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Forest ecosystems are shaped by their historical disturbance regime. Structural and species diversity are driven
by disturbance frequency, patch size and microsite disturbance severity in forests across the globe. Forest
management in Lake State northern hardwoods, however, has primarily used high-frequency, low- to
moderate-severity canopy disturbance and low-severity microsite disturbance harvesting techniques such as
single-tree selection. Catastrophic disturbances during European settlement followed by the widespread and
long-term use of uniform approaches to forest management have homogenized managed forests and cre-
ated a need to emulate a fuller range of historically prevalent natural disturbances. We present a conceptual
model based on complex adaptive forest management that proposes five primary factors including mean
patch size, proportion disturbed, frequency, degree of exposed mineral soil and coarse woody debris input.
This model demonstrates the need for a greater range of silvicultural systems to more closely emulate the
range of variability associated with natural disturbance regimes. In Great Lakes northern hardwoods, using a
greater variety of silvicultural systems including those with larger patch cuts and greater soil disturbance,
may restore and promote structural and tree species diversity in these forests by creating greater microsite
heterogeneity. Applying this conceptual model to forests more broadly, while still considering regionally spe-
cific factors, may help restore species and structural diversity and ultimately, ecosystem resilience.

Introduction
Long-term use of systematic forest management has tended to
simplify the structure of forests worldwide (Hall et al., 2003;
Angers et al., 2005; Montes et al., 2005; Neuendorff et al., 2007;
Yoshida et al., 2017). A shift in natural disturbance severity such as
reduced gap sizes due to fewer large trees, and subsequent
declines in species diversity owing to fewer suitable germination
sites (Woods, 2000; Schulte et al., 2007; Zhang et al., 2012), could
make forests less resilient to future disturbances and consequently
less economically reliable (Niese and Strong, 1992; Dymond et al.,
2014, 2015). Evidence suggests that the long-term implementa-
tion of uniform management reduces structural diversity (Angers
et al., 2005; Neuendorff et al., 2007) and species functional trait
diversity (Neuendorff et al., 2007; Curzon et al., 2017), which are
integral components of ecosystem resilience and resistance (Yachi
and Loreau, 1999; Elmqvist et al., 2003; Tilman et al., 2006;
Downing et al., 2012). Higher functional trait diversity can contrib-
ute to greater complementarity or greater functional redundancy,
which consequently strengthen resilience or resistance, respect-
ively (Downing et al., 2012). Ecosystem resilience is an especially
critical attribute in the face of global change if novel disturbance

regimes become predominant (Holling, 1973; Elmqvist et al., 2003;
Drever et al., 2006; Messier et al., 2013; Derose and Long, 2014).

In this paper, we review the importance of natural disturbances
to forest composition, structure and function and discuss the
impact of European settlement and forest management practices
on forests using northern hardwoods in the Great Lakes region as a
case study. Furthermore, we propose a conceptual model to dem-
onstrate the mismatch between historical natural disturbance
regimes and settlement and forest management disturbances on a
stand scale. Finally, we posit that forest managers need to imple-
ment a greater range of silvicultural systems to adequately emulate
natural disturbance regimes and maintain forest ecosystem resili-
ence. We discuss an example specific to Great Lakes northern hard-
woods, though our conceptual model can be applied to forests
across the globe using five identifiable components of disturbance.

Historical natural disturbance regimes
Disturbance effects on landscape-level patterns
Natural disturbances are fundamental processes in forest eco-
systems across the globe. Pickett and White (1985) define a
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disturbance as ‘any relatively discrete event in time that disrupts
ecosystem, community, or population structure and changes
resources, substrate availability, or the physical environment’.
Niches created by natural disturbances, for example, are largely
credited with maintaining ecosystem biodiversity (Ricklefs, 1976;
Denslow, 1980). Moreover, stand structure, plant community com-
position and biogeochemical cycles are often highly correlated
with the regional disturbance regime (Pickett and White, 1985;
Oliver and Larson, 1996; Halpin and Lorimer, 2016). As such, eco-
systems are strongly influenced by their disturbance history.

Forest ecosystems across North America are no exception. A
defining feature of eastern hemlock (Tsuga canadensis (L.)
Carrière) – white pine (Pinus strobus L.) – northern hardwood for-
ests in the Great Lakes region, for example, is the range of
severity of windthrow disturbances under which these species
evolved (Frelich and Lorimer, 1991; Whitney, 1987, 1994;
Hanson and Lorimer, 2013). Though some species such as east-
ern hemlock and American beech (Fagus grandifolia Ehrh.) have
more limited distribution, Great Lakes northern hardwoods gen-
erally had similar natural disturbance regimes across their
range. Large windthrow events typically had high severity but
long-return intervals, while small windthrow events had rela-
tively low severity but short-return intervals. For example, Zhang
et al. (1999) estimated a presettlement rotation period of
722 year for catastrophic windthrow (>1.0 ha) in northern hard-
woods in the Luce District of Upper Michigan, and Canham and
Loucks (1984) estimated a return time of 1210 year for wind-
throw >1.0 ha when pooling all forest types across northern
Wisconsin. Though catastrophic blowdowns were rare, an exten-
sive gradient of blowdown severity existed ranging from treefall
to stand-leveling. A rotation period of 94 and 236 years was
estimated for moderate (≥140 km h−1) and severe (≥180 km
h−1) windthrow, respectively, in northern hardwoods across the
Great Lakes region from Minnesota to New York (Frelich and
Lorimer, 1991). Moreover, frequent low-severity windthrow
(51–69 years for >10 per cent canopy removal) maintained
hemlock – hardwood dominance in western Upper Michigan
(Frelich and Lorimer, 1991; Frelich, 2002). The small gaps cre-
ated by treefall allowed shade-tolerant species to persist, while
larger gaps promoted the recruitment of less tolerant species
such as yellow birch (Betula alleghaniensis Britt.). To contrast,
severe fire typically had much longer return intervals. Catastrophic
fire reached a rotation period upwards of 2600 year in Upper
Michigan (Frelich and Lorimer, 1991; Zhang et al., 1999). Despite
their infrequency, catastrophic disturbances were critical for main-
taining diversity in these forests (Woods, 1984, 2000; Frelich,
2002). Species such as white pine, red oak (Quercus rubra L.) and
paper birch (Betula papyrifera Marshall) were recruited following
fires that exposed mineral soil and decreased competition from
sugar maple (Acer saccharum Marshall; Frelich, 2002). Finally, evi-
dence suggests that indigenous people used fire as a manage-
ment tool, though the extent of intentional fire use varied among
regions and forest types (Whitney, 1994; Zhang et al., 1999).

Disturbance effects on microsites

While disturbances of stand-level or greater patch size affect
whole forest ecosystems, species-specific responses are driven
by changes under microsite conditions such as light availability,

surface soil moisture, temperature and available nutrients. Such
factors are important for plant germination and survival and are
frequently driven by patch size and abundance of both exposed
mineral soil and coarse woody debris (Roberts and Gilliam,
1995; Roberts, 2004; Bailey et al., 2012). Light availability, for
example, often structures understory plant communities and,
consequently, tree seedling communities (Scheller and
Mladenoff, 2002; Burton et al., 2014; Sabatini et al., 2014).
Moreover, gaps created by windthrow or treefall have been
shown to promote both plant species diversity and functional
diversity in ecosystems across the globe due to differences in
light requirements and shade tolerance among species (Ricklefs,
1976; Denslow, 1980; Kern et al., 2014a). Small canopy distur-
bances such as treefall favour shade-tolerant species, while
large canopy disturbances such as severe windthrow typically
favour shade-intolerant species. Shade-tolerant understory
herbs often respond negatively to the wide fluctuations in tem-
perature and moisture typically resulting from disturbances that
simultaneously increase light availability (Small and McCarthy,
2002). Moreover, the highest densities of shade midtolerant yel-
low birch and tolerant hemlock have been found in the southern
edges of large gaps after 2 (Raymond et al., 2006) and 10
(Poznanovic et al., 2014a, 2014b) growing seasons, owing to the
creation of adequate germination substrate but relatively little
tolerance for wide fluctuations in temperature or rooting zone
moisture.

Surface soil moisture is highly heterogeneous among micro-
sites throughout forest stands due to differences in aspect, vege-
tation cover, underlying soil substrate, organic matter content
and topographic location. Natural disturbances such as wind-
throw and wildfire can further increase heterogeneity of soil
moisture among microsites (Peterson et al., 1990; Ritter et al.,
2005; Poznanovic et al., 2014b). Small-scale disturbances gener-
ally maintain greater consistency in soil moisture, while large-scale
disturbances generally create greater variability in soil moisture
(Guo et al., 2002). For example, previous work has demonstrated
that soil moisture increases with gap size immediately following
harvest, likely a result of less canopy interception and fewer
trees transpiring (Burton et al., 2014). On the other hand, rapidly
invading shrubs may instead decrease soil moisture (Royo and
Carson, 2006). Furthermore, soil moisture and light availability
are often correlated and consequently affect the composition of
tree recruits in gaps (Poznanovic et al., 2014b).

Natural disturbances also greatly affect available nutrient
dynamics. As with soil moisture, small disturbances generally
maintain greater consistency in available nutrient levels while
large disturbances typically create a pulse of available nutrients.
Though often dependent on remaining vegetation, rates of
nitrogen mineralization and nitrification generally increase after
disturbances due to the large input of organic matter, subse-
quent increase in microbial activity and less uptake by trees
(Likens et al., 1970; Attiwill and Adams, 1993). Moreover, the
composition of canopy trees has a large effect on soil nutrient
dynamics. Sugar maple-dominated stands have high rates of
nitrogen mineralization and nitrification, while hemlock-
dominated stands have lower rates of nitrogen mineralization
and nitrification, largely due to differences in leaf chemistry
between species (Lovett and Mitchell, 2004; Lovett et al.,. 2004).
On the other hand, Mladenoff (1987) observed the opposite
trend under recently created treefall gaps.
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Surface soil moisture and available nutrients are also often
correlated with the abundance of coarse woody debris, which
has a higher and more stable moisture content when compared
with mineral soil and leaf litter (Jurgensen et al., 1997; Laiho
and Prescott, 2004; Bailey et al., 2012). For example, coarse
woody debris adsorbs up to 220 per cent of its dry mass in
water, compared with 20–40 per cent for mineral soil (Fraver
et al., 2002). The ability of decaying woody debris to retain soil
moisture and unique fungal communities appears to favour yel-
low birch and hemlock regeneration, which often have greater
germination and survival on decaying woody debris (Marx and
Walters, 2008; Poznanovic et al., 2014a). Decaying logs further
provide substrate for fungi important in nutrient cycling and
symbiotic relationships (Heilmann-Clausen and Christensen,
2003; Poznanovic et al., 2014a; Dove and Keeton, 2015).

The interacting effects of natural disturbances and compet-
ing vegetation can further influence regeneration dynamics. For
example, the longevity of raspberry (Rubus spp.) seeds and pro-
lific growth of raspberry following a disturbance make it an
important competitor in some northern hardwood forests fol-
lowing disturbance (Donoso and Nyland, 2006; Kern et al.,
2017). Moreover, Kern et al. (2013a) found that the abundance
of competing shrubs increased with gap size. Another strong
competitor, sedge (Carex spp.) reproduces vegetatively, a trait
that allows it to spread rapidly without relying on seed germin-
ation (Hale et al., 2006; Powers and Nagel, 2009). The abun-
dance of raspberry and sedge in recently disturbed (natural and
anthropogenic) northern hardwoods is a prime example of the
systematic rise of recalcitrant understory layers worldwide due
to interacting effects of management and elevated levels of
herbivory (Royo and Carson, 2006).

Recent disturbance regimes
European settlement-related disturbances

The Great Lakes forests fuelled rapid industrial growth and
settlement during the late nineteenth century. Extensive areas
of pine forest were logged within several decades during this
period, referred to as the ‘cutover’ (Wales, 1939; Whitney; 1994;
Gough, 1997). Following the cutover, largely unintentional slash
fires of residual debris nearly eliminated remaining biological
legacies such as seed banks, coarse woody debris, symbiotic
organisms, organic nutrients and advance regeneration that
would otherwise promote ecosystem resilience (Whitney, 1987;
Johnstone et al., 2016). As a result, these two major successive
disturbances dramatically altered forest cover by favoring
sprouting species such as maple, oak, paper birch and aspen
(Populus tremuloides Michx. and P. grandidentata Michx.). Rapidly
growing white-tailed deer (Odocoileus virginianus) densities
from 1920 to 1940s (Leopold et al., 1947) further favoured a
transition from conifers to hardwoods (Ross et al., 1970; Rooney
and Waller, 2003; Zenner and Peck, 2009). Following the peak of
logging in the Great Lakes around 1892, almost all merchant-
able pine and hemlock were logged by 1920 (Whitney, 1987;
Williams, 1989). When pine was almost depleted in Michigan by
the 1890s, a new focus on hardwoods emerged. Consequently,
the primary lumber species shifted by 1912 from pine to sugar
maple (Whitney, 1987).

Forest management practices

Major advances in silviculture for the northern hardwoods were
developed between 1930 and 1950s. Though many approaches
were developed, single-tree selection became widespread in the
western Great Lakes, with approximately 85 per cent of non-
industrial managed land using uneven-aged management com-
prised primarily of single-tree selection (Jacobs, 1987; Kern
et al., 2014b). Under single-tree selection, trees are extracted
singly and dispersed across a range of diameter sizes until
a residual basal area goal is reached, then repeated every
10–20 years (e.g. Wisconsin DNR Silviculture Handbook, 2002).
This silvicultural system primarily favours shade-tolerant species
such as sugar maple by creating openings of approximately
0.004–0.03 ha on a decadal basis (Crow et al., 2002; Wisconsin
Forest Management Guidelines, 2011; Kern, et al., 2014b). In add-
ition to its low-severity canopy removal, winter harvesting with
low-impact machinery further minimizes soil microsite disturb-
ance, limiting opportunities for trees that require bare mineral soil
to regenerate. Frequent harvest entries, upper diameter limits
proposed by the widely used Arbogast Guide (Arbogast, 1957)
and mill preferences also limited development of old-senescent
trees and large coarse woody debris, further homogenizing stand
structure by decreasing microsite variability created when large
trees are toppled by windstorms and ultimately reducing the
abundance of several economically valuable species such as yel-
low birch (Webster and Lorimer, 2005; Neuendorff et al., 2007;
Shields et al., 2007; Salk et al., 2011).

Several recent studies have demonstrated the declining struc-
tural and species diversity of northern hardwoods due to manage-
ment practices. Neuendorff et al. (2007) reported an increase in
the relative density of sugar maple and concurrent decrease in
relative density of yellow birch after 40 years of single-tree selec-
tion in an Upper Michigan northern hardwood forest. Seedling and
sapling layers were dominated by sugar maple in both managed
stands and stands unmanaged since European settlement, but
unmanaged stands had greater species richness. Moreover, in
sugar maple-dominated forests of southwest Quebec, the continu-
ous application of selection cutting created dense foliage layers
throughout the stand understory due to the large post-harvest
recruitment of advance regeneration (Angers et al., 2005). The
authors suggest that the long-term application of selection sys-
tems in sugar maple-dominated forests may yield homogenized
stand structure and composition, along with limited biodiversity at
the stand and landscape scale. Also in southwest Quebec, Doyon
et al. (2005) observed that low horizontal heterogeneity within
single-tree selection stands was significantly correlated to avian
assemblages and ultimately recommended the application of
more diverse silvicultural systems. On a landscape scale, Schulte
et al. (2007) summarized anthropogenic disturbances and found
an increase in dominance of both sugar and red maple from
pre- to post-settlement in the Great Lakes states of Minnesota,
Wisconsin and Michigan due to the initial widespread harvesting of
pine followed by repeated slash fires and finally, the widespread
and long-term application of single-tree selection.

Emerging disturbances

Though historically prevalent natural disturbances continue to
shape forest ecosystems, several additional influences have
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arisen since settlement due to regional and global change. The
effect of increasing white-tailed deer populations on regeneration
in Great Lakes northern hardwood forests has been well-
documented in the last two decades (Alverson et al., 1988; Rooney
and Waller, 2003; Powers and Nagel, 2009; Kern et al., 2012), par-
ticularly because deer populations in northeastern Wisconsin and
southern Upper Michigan are relatively high (WDNR, 1998; Rooney
and Waller, 2003; Powers and Nagel, 2009; Sabo et al., 2017). The
survival of preferentially browsed seedlings, including sugar maple,
is compromised in regions with high deer populations due to
intense herbivory, leaving behind unpalatable and economically
undesirable species such as ironwood (Ostrya virginia; Matonis
et al., 2011). High deer herbivory further promotes the rapid spread
of Pennsylvania sedge (Carex pensylvanica) by decreasing the cover
of preferentially browsed herbs, seedlings and saplings, therefore
reducing competition for resources (Powers and Nagel, 2009).

European earthworms represent another major influence on
regeneration dynamics in northern hardwood forests. European
earthworm invasion likely exacerbates the negative impacts of
deer herbivory by dramatically altering soil conditions and con-
suming the forest floor, which sugar maple seeds rely on as a
germination substrate (Hale et al., 2006, Corio et al., 2009). For
example, Corio et al. (2009) found lower seedling stem counts
of sugar maple in heavily earthworm-invaded stands when
compared with less invaded stands. Moreover, earthworm inva-
sion is often highly correlated with the spread of Pennsylvania
sedge, further complicating tree regeneration dynamics in
impacted forests (Bohlen et al., 2004; Hale et al., 2006).

While the effects of earthworm invasion on tree regeneration
are largely indirect, other non-native pests have caused devastat-
ing declines in native tree species through direct impacts. Beech
bark disease complex (Cryptococcus fagisuga Lindinger and Nectria
coccinea var. faginata (Pers.) Fr.), emerald ash borer (Agrilus plani-
pennis Fairmaire), European gypsy moth (Lymantria dispar dispar
L.) and oak wilt (Bretiziella fagacearum (T. W. Bretz) J. Hunt) are
several examples of non-native invasive pests which have greatly
impacted Great Lakes forests (Gandhi and Herms, 2010; Pugh
et al., 2011; Lovett et al., 2016). The death of important tree spe-
cies such as American beech, ash (Fraxinus spp.) and oak (Quercus
spp.) can have large indirect effects on plant community ecology
and biogeochemical cycles, not to mention the large economic
impacts (Aukema et al., 2011; Lovett et al., 2016).

Yet another threat, climate change will likely impact Great Lakes
forests as deviations from historical temperature and precipitation
trends are likely to cause shifts in plant species composition. Higher
winter temperatures may favour species currently at their northern
range, while negatively influencing species currently at their south-
ern range. Combined with less frequent but more intense precipita-
tion events, drought-tolerant species (e.g. oaks and aspen) may
fare better than less drought-tolerant species such as sugar maple,
yellow birch and eastern hemlock (Handler et al., 2014). Though
restoration efforts are typically guided by historic species compos-
ition, this reliance may prove irrelevant in the face of climate
change (Harris et al., 2006).

Disturbance-based forest management
The emergence of ecological forestry and complexity science
has offered insights into how forests can be managed as

disturbance-based, complex adaptive systems (Drever et al.,
2006; Messier et al., 2013). Disturbance-based silviculture uses
regionally specific natural disturbance regimes as blueprints for
management practices to maintain adaptive and resilient forest
ecosystems (Drever et al., 2006; Messier et al., 2013).

Rather than focusing management on a single objective
such as timber production or wildlife habitat, managing forests
for ecosystem resilience requires the holistic consideration of
ecosystem components, temporal and spatial scales and their
interactions, which also helps maintain ecosystem services
(Messier et al., 2013). Ecosystem services are benefits provided
by the provisional, regulating, cultural and supporting compo-
nents of an ecosystem (Millenium Ecosystem Assessment, 2005).
Without the ability of a forest ecosystem to quickly recover from
a perturbation, people cannot reliably depend on the forest for
the services it provides. Managing forests as complex adaptive
systems therefore fits well within the framework of ecosystem
services. For example, a resilient forest ecosystem can provide
clean water, timber and fibre. It mitigates unexpected flooding
disasters because it has evolved under its current (albeit, pre-
climate change) disturbance regime (Seymour and Hunter,
1999). A resilient forest ecosystem can naturally purify water by
filtering contaminants, absorbing nutrients and preventing soil
erosion, though this depends on the successional state of the
forest. It provides aesthetics and recreational opportunities and
further provides spiritual benefits by maintaining species diver-
sity, and consequently species that may be historically import-
ant to indigenous and local communities (Gadgil et al., 1993,
Emery et al., 2014). Functional trait diversity, which often links
above and belowground processes (Bardgett and van der
Putten, 2014; Alberti et al., 2017), is another key component of
ecosystem resilience (Elmqvist et al., 2003; Downing et al., 2012;
Whitfield et al., 2014). The functional trait diversity of a resilient
ecosystem may help maintain a balanced nutrient budget and
regulate species populations, consequently limiting the oppor-
tunity for invasion (Davis et al., 2000; Downing et al., 2012).

The increasing threats of climate change and species inva-
sion require adaptability in management techniques. Though
the severity of future natural disturbances is unpredictable,
applying a variety of silvicultural systems using historically
prevalent natural disturbances as a management blueprint,
within the natural range of variability, gives the ecosystem
greater potential to maintain productivity, stability and resilience
(Drever et al., 2006; Messier et al., 2013, Nolet et al., 2018).

Conceptual models to identify gaps in
management and find solutions
Identifying management gaps
Historically, there has been a mismatch between silvicultural
practices and regionally specific disturbance regimes on a stand
scale. As Figure 1 illustrates, treefall is characterized by a rela-
tively small mean patch size, small proportion of stand dis-
turbed, low degree of exposed mineral soil, low coarse woody
debris input, but relatively high frequency. Consequently, micro-
sites with a thick leaf litter layer overlaying pit-mound topog-
raphy, and little understory light availability, are common across
stands which historically experienced treefall as the dominant
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disturbance regime and are particularly favourable for sugar
maple and American beech regeneration (Tubbs, 1977; Frelich,
2002; Kern et al. 2013b; Gauthier et al., 2016). On the other
hand, windthrow events that have lower disturbance frequen-
cies combined with greater mean patch size, more exposed
mineral soil and more coarse woody debris input tended to
favour additional species such as hemlock, yellow birch, aspen
and white pine (Frelich, 2002; Webster and Lorimer, 2002;
Prévost and Raymond, 2012). Furthermore, high-severity fires
were at the opposite end of the spectrum from treefall by hav-
ing relatively low frequency combined with high mean patch
size, high degree of exposed mineral soil and high input of
coarse woody debris (albeit charred) consequently favoring a
greater abundance of pioneer species such as paper birch and
aspen (Frelich, 2002). Overall, the large range of these distur-
bances tended to maintain greater structural and species diver-
sity than seen today.

Historical management practices, on the other hand, have
focused on the extremes of these disturbances. The cutover,
including subsequent slash fires, most closely emulated high-
severity fires (high on all axes of Figure 2). Single-tree selection
has since been the dominant silvicultural system in forests with
planned management, yet represents only a narrow range of
each axis (Figure 2). Single-tree selection is typically characterized

by a moderately small mean patch size, intermediate proportion
of stand disturbed, moderately high-frequency and moderately
low coarse woody debris input (Després et al., 2016). Additionally,
the degree of exposed mineral soil is largely dependent on soil
conditions during harvest and the type of machinery (Napper
et al., 2009). For example, deep snow cover during winter har-
vesting often minimizes soil disturbance while in contrast, little or
no snow cover during harvesting will increase the degree of soil
disturbance, particularly if the soil is not frozen (Berger et al.
2004; Kern et al., 2006). Though several studies have recom-
mended a variety of harvesting systems to maintain structural
and species diversity (Doyon et al., 2005; Nolet et al., 2018), silvi-
cultural systems which emulate the full range of disturbances
between these two extremes have, until recently, received little
attention. In 1957, Arbogast explicitly stated that yellow birch
requires the occasional patch cut of ~0.04 ha near a seed tree, in
addition to exposed mineral soil, to emulate the favourable con-
ditions for germination and survival provided by higher severity
disturbances (Arbogast, 1957). More recent guidelines have
recommended larger gaps (Wisconsin Department of Natural
Resources, 2011) or greater use of regular and irregular shelter-
woods (Raymond et al., 2009; Lussier and Meek, 2014; Raymond
and Bédard, 2017); however, these have yet to be intentionally
implemented on a large scale and monitored long term.

A further mismatch has unfolded between historic distur-
bances regimes and emerging threats such as deer herbivory,
European earthworm invasion, invasive pests and climate
change. For example, the disturbance impacts of European
earthworm invasions did not exist when historic disturbance
regimes predominated. The mean patch size, proportion of
stand disturbed, degree of exposed mineral soil, coarse woody
debris input and disturbance frequency from these relatively
recent disturbances do not overlap historical disturbance
regimes and consequently create new disturbance regimes in
which current species did not evolve. Promoting forest resilience
by increasing stand-scale structural and species diversity could
help mitigate the negative impacts of these emerging threats
(Nagel et al., 2017).

Though single-tree selection retains canopy cover, aesthetic
value and suitable germination sites for shade-tolerant species,
its widespread application without the necessary modifications
has led to landscape-scale homogenization of Great Lakes for-
ests with planned management (Schulte et al., 2007). This hom-
ogenization has resulted in fewer large trees, subsequently
reduced gap sizes following windthrow and consequently a
decline in suitable germination sites for shade-intolerant and
-midtolerant species. The abundance of simplified forests result-
ing from past land use and management history have now cre-
ated a need to increase structural and functional trait diversity.

Finding solutions

To capture the range of silvicultural systems which best emulate
natural disturbances in northern hardwoods, Figure 2 replaces
the historically prevalent disturbance regimes shown in Figure 1
with the silvicultural systems which most closely emulate those
disturbances based on mean patch size, proportion of stand dis-
turbed, frequency, degree of exposed mineral soil and coarse
woody debris input. For example, sugar maple regeneration is

Figure 1 Conceptual model showing historically prevalent disturbance
regimes in Great Lakes northern hardwoods, and the tree species best
promoted by the resulting microsite conditions. Historical disturbances
were variable, promoting a large diversity of tree species across the
landscape. Italicized species have shown evidence of decline in Great
Lakes northern hardwoods. 1(Tubbs, 1977; Kern et al., 2013a; Beaudet
et al., 2014); 2(Frelich and Lorimer, 1991; Scharenbroch and Bockheim,
2007; Marx and Walters, 2008); 3(Gastaldello et al., 2007; Lorenzetti
et al. 2008; Gauthier et al., 2016; Lambert et al., 2016); 4(Peltzer et al.,
2000; Rich et al., 2007; Schulte et al., 2007; Vodde et al., 2015); 5(Frelich
and Lorimer, 1991; Reich et al., 2001; Rich et al., 2007; Vodde et al.,
2015).
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best promoted by emulating a regime with small mean patch
size, small to moderate proportion of stand disturbed, high fre-
quency, low degree of exposed mineral soil and low coarse woo-
dy debris input (Figure 1). The corresponding silvicultural system
includes single-tree selection combined with winter harvesting
(i.e. snow on) to minimize soil disturbance (Figure 2). However,
because single-tree selection traditionally removes up to 40 per
cent of the canopy, Nolet et al. (2014) proposed a frequent, low-
intensity harvesting system which could more closely emulate
low-severity disturbances in northern hardwoods. In contrast,
yellow birch regeneration requires greater disturbance and is
best promoted by a regime with intermediate mean patch size,
intermediate proportion of stand disturbed, intermediate fre-
quency, intermediate degree of exposed mineral soil and inter-
mediate coarse woody debris input (Figure 1). Consequently,
silvicultural systems for increasing the abundance of yellow
birch in northern hardwoods should supplement single-tree
selection with larger disturbances such as irregular shelter-
woods combined with mechanical scarification and tip-up
mounds to increase the degree of exposed mineral soil and
coarse woody debris input (Figure 2; Godman and Krefting,
1960; Lorenzetti et al., 2008, Gauthier et al., 2016). An irregular
shelterwood begins with an establishment cut similar to a regu-
lar shelterwood. Additional cuts are optional, but the two
remaining cohorts are always maintained. Regenerating seed-
lings are protected, can establish and grow for several decades
(Raymond et al., 2009). Irregular shelterwood systems and
‘structural complexity enhancements’ have been recently
explored in Québec and New England, respectively, as methods

for increasing structural and species diversity in northern hard-
woods (Keeton, 2006; Raymond and Bédard, 2017).

In addition to the five main components of disturbances dis-
cussed here, regionally specific influences and future interac-
tions must still be considered. Competing vegetation, deer and
insect herbivory dynamics and invasive species continually
shape forest development and disturbance-based management
alone may not sufficiently restore species diversity. The effects
of climate change further confound efforts to restore species
diversity (Harris et al., 2006; Peters et al., 2013) because a shift
in native species abundances and interspecific interactions due
to warming temperatures, drought or other effects may make
the ecosystem vulnerable to invasive species. The potential for
novel interactions consequently makes it difficult to predict
regeneration dynamics, but increasing ecosystem resilience with
greater structural and species diversity could help prevent eco-
system degradation (Downing et al., 2012; Lindenmayer et al.,
2016).

Disturbance spectrum models are not foreign to manage-
ment literature; indeed, numerous conceptual models have
been proposed (Seymour et al., 2002; Kimmins, 2004; Roberts,
2004; Drever et al., 2006; Roberts, 2007; Raymond et al., 2013).
Seymour et al. (2002) compared management systems with
natural disturbances using the ‘natural disturbance comparabil-
ity index’, which expresses the deviation of management sys-
tems from the upper limit of natural disturbance parameters.
This model is useful for quantifying the degree of emulation
when limited to patch size and disturbance frequency; however,
disturbances are more nuanced than simply patch size and fre-
quency. We expand upon this model by incorporating other
important aspects of disturbances that strongly influence
regeneration dynamics including coarse woody debris input and
degree of exposed soil. Future studies which quantify these add-
itional components along a gradient of natural and manage-
ment disturbances would further strengthen our conceptual
model. Building upon conceptual models, Kimmins (2004) pro-
vides a comprehensive qualitative model to demonstrate which
seral stages are favoured by various silvicultural systems.
Additionally, Raymond et al. (2013) compared silvicultural sys-
tems to natural disturbances in temperate mixedwood forests
based on disturbance severity, size and frequency. The range of
comparisons are useful, but these models are limited by the
absence of microsite components. A three-axis model proposed
by Roberts (2004, 2007) examines characteristics of natural and
silvicultural disturbances based on per cent canopy removed,
per cent understory removed and per cent forest floor or soil
removed or disrupted. Most silvicultural systems were found to
only represent a narrow range of these components. These
models provide an important foundation for future work, and
we have built upon them by incorporating an important tem-
poral gradient. Finally, Drever et al. (2006) thoroughly presented
a strong theoretical reasoning behind natural disturbance-based
management that laid further groundwork for future manage-
ment objectives. We build upon the above models by explicitly
incorporating relevant microsite components and offering spe-
cific management systems to emulate the desired natural
disturbance.

In conclusion, structural and species diversity are strongly
influenced by patch size, proportion of stand disturbed, fre-
quency, degree of exposed mineral soil and course woody debris

Figure 2 Conceptual model illustrating techniques for restoring tree
regeneration diversity based on historic disturbance regime and the
species promoted by each disturbance type. Current management of
northern hardwoods in the Great Lakes region is typically focused on
single-tree selection and small gap cutting. Larger gaps, shelterwood,
irregular shelterwood and clearcutting are rarely implemented. 1(Raymond
et al. 2009).

Forestry

6 of 10



input. By comparing historically prevalent disturbance regimes
to regional silvicultural systems, our conceptual model illus-
trates the need to emulate a fuller range of natural distur-
bances to restore and promote species diversity in northern
hardwoods in the upper Great Lakes based on these five compo-
nents. For example, single-tree selection should be supplemen-
ted with larger disturbances to promote the regeneration of
declining species such as yellow birch. Though our conceptual
model is focused on northern hardwood forest ecosystems, it
can easily be applied to other forest types using the five identifi-
able components of disturbance, which are important compo-
nents of any disturbance type across the globe. Using our
conceptual model with other forest types more broadly would
further provide a unique qualitative approach for emulating nat-
ural disturbances and consequently, promoting forest ecosys-
tem resilience. In all cases, however, regionally specific
influences should still be considered.
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