyyti€al€a forest (FI-Hyy,
Finland) from September 6, 2014 to July
31, 2017: (a) SIF and GPP; (b)
environmental scalars and APAR [Colour
figure can be viewed at
wileyonlinelibrary.com]
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tropical forests using the eddy covariance technique could also lead

to the weaker SIF–GPP relationship (Hayek et al., 2018). Third, the

very limited number of OCO-2 soundings only captured a part of

the seasonal variations in SIF and GPP. The tower GPP in evergreen

broadleaf forests for those days having OCO-2 soundings only ran-

ged from 5–10 g C m�2 day�1, and the range was indeed much

smaller than that in evergreen needleleaf forests, deciduous broad-

leaf forests, and mixed forests (all between roughly 0 and

13 g C m�2 day�1). It was reasonable to assume that the relation-

ship in evergreen broadleaf forests might be largely improved should

more SIF observations with the corresponding GPP beyond the small

range (5–10 g C m�2 day�1) be available. Previous research based

on either GOSAT (Guanter et al., 2012) or GOME-2 SIF (Madani,

Kimball, Jones, Parazoo, & Guan, 2017; Zhang et al., 2016) also

reported weaker SIF–GPP relationships in evergreen broadleaf for-

ests, which may also be caused by one or more of the factors

described above.

Our global analysis showed that the SIF–GPP relationship based on

OCO-2 SIF757 and tower GPP was similar among biomes, and the slopes

in most of the biomes were not significantly different from each other.

This finding is an important distinction and simplification compared to

previous results based on coarser-resolution SIF data and gridded GPP

data products (Guanter et al., 2012; Parazoo et al., 2014). The previous

assumption of biome-specific SIF–GPP relationships seems reasonable

because the SIF–GPP relationship results from multiple factors such as

difference in plant physiology and canopy structure, environmental con-

ditions, changes in surface illumination, and different contributions from

photosystem I and II, which may be naturally different across biomes

(Damm et al., 2015; Porcar-Castell et al., 2014; Sun et al., 2017). The

SIF–GPP relationship was mainly dominated by APAR and also affected

by the covariations in LUEp and Θf (Equations 1 and 2). Both LUEp and

Θf vary with environmental conditions (e.g., light, water, atmospheric

CO2) and could be positively correlated with each other (Yang et al.,

2015, 2016). Therefore, should a universal SIF–GPP linear relationship

exist, at least the variations in LUEp and Θf among biomes should offset

each other (Sun et al., 2017). The highly biome-dependent SIF–GPP

relationships reported previously may partly result from the systematic

biases in gridded GPP datasets (Sun et al., 2018). Sun et al. (2017)

found similar values of slope in crops (16.06 g C m�2 day�1/

W m�2 lm�1 sr�1), forest (15.31 g C m�2 day�1/W m�2 lm�1 sr�1),

and grass (16.37 g C m�2 day�1/W m�2 lm�1 sr�1) using OCO-2 SIF

and tower GPP. However, only three biomes and a very limited number

of observations (~30) were involved in this previous study. Our global

analysis based on a total of 64 sites across the globe revealed a nearly

universal SIF–GPP relationship across a wide variety of biomes for

the first time. The only exceptions lie in the weak relationship for

evergreen broadleaf forests and the higher slope of grasslands

(25.43 g C m�2 day�1/W m�2 lm�1 sr�1) relative to the universal

slope (21.38 g C m�2 day�1/W m�2 lm�1 sr�1). Currently, there is no

evidence that the mechanism coupling the fluorescence and photosyn-

thesis in grasslands is different from other biomes. The higher slope for

grasslands could be partly attributed to the large radius (>10 km) used

for the extraction of OCO-2 SIF for both C3 and C4 species. The slope

of the SIF–GPP relationship for grasslands could be altered should more

SIF observations be available. We found that applying a biome-specific

GPP–SIF relationship showed no advantage over using a universal GPP–

SIF relationship in estimating GPP at four EC flux sites. Such a universal

relationship can be more useful than biome-specific ones. A universal

relationship can be used to translate SIF to GPP without vegetation

type information, which can reduce the uncertainty in GPP prediction

by avoiding the uncertainty from land cover classification.

Although the slope of the SIF–GPP relationship was nearly con-

sistent among different biomes, we also found that the C4 grasslands

and croplands had a significantly higher slope than C3 grasslands and

croplands. This is consistent with the findings of two recent studies

(Liu et al., 2017; Wood et al., 2017). Liu et al. (2017) conducted

ground-based measurements to examine the SIF–GPP relationship,

and found that slope for C3 wheat was less than half of that for C4

maize. Based on OCO-2 SIF and tower GPP, Wood et al. (2017)

showed that the slope was significantly higher for C4 corn than for

F IGURE 11 The seasonal cycles of
OCO-2 SIF, flux tower GPP, two
environmental scalars (fTmin and fVPD),
and APAR at the Daly River Savanna site
(AU-Das, Australia) from September 6,
2014 to December 31, 2016: (a) SIF and
GPP; (b) environmental scalars and APAR
[Colour figure can be viewed at
wileyonlinelibrary.com]
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the mixed landscape dominated by both C4 corn and C3 soybean

and grassland. Both studies indicated that C3 and C4 species had

similar fluorescence yield (or SIFyield) but had large difference in

LUEp. Plants with C4 photosynthesis pathways are considered to

have greater adaptability to high light intensity, high temperature,

and dryness and therefore may exhibit higher LUEp than C3 species

F IGURE 12 Validation of GPP estimates based on the SIF–GPP linear relationships derived from OCO-2 and flux tower data (red circles),
MODIS-derived EVIBRDF (blue triangles), and a light use efficiency model – the MODIS GPP algorithm (orange squares) at four selected flux
sites from September 6, 2014 to December 31, 2016 (or July 31, 2017): (a) Arou, (b) AU-Das, (c) Daman, and (d) FI-Hyy [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 13 Validation of the SIF-GPP model based on the universal linear relationship between tower GPP and OCO-2 SIF (a), GPP-
EVIBRDF model (b), and MODIS GPP algorithm (c) for GPP estimation (p < 0.0001 for all three models) [Colour figure can be viewed at
wileyonlinelibrary.com]
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(Gitelson, Peng, Arkebauer, & Suyker, 2015; Li et al., 2006). Our cur-

rent findings may support the notion that the SIF–GPP relationship

is specific to the photosynthetic pathway (Liu et al., 2017). However,

the much higher slope in C4 species in this study was mainly con-

tributed by a C4 corn site, Daman, which alone had a very high slope

(30.53 g C m�2 day�1/W m�2 lm�1 sr�1). The other C4 site, AU-

Stp, also had a relatively high slope (24.91 g C m�2 day�1/

W m�2 lm�1 sr�1), although it was not significantly different from

that of the C3 sites (p = 0.23). The SIF–GPP relationship for C3 ver-

sus C4 ecosystems would be better elucidated should concurrent SIF

observations and flux tower data for more grassland and cropland

sites be available.

The comparison of OCO-2 SIF and MODIS VIs with tower GPP fur-

ther reveals the potential of OCO-2 SIF in estimating GPP at large

scales. Our results showed that OCO-2 SIF was more strongly corre-

lated with tower GPP than were conventional NDVI and EVI, EVIBRDF,

and the recently proposed NIRv. This was consistent with previous

studies showing that SIF from field experiments, satellite data, or imag-

ing spectrometer measurements could better characterize the actual

photosynthesis than conventional VIs (Daumard et al., 2010; Lee et al.,

2013; Rascher et al., 2015; Walther et al., 2016; Yoshida et al., 2015).

Conventional VIs are largely proxies of fPAR and are not sensitive to

rapid changes in plant physiological changes induced by environmental

stresses (e.g., light, temperature, VPD) (Dobrowski, Pushnik, Zarco-

Tejada, & Ustin, 2005; Zarco-Tejada et al., 2013), while SIF is emitted

by the photosynthetic machinery itself and can offer a direct physiol-

ogy-based measure of photosynthetic activity (Meroni et al., 2009).

Unlike SIF, VIs such as NDVI and EVI do not contain information on

instantaneous illumination. A fairer comparison between VIs and SIF

could be achieved by either normalizing the SIF by down-welling PAR

or multiplying the VIs by PAR (Frankenberg et al., 2011; Walther et al.,

2016; Yoshida et al., 2015). Our results showed that the VIs 9 PAR

had similar correlation with tower GPP as VIs alone and the correlation

became weaker at the site level. This can happen when VIs, GPP, and

two environmental scalars were all small, while the PAR was relatively

high. The VIs 9 PAR could not well characterize the variation in APAR

(GPP) unless the low temperature and water stresses were included. In

addition, VIs, particularly NDVI, tend to be nonlinearly related to vege-

tation properties—saturating at high LAI (Gilabert, S�anchez-Ruiz, &

Moreno, 2017; Kross, McNairn, Lapen, Sunohara, & Champagne, 2015;

Nguy-Robertson et al., 2012). This saturation phenomenon was not

observed in the SIF–GPP relationships found in previous studies based

on satellite SIF retrievals and gridded GPP data (Frankenberg et al.,

2011; Parazoo et al., 2014), recent studies based on OCO-2 SIF and

flux tower data for individual sites (Li et al., 2018a; Sun et al., 2017;

Wood et al., 2017), and our global analysis based on OCO-2 SIF and

tower GPP from 64 sites and eight biomes.

Understanding how SIF responds to APAR and environmental fac-

tors can help reveal the underlying mechanisms of the observed strong

relationship between SIF and GPP. Previous studies suggested that

APAR dominated the SIF–GPP relationship, while SIF also contained

information on environmental stresses that were closely associated

with LUEp (Li, Xiao, & He, 2018a; Walther et al., 2016; Yang et al.,

2015, 2016). A recent study used GOME-2 SIF observations as a

proxy for GPP to identify the dominant bioclimatic control factors

(e.g., VPD, Tmin, soil moisture) that influence primary productivity

(Madani et al., 2017). For our selected two EC flux sites with different

environmental controls on photosynthesis, we found that SIF

responded to APAR and environmental factors (fTmin for FI-Hyy site

and fVPD for AU-Das site) in a similar manner as GPP, further demon-

strating the close relationship between GPP and SIF. Our results

showed that SIF was mainly driven by APAR and was also influenced

by environmental stresses (temperature limitation and water stress)

that control LUEp across a number of sites and a variety of biomes

over the globe, highlighting that SIF could respond well to these biocli-

matic and environmental factors at the ecosystem scale. This encour-

ages wide application of OCO-2 SIF in both estimating GPP and

examining the effects of environmental stresses on terrestrial photo-

synthesis.

Despite the substantial value and potential of OCO-2 SIF in

assessing terrestrial photosynthesis and its responses to environmen-

tal stresses for a variety of biomes, more extensive applications of

OCO-2 SIF in carbon cycling studies still face challenges. Due to the

sparse global coverage of OCO-2, temporally dense SIF retrievals (e.g.,

more than 10 daily observations per site over the 2014–2016 period)

are not available for the majority of the EC flux sites over the globe.

Therefore, it is not yet feasible to examine the seasonal or interannual

variations in photosynthesis or to detect vegetation phenology at the

ecosystem scale using OCO-2 SIF observations. It is also challenging

to use OCO-2 SIF data to examine photosynthesis or its response to

environmental stresses at regional or global scales due to the spatially

and temporally sparse nature of OCO-2 data. One possible solution is

to generate spatially and temporally continuous SIF estimates with

moderate resolution by merging OCO-2 SIF soundings with other

moderate-resolution satellite datasets that are spatially and temporally

continuous (e.g., MODIS) (Li et al., 2018a). Another possible solution is

to make use of the advantages of both OCO-2 (finer resolution, higher

quality) and GOME-2 (spatially and temporally continuous coverage)

data. For example, OCO-2 data is likely to be useful for calibrating

GOME-2 data, leading to a calibrated, higher quality SIF dataset that is

spatially and temporally continuous. OCO-2 SIF data can also be syn-

ergistically used with SIF from other ongoing or upcoming missions

such as the TROPOspheric Monitoring Instrument (TROPOMI), OCO-

3, GOSAT-2, or the FLuorescence EXplorer (FLEX). In particular, the

TROPOMI instrument on board Sentinel-5P that launched in October

2017 will enable the retrievals of continuous global SIF at a spatial grid

size of 0.1° (Guanter et al., 2015), and the FLEX that will be launched

in 2022 is specifically designed for mapping SIF at a spatial resolution

of 300 m (Drusch et al., 2017). These SIF data along with OCO-2 SIF

will likely open up a new era in terrestrial carbon cycle studies. The

universal, robust relationship between OCO-2 SIF and tower GPP

across a large number of sites and a wide variety of biomes demon-

strated in this study will be useful for translating the finer-resolution

SIF maps from TROPOMI and FLEX to gridded, finer-resolution GPP

estimates (300 m—0.1°) at regional to global scales. The resulting grid-

ded GPP estimates will be valuable for assessing ecosystem carbon
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uptake and plant productivity at various spatial and temporal scales,

comparing against gridded GPP upscaled from FLUXNET observations

(e.g., Xiao et al., 2010, 2014), and benchmarking terrestrial biosphere

models (e.g., Ito et al., 2017; Thorn, Xiao, & Ollinger, 2015).

5 | SUMMARY

Our study presents the first global analysis of the relationship

between SIF and GPP at the ecosystem scale based on OCO-2 SIF

and tower GPP data for a total of 64 EC flux sites encompassing eight

major biomes across the globe. The OCO-2 SIF showed strong corre-

lations with tower GPP (R2 = 0.48–0.72, p < 0.0001) in both SIF

retrieval bands (757 and 771 nm) and at two timescales (midday and

daily), with the strongest relationship observed in the 757 nm band

(SIF757) at the daily timescale (R2 = 0.72, p < 0.0001). The SIF-GPP

relationship did not significantly vary with the measurement mode at

both midday and daily timescales. OCO-2 SIF757 exhibited much

stronger correlation with tower GPP than MODIS-derived NDVI, EVI,

and NIRv and slightly stronger relationship with tower GPP than

BRDF-corrected EVI (EVIBRDF: R2 = 0.64, p < 0.0001) and NIR

(NIRv_BRDF: R
2 = 0.65, p < 0.0001). The OCO-2 SIF757 had better pre-

dictive ability in GPP estimation than EVIBRDF and a light use effi-

ciency model (the MODIS GPP algorithm). We further found that the

SIF was mainly driven by APAR and was also influenced by environ-

mental stresses (temperature and water stresses) related to LUEp. SIF

responded to APAR and environmental scaling factors (fTmin and

fVPD) in the same manner as GPP at two representative flux sites

with different environmental controls on photosynthesis. The strong

SIF–GPP relationship was found for all eight biomes (R2 = 0.57–0.79,

p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05).

The slope of the SIF–GPP relationship was generally consistent among

biomes, which indicates that a nearly universal relationship between

SIF and GPP exists across a wide variety of biomes. The nearly univer-

sal SIF–GPP relationship can be used to translate SIF to GPP as effec-

tively as biome-specific relationships at the site level and can

potentially lead to more accurate GPP estimates regionally or globally

by avoiding the uncertainty from land cover classification.

Our study demonstrated the substantial value and potential of

OCO-2 SIF in carbon cycling studies. Future work based on more

SIF observations and/or process-based modeling will be helpful for

evaluating the universal SIF–GPP relationship across a variety of

biomes as suggested by our findings. Synergistic uses of OCO-2 SIF

with other spatially and temporally continuous remote sensing prod-

ucts (e.g., MODIS) and SIF observations from other missions (e.g.,

GOME-2, GOSAT, TROPOMI, FLEX) will open up a new era for

ecosystem functioning and carbon cycling studies and benchmarking

of terrestrial biosphere models.
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