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Summary

Sampling methods in natural resources are largely based on probability proportional to size
or frequency concepts and are often referred to as areal sampling methods, because they induce
an enlarged area about the object within which a random point may fall and select the object.
The ability to compare different sampling methods is key to designing inventories and assessing
the efficiency of newly developed methods when compared against existing methods. Simulation
methods are often used on synthetic populations of individuals with the desired characteristics
of some target population in order to assess the adequacy of differing methods. The R (R Core
Team, 2017) sampSurf package (Gove, 2017c) was developed to facilitate the comparison of
sampling methods for forested or previously forested target populations of standing trees and
downed coarse woody debris. Simulation is accomplished by constructing one or more “sampling
surfaces” from which the efficiency (in terms of variance) of a method can be deduced relative
to other methods. The theory behind sampling surface estimation and development is reviewed
along with the package design and examples showing its use and extension.
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1 Introduction

Areal sampling methods are the foundation for most inventories on terrestrial ecosystems in forestry,
ecology and related fields. These surveys often employ time- and field-tested methods that are both
simple to understand and implement in the field, such as circular or rectangular fixed-area plots1.
In addition to being straightforward in application, these methods are also known to be unbiased
when applied correctly.2 The efficiencies of these simple methods are not as straightforward to
ascertain, however, because they depend on the population being sampled and the attributes of the
population to be estimated (e.g., volume, number of stems (density), surface area). Efficiency can
also depend on plot shape and size, which are determined by design parameters (i.e., plot radius).
Additionally, all of these factors affect the cost, which is often of major consideration in the design
of inventories.

In the last half century, many new sampling methods have been proposed for standing trees and
downed coarse woody debris (logs hereafter) in forested (or what were once forested) ecosystems.
Key among these methods is the idea of using variable radius plots. The first such use was un-
doubtedly the application of concentric circular fixed-area plots for different sized individuals, but
the idea really came to fruition when Walter Bitterlich (Bitterlich, 1948) introduced the so-called
angle-count method, also known as “Bitterlich,” variable plot, or horizontal point sampling. Under
this method, standing trees are selected from a sample point with probability proportional to their

1Small square plots are sometimes referred to as quadrats in the ecological literature.
2For example, one very important—but often neglected—factor in the correct application of any such methods,

is that due regard is given for boundary conditions where “slopover” corrections may be required (e.g., Ducey et al.,
2004, and references therein).
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basal areas.3 This results in a conceptual fixed-area circular plot for each tree, whose radius is
proportional to the tree’s diameter. The probabilistic interpretation of horizontal point sampling
was due to Grosenbaugh (1958), and cast probability proportional to size (PPS) sampling methods
in stone, as it were, as the way foresters would henceforth think of sampling. In the ensuing years,
countless new PPS methods have been put forth for sampling standing trees and down woody
debris pools, too many in fact to list here (Gregoire and Valentine, 2008 or Kershaw et al., 2016
should be consulted for a recent exposition of many of these methods). These PPS methods are
most often “optimized” for a certain design attribute, though they are flexible enough to allow the
estimation of most other common attributes as well. For example, in horizontal point sampling,
the design attribute is basal area, and it follows that any quantity that is related to basal area (e.g.,
volume) will be estimated more efficiently than those attributes such as stem density, that are not
optimal in terms of the underlying probability design.

In general, as new sampling methods are developed, properties such as estimator unbiasedness
can usually be shown analytically. However, one often must resort to simulation to determine the
properties of estimator efficiency for various attributes, because, as mentioned earlier, these results
are conditional on the populations of individuals in question. Comparisons of new to existing
sampling methods, therefore, routinely involve simulation experiments to see how the proposed
new methods ‘stack up’ against the known performance of existing methods. It is this simulation-
based component of sampling method comparison and inventory design that the sampSurf package
(Gove, 2017c) addresses. The estimator bias (if any) and variance properties can be readily assessed
with the components of this package, which also provides a general framework for the addition
of new methods under R’s S4 object oriented programming paradigm. But what exactly is a
“sampling surface?” This will be addressed in detail in the remainder of this paper, but quite
simply, a sampling surface is a three-dimensional representation of the surface generated by the
point estimates in sampling for a given attribute using the desired sampling method. To create a
sampling surface, a population of synthetic stems is generated over a tract of land whereon a grid of
sample points has been determined, such that the attribute estimate at each point yields the surface
value for the stems that were selected into the sample at that point. Therefore, the enumeration of
estimates at all grid points renders the attribute surface estimate for the population and sampling
method for a given sampling resolution. The basic idea has been used in forestry to illustrate the
concepts behind certain sampling methods such as critical height sampling (Kitamura, 1962; Iles,
1979) in the past, but it was Williams (2001a,b) who formalized the idea into a general approach
useful for evaluating different areal sampling methods. The approach has subsequently been used
in several studies (e.g., Williams and Gove, 2003; Gove et al., 2005; St̊ahl et al., 2010; Gove and Van
Deusen, 2011; Gove et al., 2012a,b); however, the original papers should be consulted for details
beyond what is included here.

The concepts behind areal sampling designs and related PPS estimators are described in the follow-
ing subsections. An overview of the design of the main sampSurf class components with examples
illustrating their use is then described. Next, some extended examples of how the components
might be used to compare different sampling methods is presented. Finally, an example showing
how the package can be extended for inclusion of new methods is described. Throughout, design-

3The stem cross-sectional area at breast height (1.3 m), usually assuming circular cross-section for convenience.
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based inference (Gregoire and Valentine, 2008, p. 9) is assumed, so that the population of trees
or logs is regarded as fixed, and inferences are drawn from the theory of repeated sampling under
the design. In sampSurf both metric (SI) and English (Imperial4) units are supported and all
diameters, widths and heights and lengths are stored in m (ft), while areas are in m2 (ft2), and
volumes in m3 (ft3). In what follows metric units are used exclusively and assumed consistent with
the sampSurf storage model. Several vignettes are distributed with the package illustrating its
components in more detail than can be shown here, these are cited below where appropriate and
should be consulted for more information.

To use the code in this vignette, make sure that sampSurf has been installed from CRAN 5 using
install.packages. See the sampSurf web page http://sampsurf.r-forge.r-project.org/ for
instructions on installing sampSurf and other packages on which it depends. Then make sure the
package is loaded to the search list by, e.g.,. . .

R> require(sampSurf, quietly = TRUE)

1.1 Probability sampling

The foundations of the sampling surface approach derive from classical probability sampling theory.
The target population of interest is composed of N discrete units, in our case standing trees or
downed logs. The units are spread across a well defined tract of land, A, with area A. The total
amount (τz) of an attribute associated with all N individual units on the tract is

τz =
N∑
k=1

zk (1)

where zk is the amount of the attribute of interest associated with unit k in the population. For
example, interest may lie in the amount of carbon or volume in the population of trees or logs on a
given tract of land. The average amount of attribute per individual in the population is therefore
simply µz = τz/N .

Without exception, the sampling methods available in the sampSurf package can be envisioned
as areal sampling designs. Areal sampling methods rely on an inflation of the areal extent within
which a population element can be sampled, known as the object’s inclusion zone. The inclusion
zone for an element is simply the area in which a randomly located sample point can fall and select
the element into the sample. The example in Figure 1 presents two logs with their associated
inclusion zones under a circular fixed-area plot sampling protocol known as ‘sausage’ sampling
(Gove and Van Deusen, 2011). Under the sausage method, the inclusion zones have radii of the
chosen fixed-area plot radius but are not the shape of a circular plot, rather they are elongated,
resembling a sausage in shape, so that the area is proportional to the log’s length.

4Actually, U.S. Customary Units—see https://en.wikipedia.org/wiki/Imperial_units & links therein for an
interesting history on the subject.

5The Comprehensive R Archive Network
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Figure 1: Inclusion zones for two down logs under the ‘sausage’ sampling protocol with a fixed-plot
radius of 4 m. The joint inclusion zone is mapped as the intersection of the two individual zones.

Areal sampling designs are, by definition, probability sampling designs. Each sampling design or
method assigns an inclusion probability, 0 < πk ≤ 1, to the individual elements in the population.
Under areal sampling designs, the inclusion probability can be determined for each individual based
on the design parameters and, in unequal probability designs, some attribute of the individual.
Unequal probability designs are also known as probability proportional to size sampling methods.
Denote the inclusion area, ak, as the area of the inclusion zone (Ik) for the kth element in the
population, then the element’s associated inclusion probability is

πk =
ak
A

(2)

Let zk denote some quantity from which the target attribute can be deduced6 on the kth individual.
Then the Horvitz-Thompson (HT) estimator corresponding to the kth individual on a single sample

6Often this will entail direct measurements of the attribute in question, or measurements leading to a modeled
estimate. However, under a number of designs supported in sampSurf, the attribute estimate is deduced indirectly
using crude Monte Carlo or importance sampling methods.
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point is given as

τ̂zk =
zk
πk

(3)

while the estimate for all ns individuals selected on the sth sample point is

τ̂zs =

ns∑
k=1

τ̂zk (4)

For example, in Figure 1, ns = 0 for all points outside either of the individual zones, ns = 2 within
the joint inclusion zone for the two logs, and ns = 1 elsewhere.

It follows that the HT estimator for the total from a sample of size m points is

ˆ̄τz =
1

m

m∑
s=1

τ̂zs (5)

The design-based variance for the estimator (4) is complicated (Gregoire and Valentine, 2008,
p. 216), involving the joint inclusion probabilities between pairs of individuals, πk,k′ , arising from
the overlap of the inclusion zones shown in Figure 1. When designing inventories, the variance
must be minimized, requiring knowledge of the πk,k′ , which are clearly unavailable for unknown
populations. Likewise, in general field surveys, the pair-wise inclusion probabilities are impossible
to calculate because doing so involves knowing the placement and often orientation, and attributes
such as length, for the individual units in the population. While sampSurf does not explicitly
determine the pair-wise inclusion zones, the estimation of the surface variance does implicitly
include the zones of overlap and therefore reflects the defining factors such as design parameters,
size and juxtaposition of individuals noted above.

1.2 The sampling surface approach to continuous populations

A continuous population is one that does not lend itself readily to discretization into individual
units, and is defined over some designated physical area such as a water body or a tract of land.
Interest in the context of the sampSurf package lies only in forest ecosystems supported on a defined
tract of land, A, with area A, as defined in the previous section. As was the case for discrete units,
there are one or more attributes on the population for which estimates and inferences are desired.
Gregoire and Valentine (2008, p. 93) define the attribute density, ρ(x, y), over a land area such as
a forested tract, as the amount of attribute per unit area. While the attribute density of interest
is continuous because it is defined for all points p(x, y) in the tract, the definition in general does
allow for subareas with zero value. For example, if the population to be sampled is the forest floor
and the attribute of interest is litter volume over A, then the attribute density is litter volume per
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unit land area (m3 m−2), or litter depth (m) at point p. It follows that the total volume of litter
over the area is given as

τρ =

∫∫
A
ρ(x, y) dy dx (6)

Discontinuities or interruptions caused by features such as rock outcroppings or streams, for exam-
ple, where litter depth, ρ, would be zero are perfectly reasonable. From this definition, the average
attribute density over the tract is given as µρ = τρ/A.

Trees and logs are not continuous objects, so at first glance the continuous paradigm may seem
inappropriate. However, under areal sampling designs, each unit (tree or log) in the population has
an associated inclusion zone with a non-zero areal extent ak, and an associated inclusion probability
πk, that facilitates the continuous approach. For illustration assume the unit is a down log and
interest lies in estimating the aggregate log volume for a tract; the attribute of interest for each log,
therefore, is its volume. By the definition of an inclusion zone, any sample point landing within
the zone for this log will induce a measurement of the log’s volume (often an estimate thereof, with
associated measurement, model, etc. error). Referring to the example of the two inclusion zones in
Figure 1 for fixed-area plot sampling, one can assign the HT estimate (3) of each log’s volume to
every point (infinitely many) within its respective inclusion zone and imagine this as the height of
a flat surface internal to the zone. In other words, the estimate for each log is spread evenly across
its entire inclusion zone’s spatial extent. The surface height of the two zones will normally differ,
because the volumes of the two logs will not be exactly the same. Any sample point falling within
the joint inclusion area where the zones overlap would select both logs, and therefore the surface
height within this area would be the cumulative surface height of the two zones. Now, if the tract
is large, and the population of logs expands accordingly, then the inclusion zones for all of the logs
meet the criterion for a continuous population in the sense that the total attribute density, ρ(x, y),
for the N logs in the population is apportioned over all the respective zones creating the attribute
surface. Areas within the tract where there is no attribute density, because zones do not extend to
these regions, are analogous to the rock outcroppings in the litter example above: The attribute
density depth is zero in these areas.

In any simulation study of areal sampling methods, the population of individuals, whether trees or
logs, is known exactly at fixed locations within A. Under a given design, the inclusion zones can
therefore be mapped exactly based on the design parameters and some attribute of the individual
units, depending on the method under consideration. Simulation in general seeks to determine
(or verify) the unbiasedness and efficiency in terms of variance of the estimator for the sampling
methods. In a pure Monte Carlo approach, sample points would then be drawn at random from
the population, and for each point the determination of the overall estimate for the point would
be made using (5). This approach is somewhat “brute force” in application, because for each
random sample point, the determination must be made as to which inclusion zones the point falls
into. This necessitates visiting all trees in the population for each point, and applying a point-in-
polygon routine to each inclusion zone, although some refinements could be envisioned to speed
up the process. If a large enough Monte Carlo sample were taken, then a reliable estimate of
the estimator bias and variance for the design can be produced. However, it falls to the chance
juxtaposition of the points as to whether a map of the attribute estimates over A can be produced
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at a reasonable resolution for visual assessment.

The sampling surface technique takes a more methodical approach to the simulation problem. The
tract is tessellated into square grid cells of common size, with the center of each cell treated as a
sample point. The number of sample points is controlled by the grid resolution—the higher the
resolution (smaller the grid cell size) the more sample points are produced. In this sense, the
analogy to the Riemann sum over an area can be invoked to approximate the integral (6). In the
limit as m→∞ (or the grid cell size goes to zero), the Riemann sum approaches the integral (6).
Thus, the sampling surface approach is a full raster coverage of the tract creating a map of the
estimation surface whose detail is directly related to the raster grid resolution.

Once the population of inclusion zones is mapped on the tract, a relatively efficient algorithm
can be implemented to assign the estimates to each sample point using map overlay routines (see
Section 2.7). Furthermore, because of the full coverage (at given resolution) systematic layout of
the sampling grid, a visual representation of the sampling surface for the attribute and sampling
method under consideration can be easily generated. The roughness of the surface displayed is
related to the estimator variance as described below (Williams, 2001a,b).

1.2.1 Sampling surface estimation

sampSurf uses two different attribute surfaces in the class structures. The first is closely related
to the attribute density, which is defined for the kth individual as (Gregoire and Valentine, 2008,
p. 328)

ρk(x, y) =

{
zk
ak
∀(x, y) ∈ Ik

0 elsewhere
(7)

This generalizes over all inclusion zones for any grid cell point (x, y) to

ρ(x, y) =
N∑
k=1

ρk(x, y) ∀(x, y) ∈ A (8)

reflecting areas where inclusion zones overlap, such as the joint inclusion zone area depicted in
Figure 1. A scaled version of this attribute density surface representation, putting estimates on
a per hectare (acre) basis is used in the intermediate “InclusionZoneGrid” class when building a
sampling surface (Section 2.7).

A second representation that is closely related to the attribute density uses the HT estimate of the
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total over A at each grid cell, rather than ρ(x, y); viz.,

%k(x, y) = Aρk(x, y)

=
Azk
ak

=
zk
πk

(9)

Similarly, the surface total at any point is given by

%(x, y) =

N∑
k=1

%k(x, y) ∀(x, y) ∈ A

again, reflecting the joint inclusion zones. This latter representation is used in the actual sampling
surface representation for the “sampSurf” class (Section 2.8). Because the attribute total is used
in each grid cell, the appropriate estimator for the sampling surface is given as the surface mean

τ̂% =
1

m

∑
x

∑
y

%(x, y)

=
1

m

m∑
s=1

τ̂zs

= ˆ̄τz

This surface estimator is the discrete analog of the continuous surface total, τ%. As m gets large
the sum approaches the integral quantity using the same arguments as a Riemann sum from the
calculus

τ% = lim
m→∞

1

m

∑
x

∑
y

%(x, y)

= lim
∆A→0

1

A

∑
x

∑
y

%(x, y)∆x∆y

=
1

A

∫∫
A
%(x, y) dx dy

where we have used the fact that the area of each grid cell is given by ∆A , ∆x∆y = A
m . It is

important to note that the interpretation of this last result is in terms of the discrete sampling
surface approximation converging to the continuous surface. The estimator ˆ̄τz (and thus τ̂%) is
unbiased regardless of the number of grid cells m > 0: A sample of m = 1 provides an unbiased
estimate based on sampling theory, provided the estimator is theoretically unbiased. However,
when m is small, the number of grid cell centers falling within inclusion zones is also small, and
the estimate will be poor, because many zones may be underrepresented in the sample. This is no
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different than normal field sampling where a small sample size in a variable population will produce
an unbiased, albeit poor, estimate. The small amount of “bias” that is incurred here for small m
(and eventually reported by sampSurf) for any unbiased sampling method is an “apparent bias”
due to an inadequate coverage of the tract area and should not be construed as an estimator bias
inherent in any of the areal methods discussed below (see Section 2.8).

The sampling surface variance is related to the roughness of the surface and is given by

Var (τ̂zs) =
1

(m− 1)

m∑
s=1

(τ̂zs − τ̂%)
2 (10)

As noted by (Williams, 2001a,b), the sampling surface variance measures the individual grid cell
variability in height about a flat plane of height τ̂%. The less variability around τ̂%, the smoother the
surface. Therefore, when visually comparing sampling surfaces for different methods over the same
population of objects, a smoother surface implies a lower variance. The variance of the estimator
can also be calculated as Var (τ̂%) = Var(τ̂zs )

m , but is of limited use since it scales inversely with the
grid cell resolution, whereas Var (τ̂zs) should provide a relatively consistent variance estimate over
different surface resolutions (as long as m is not trivially small, as discussed above). Either can be
used for comparisons among different methods, but (10) is reported by sampSurf and will therefore
be used in what follows.

2 Package design

2.1 Object orientation and sampSurf

The sampSurf package makes use of the S4 object oriented programming paradigm within R.
Only the briefest overview is presented here, more details can be found in Chambers (2008) and
Gentleman (2008). The object oriented concepts central to S4 are classes and methods. Classes
define the structure of objects that will eventually be instantiated and used in programming and
fully support class hierarchies through inheritance where the parent, or superclass, can have one
or more child or subclasses defined from it. Classes encompass a strict definition of their contents,
stored in slots, requiring an associated type for each slot. For example, a class definition may
specify that a particular slot can contain only an object of class “vector,” which would also include
any subclass object of “vector,” such as “matrix.” Beyond this, the class mechanism allows for such
options as multiple inheritance and validity checking; the latter is in addition to the automatic slot
type checking and is under the control of the class designer. In general, objects are constructed from
the class structure using new, which does slot type checking and calls the validity checking code if
present. The classes in sampSurf are often fairly complex, requiring graphical representations for
many object slots. The direct use of new in such cases can be error prone. S4 also provides for
customized object initialization in a more general way through initialize methods called from
new. However, a slightly different approach was taken within sampSurf known more generally as
‘constructor’ methods. Object constructors and the initialize function conceptually perform
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similar tasks, but constructor methods within sampSurf adopt the name of the class much like
creating an object of class “matrix” by calling the matrix method. Simple arguments are passed to
the constructor methods to first create the slot component objects, then the object itself is finally
created (using new) and returned by the constructor. Because validity checking is performed at
object creation, the user can be certain that a valid object has been returned from the constructor if
no error has been encountered. This approach places the burden of creating the required slot objects
on the constructor method, whereas the user must create them when using new and initialize.

The base S4 paradigm adheres to the original functional programming design of R (Chambers,
2008, p. 43). Functions are applied to objects of different classes through the definition of generic
functions and associated methods. Generic functions in a sense define the overall use that a function
is to be put to: The summary and plot functions are two familiar examples. But the main role of the
generic itself is to set up the mechanism by which the associated methods are dispatched (Chambers,
2008, p. 397). Dispatching is done based on the method signature arguments, and because there
can be more than one signature argument, S4 supports multiple dispatch (Gentleman, 2008, p. 69).
Therefore, using plot as an example, the correct method is found and used based on plot’s two
signature arguments x and y. The dichotomy between the generic and the methods is pedagogical,
as the complete generic consists of the generic function itself, plus all its methods (Chambers,
2008, p. 396); e.g., the plot function. A main advantage to using generic functions is the link
to object class structure in the sense that a subclass object method can access the method code
from its superclass through callNextMethod, allowing for the building of functional complexity
through the class hierarchy. In sampSurf, generics are used both to define new functionality, such
as constructor functions for the package classes, and to add support for existing functionality (e.g.,
plot, summary, etc.) by adding new methods to existing generics.

The main class structure in sampSurf is shown in Table 1. Several classes are virtual, establishing
the base structure common to all their subclasses. In a conceptual overview of Table 1, a collection
of individuals comprising the population of interest is derived from the “Stem” class on a rasterized
land area represented through the “Tract” class. An areal sampling method is chosen through the
“ArealSampling” class and combined with the population objects so that inclusion zones can be
determined for each via the “InclusionZone” class. This collection of individuals comprising the
population with associated inclusion zones under a given areal sampling method on a particular
tract of land area are then individually combined into a sampling surface through the “sampSurf”
class. In all but one case in Table 1, the constructor functions for the individual classes go by
the same name as the class itself. The class structure and associated constructor functions will be
discussed in more detail in the following sections. In addition, each of the major classes is described
in full detail in package vignettes and these should be consulted along with the extensive online
help for the package. Methods added for existing generic functions will be mentioned, but the main
source is R’s help facility for these functions.

In the development of a sampling surface simulation one can choose to either construct the com-
ponents individually, or apply a simple “sampSurf” constructor that will automatically construct
the intermediate objects. In the former approach, it is very important that the units of measure,
which can be either “English” or “metric,” be compatible in each of the component objects. These
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Table 1: Major class structure in sampSurf.

Class Subclasses Container Remarks
Classes

“Stem” “downLog” “downLogs” Base container class:
“StemContainer”“standingTree” “standingTrees”

“Tract” “bufferedTract” “RasterLayer” sub-
class

“mirageTract” “RasterLayer”
subclass

“ArealSampling” “circularPlot”
“pointRelascope”
“perpendicularDistance”
“distanceLimited”
“angleGauge”
“lineSegment”

“InclusionZone” Figure 2 “downLogIZs” Base container class:
“izContainer”“standingTreeIZs”

“InclusionZoneGrid” Constructor: izGrid
“csFullInclusionZoneGrid” Constructor: izGrid
“mirageInclusionZoneGrid” Constructor:

izGridMirage

“sampSurf”

“monte” Inventory design:
Section 3.3

Note: Classes in italic are virtual in this table.

are generally checked in the object validation routines to insure consistency. In addition, many
classes of objects allow for the specification of coordinate reference systems (CRS) at the time of
their creation (Bivand et al., 2008, p. 82). These must also be compatible between objects and be
commensurate with the basic measurement units involved; while some validation checking is done
in this respect, the user should be careful to choose commensurate systems. For example, if units
specified for creating one of the “Stem” class objects is “English,” then the “Tract” object on which
they are situated must also be created in the same units. The default system of units in all classes
within sampSurf is “metric,” while the default CRS is NA for user defined; this latter information
is reported under the heading of “spatial units:” in object summary output.
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2.2 On container classes

sampSurf implements a very basic container class structure for storing collections of objects. Con-
tainer classes are found in other object oriented languages such as C++ and Java and generally allow
storage of many different object types. The container classes in sampSurf are very rudimentary
and are customized to specific classes of objects. In general, the objects in the collection are stored
in a slot of class list. Various constructors are provided to create the collections; however, there
are currently no editing methods available for, e.g., deleting or adding objects to the collection. In
all cases, the simplest thing to do is extract the list from the container, perform the desired editing
on the list, and reconstruct the container object. This insures that the summary information about
the collection is always correctly updated. For example, container objects have a bbox slot, which
stores the overall spatial bounding box in matrix form for the collection. Deleting an element in the
collection without updating this bbox summary slot could cause problems when subsequently using
the collection. R lists themselves are inadequate for storing collections of objects needed within
sampSurf for several reasons. Most importantly, raw list objects have no further class structure so
creating methods for common generics such as summary, plot, etc., to act on disparate collections
of objects is not feasible. Treating the collection as an S4 (container) class allows the adaptation of
methods from common generics as well as the simple creation of class-specific collection statistics
within the constructor. The individual container classes shown in Table 1 will be discussed more
completely in the sections below related to the object types they store.

2.3 The “Tract” class

The “Tract” class (Gove, 2011d) provides the specification for the simulated land area extents
within which the population to be sampled from will exist. The “Tract” class is a direct subclass of
“RasterLayer” in the raster package (Hijmans, 2012). As such, it benefits from all of the methods
pertaining to its superclass. The “Tract” class has several constructors, all of which assume that
the units used are compatible to whatever map coordinate reference system is requested (Bivand
et al., 2008, p. 82). One of the simplest constructors assumes the origin is at (x, y) = (0, 0) and
accepts the x and y extents as the signature object, along with the raster cell size; viz.,

R> tract = Tract(c(x = 71, y = 71), cellSize = 0.5)

R> buffTr = bufferedTract(bufferWidth = 10, tract)

In this example, a one-half hectare tract has been created with resolution of 0.5 m. The “buffered-
Tract” subclass assigns an internal buffer of desired width (in this case, 10 m) to an existing “Tract”
object as in the example above. “bufferedTract” objects are very useful in the construction of other
objects (such as “Stem” and “InclusionZone”), because an appropriately chosen buffer facilitates
the construction of these objects such that they will lie wholly within the overall tract extents.
This will be demonstrated in the various classes discussed below.

An alternative is to use the “mirageTract” class (Table 1) rather than a “bufferedTract” for the
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correction of boundary overlap. The details are given in Gove (2013b) along with examples. Es-
sentially, one would simply substitute the “mirageTract” object for the buffTr object above in the
subsequent code in this vignette to enable the mirage method (Schmid-Haas, 1969) of boundary
correction. The generalized mirage method as described by Lynch and Gove (2014) is implemented
in the package.

2.4 The “Stem” class

The “Stem” class is used to define individual down logs or standing trees corresponding to subclasses
“downLog” and “standingTree”, respectively. Objects of the respective classes are instantiated
using constructors of the same name as the class, and can be generated synthetically or from field
measurements. For example, an individual “downLog” object with geometric center at (x, y) =
(10, 15.2) might be simulated with. . .

R> dlog = downLog(buttDiam = 34.2, topDiam = 9.4, logLen = 8, logAngle = pi/4,

+ centerOffset = c(x = 10, y = 15.2), solidType = 4,

+ species = 'eastern white pine', vol2wgt = 21.8,

+ description = 'minimal decay, no bark', wgt2carbon = 0.5)

R> dlog

Object of class: downLog

------------------------------------------------------------

minimal decay, no bark

------------------------------------------------------------

Stem...

Species: eastern white pine

units of measurement: metric

spatial units: NA

location...

x coord: 10

y coord: 15.2

(Above coordinates are for log center)

Spatial ID: log:6jy249ks

downLog...

Butt diameter = 0.342 meters (34.2 cm)

Top diameter = 0.094 meters (9.4 cm)

Log length = 8 meters

Log volume = 0.44403689 cubic meters

Log surface area = 6.5189369 square meters

Log coverage area = 2.0746667 square meters

Monday 8th January, 2018 1:42pm



sampSurf Guide. . . §2 Package design Gove 15

Log biomass = 9.6800043

Log carbon = 4.8400021

Volume to weight conversion = 21.8

Weight to carbon conversion = 0.5

Log angle of lie = 0.78539816 radians (45 degrees)

Taper parameter = 4

Taper (in part)...

diameter length

1 0.34200000 0.0

2 0.33572050 0.4

3 0.32927346 0.8

4 0.32264470 1.2

5 0.31581794 1.6

6 0.30877430 2.0

The arguments to the constructor and their relation to the class slots are described in detail in Gove
(2011c). All arguments have default values except the bulk density (wgt2vol) and the biomass to
carbon conversion (wgt2carbon), because the former especially, is species specific. Each log is
represented internally in the class structure by taper data. sampSurf provides a default taper
function with associated volume, surface and coverage area equations. The solidType argument
controls the shape of the log in the default equations where a value of two produces a cone, a positive
value less than two generates a neiloid, and a larger value yields a paraboloid, with a maximum
value of ten. These arguments, along with the associated diameters (buttDiam, topDiam), log length
(logLen) and angle of lie (logAngle) allow for a large mixture of possible synthetic logs within a
population. If field measurements have been taken on a population of logs, then these would be
used instead. If taper data were available either from direct measurements or an alternative taper
equation, there is a version of the constructor that takes a data frame representing the taper as the
first argument, and constructs the log from this. The taper data are important for calculation of
stem attributes like volume, and for graphical representation of the object (e.g., Figure 1). Because
taper data on real logs and trees is often irregular, it is left to the user to insure that the data
entered are reasonable. Standing trees are defined similarly to downed logs, and reflect only the
main stem of the tree: No branching is supported in either class at this point.

2.4.1 Collections of “Stem” objects

The constructors for individual “downLog” and “standingTree” objects create individual objects.
Collections of objects forming a population to be used in the sampling surface simulations can be
constructed using the associated container classes (Table 1). Various constructors are available with
various signature arguments. For example, one can provide a list of respective “Stem” subclass
objects, or simply specify the number of objects to be drawn from within a given “Tract” object
as follows. . .
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R> trees = standingTrees(5, buffTr, dbhs = c(20, 40), solidTypes = c(1, 3),

+ description = 'a small tree population')

R> trees

Object of class: standingTrees

------------------------------------------------------------

a small tree population

------------------------------------------------------------

Container class object...

Units of measurement: metric

Encapulating bounding box...

min max

x 26.551974 58.204533

y 15.784988 56.566191

There are 5 trees in the population

Population tree volume = 3.0259228 cubic meters

Population tree surface area = 40.753596 square meters

Average volume/tree = 0.60518457 cubic meters

Average surface area/tree = 8.1507192 square meters

Average height/tree = 9.63 meters

(**All statistics exclude NAs)

The diameters at breast height (DBH) from which the trees will be drawn are passed as a range in
the dbhs argument, as is the geometric taper (shape parameter) for the trees (solidTypes). Other
arguments are also available. One drawback to this approach is that the diameters, taper, heights,
etc., of the trees are associated randomly from the ranges specified, so this has the possibility of
generating trees that can be unrealistic if the ranges are wide (i.e., very short thick or tall thin
trees). For more realistic simulations, it is more appropriate to construct the individual trees or logs
using the respective constructors, collect the objects into a list, and then construct the container
class from the list of objects. Object locations are drawn at random in the default “StemContainer”
constructors. This is another reason to perhaps prefer individual generation of object locations by
a more realistic algorithm (e.g., Kershaw Jr. et al., 2010; Valentine et al., 2000). Alternatively, the
spatial point pattern simulation methods in spatstat (Baddeley and Turner, 2005) could be used
for generating other spatial distributions with known statistical properties.

2.5 The “ArealSampling” class

The choice of areal sampling method for use in a set of simulations is made through the “Areal-
Sampling” class (Gove, 2011a). The sampling methods supported are shown in Table 1, but many
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of these have different protocols that enlarge the actual pool of supported methods through the
“InclusionZone” class. Methods for sampling down logs include fixed-area circular plot sampling
(Gove and Van Deusen, 2011; Van Deusen and Gove, 2011), point relascope sampling (Gove et al.,
1999), perpendicular distance sampling (Williams and Gove, 2003) and distance limited sampling
(Gove et al., 2012b). Fixed-area circular plots can also be applied to sampling standing trees; ad-
ditionally, horizontal point sampling (Bitterlich, 1948; Grosenbaugh, 1958) is also supported along
with critical height sampling and several newer variants (Lynch and Gove, 2013). All these methods
are PPS methods as discussed earlier and all but fixed-area plots (depending upon the protocol)
require some stem dimension to develop the inclusion zone. Therefore, none of the “ArealSam-
pling” classes in Table 1 other than “circularPlot” and “lineSegment” has any inherent graphical
information associated with the objects from the respective classes. Because the information con-
tent required for “ArealSampling” objects is often simple, two different examples are presented to
illustrate the idea.

In the first example, a fixed-area plot of one-quarter hectare in area is created in the associated
“circularPlot” object. The object has a spatial representation as a “SpatialPolygons” object (pack-
age sp), and the number of points comprising the perimeter is under user control with a default as
shown below. . .

R> plotRad = sqrt(10000 / (pi * 4))

R> (cp.as = circularPlot(radius = plotRad, centerPoint = c(x = 20, y = 30)))

Object of class: circularPlot

------------------------------------------------------------

fixed area circular plot

------------------------------------------------------------

ArealSampling...

units of measurement: metric

circularPlot...

radius = 28.209479 meters

area = 2500 square meters (0.25 hectares)

spatial units: NA

spatial ID: cp:05mhs1y2

location (plot center)...

x coord: 20

y coord: 30

Number of perimeter points: 101 (closed polygon)

As a second example, consider horizontal point sampling, where a variable radius circular plot is
associated with each tree, the radius of which, depends on the size of the tree diameter. Trees are
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selected with probability proportional to their basal areas using an angle gauge, often in practice
in the form of a wedge prism. . .

R> (ag.as = angleGauge(baf = 5))

Object of class: angleGauge

------------------------------------------------------------

angle gauge method

------------------------------------------------------------

ArealSampling...

units of measurement: metric

angleGauge...

Angle (ν) in degrees = 2.5625587 (153.75352 minutes)

Angle (ν) in radians = 0.044725087

Angle diopters (∆) = 4.4754933

Gauge constant (k) = 0.04472136

Plot radius factor (prf) = 0.2236068 meters per cm (22.36068 meters per meter)

Plot proportionality factor (α) = 44.7 meters per meter

--Points...

Basal area factor (baf) = 5 square meters per hectare

--Lines...

Diameter factor (df) = 134.16408 cm per hectare for a line segement of 20 meters

Diameter factor (DF) = 11.18034 m per hectare for a line segement of 20 meters

An “angleGauge” object was constructed for a basal area factor 5 metric prism, where each tree
selected on a sample point by the projected angle counts equally for 5 m2 ha−1 of basal area. The
plot radius factor for this angle denotes the distance in meters to the plot perimeter from the tree
center for each cm or m of tree diameter at breast height (1.3 m). The other information reported
is described in detail in standard texts on forest sampling such as Gregoire and Valentine (2008,
Chapter 8) and Kershaw et al. (2016, Chapter 11). Because the radius of the plot is determined by
the diameter of the tree, the determination of horizontal point sampling inclusion zones requires
additional information about each tree in the population; hence, no spatial information is present
in this object. This is more the norm with “ArealSampling” subclasses. Notice that “angleGauge”
objects can be used when sampling from both points or along lines, and the appropriate information
for both is shown.
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InclusionZone

downLogIZ downLogIZsstandingTreeIZstandingTreeIZs

FixedArea

standUpIZ chainSawIZ sausageIZ

pointRelascopeIZperpendicularDistanceIZ

omnibusPDSIZdistanceLimitedPDSIZ

omnibusDLPDSIZhybridDLPDSIZ

distanceLimitedIZ

distanceLimitedMCIZ

circularPlotIZ

horizontalPointIZ horizontalPointCMCIZ

horizontalPointISIZ

horizontalPointCVIZ
criticalHeightIZ

importanceCHSIZ

antitheticICHSIZ pairedAICHSIZ

horizontalLineIZ

The InclusionZone Class

Figure 2: The “InclusionZone” class hierarchy illustrating the different inclusion zone possibilities
in sampSurf. The “InclusionZone,” “standingTreeIZ” and “downLogIZ” classes are virtual classes,
while “standingTreeIZs” and “downLogIZs” are container classes.

2.6 The “InclusionZone” class

Figure 2 presents a class hierarchy for the “InclusionZone” class. The base class and the two
main branches (“standingTreeIZ” and “downLogIZ”) are virtual, with the two branches being
associated with the corresponding “Stem” subclasses. There are a total of 34 different sampling
protocols represented in the diagram corresponding to the methods shown. All of these subclasses
are discussed in detail in the vignette for this class (Gove, 2012b).

This count comes from two sets of extra protocols that are not shown in the diagram. First, for
standing trees, horizontal point sampling has three Monte Carlo (§ 4) variants that are shown to
the right, and each of these has the option of applying the corresponding form of Monte Carlo
subsampling (crude Monte Carlo, importance sampling, or control variate sampling) to the stem
either directly or via antithetic sampling (the latter option is not shown)7. Note also that each
stem may be subsampled multiple times (§ 4) if desired at each given sampling point within its
inclusion zone under the protocol chosen. Of course, critical height sampling (CHS) (Kitamura,
1962) is also a Monte Carlo subsampling sampling method, but the variants for CHS are listed
directly in Figure 2.

Second, for downed logs, all of the subclasses that derive from perpendicular distance sampling
(“perpendicularDistanceIZ”) actually have three associated sample selection protocols where logs
can be selected with probability proportional to either volume, surface or coverage area. This is
similar to the three fixed-area plot protocols (Gove and Van Deusen, 2011), which are explicitly
shown.

7See the help for these methods; e.g., methods?horizontalPointCMCIZ for the antithetic argument option.
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As previously mentioned, the “InclusionZone” class is where “Stem” and “ArealSampling” subclass
objects are merged to form spatial representations for subsequent sampling surface determination.
A simple example involves creating an “InclusionZone” subclass object for so-called ‘sausage’ sam-
pling using the “sausageIZ” constructor (Figure 2). . .

R> (sa.iz = sausageIZ(dlog, plotRadius = 5))

Object of class: sausageIZ

------------------------------------------------------------

inclusion zone for downed log "sausage" sampling method

------------------------------------------------------------

InclusionZone...

Units of measurement: metric

Per unit area blowup factor: 63.075638 per hectare

Object bounding box...

min max

x 2.1722151 17.828427

y 7.3722151 23.028427

downLog component estimates...

Spatial ID: log:6jy249ks

Number of logs: 63.075638 per hectare

Volume: 28.00791 cubic meters per hectare

Surface area: 411.1861 square meters per hectare

Coverage area: 130.86092 square meters per hectare

Length: 504.6051 meters per hectare

Biomass (woody): 610.57244 per hectare

Carbon content: 305.28622 per hectare

sausageIZ...

Spatial ID: saus:f0zt98m2

radius = 5 meters

area = 158.53982 square meters ( 0.01585 hectares)

Number of perimeter points: 101 (closed polygon)

Plotting the object would result in a display similar to Figure 1, where two such objects have been
created to show the common joint inclusion area. Internally, this constructor creates a “circu-
larPlot” object from the plotRadius argument, which is then used to construct the representation
of the zone; this can be seen in the last section of the object summary above.
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2.6.1 Collections of “InclusionZone” objects

The virtual “izContainer” class has two subclasses, “standingTreeIZs” and “downLogIZs” that can
be used to hold collections of “InclusionZone” objects (Table 1, Figure 2). As an example, the
following code snippet creates a collection of “horizontalPointIZ” objects to represent the inclusion
zones under horizontal point sampling for standing trees. . .

R> rPlot.tr = Tract(c(x = 50, y = 50), cellSize = 0.5)

R> rPlot.btr = bufferedTract(bufferWidth = 10, rPlot.tr)

R> trees = standingTrees(10, rPlot.btr, dbhs = c(20, 40))

R> hps.izs = standingTreeIZs(trees, iZone = 'horizontalPointIZ',

+ angleGauge = ag.as,

+ description = 'horizontal point sampling IZs')

R> hps.izs

Container object of class: standingTreeIZs

------------------------------------------------------------

horizontal point sampling IZs

------------------------------------------------------------

There are 10 inclusion zones in the population

Inclusion zones are of class: horizontalPointIZ

Units of measurement: metric

Summary of inclusion zone areas in square meters...

Min. 1st Qu. Median Mean 3rd Qu. Max.

68.679629 99.720194 115.475050 130.859839 164.615021 218.074848

var SDev

2386.543086 48.852258

Encapulating bounding box...

min max

x 8.6601781 44.001343

y 4.6212815 45.788463

The penultimate line applies the inclusion zone constructor to each tree in the list slot of the
container for standing tree objects using the angle gauge specifications created in Section 2.5. Both
the “standingTree” objects and their associated “horizontalPointIZ” objects are created within
a small buffered one quarter-hectare “bufferedTract” plot object. The summary of the object
shows statistics on the inclusion zone areas (ak) in the collection.8 Figure 3 illustrates the spatial
representation of the collection, and was created using the plot method for the “izContainer”
class;9 viz.,

8This can also be represented graphically using the hist method on the collection object, i.e., hist(hps.izs).
9Note that the slight transparent shading internal to the zones in Figure 3 can be turned off using izColor = NA
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R> plot(hps.izs, axes = TRUE)

10 20 30 40 50

10
20

30
40

Figure 3: A plot of a “standingTreeIZs” container object under horizontal point sampling showing
the collection of inclusion zones and associated trees.

2.7 The “InclusionZoneGrid” class

There must necessarily be some mechanism to associate the vector representation of the different
“InclusionZone” object perimeters with the underlying “Tract” object, and thereby determine which
grid cells fall within the different object inclusion zones. The “InclusionZoneGrid” class performs
this function, and is largely transparent to the user. Objects are constructed automatically when
building the actual “sampSurf” objects (Section 2.8) and in general, may never be accessed by the
casual user of the system. However, in the sense of the task performed, they are the underlying
workhorse to the construction of the final surface, and can be easily constructed, displayed, and
manipulated, independently of creating a larger “sampSurf” object.

as an argument in the call to plot.
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Earlier it was mentioned that one could pursue a “brute force” method of Monte Carlo sampling of
the tract, where for each randomly generated point, one would need to identify the inclusion zones
for the individuals that would be sampled. To accomplish this, one might apply a point-in-polygon
search on each inclusion zone in the population, for example. The approach used in sampSurf can
be refined somewhat because of the association between sample points and grid cell centers. The
two general steps taken in the definition of an “InclusionZoneGrid” object are the following, which
are applied to each “InclusionZone” object individually: (i) build an underlying temporary grid
that minimally, but fully covers the inclusion zone and is rectified to the “Tract” object, and (ii)
determine those grid center points that lie within the inclusion zone. These steps can be applied
efficiently using methods found in the raster and sp packages.

In general, the areal sampling methods and protocols in sampSurf will fall into one of two categories
within the “InclusionZoneGrid” class. Many methods assign values to the internal grid cells within
an inclusion zone in a spatially independent manner, producing a surface of constant height within
the zone for all estimate attributes. There are exceptions to this rule, however, where the estimate
for a given attribute depends on the juxtaposition of the log and sample point. This second
category of spatially dependent sampling methods produce variable height surfaces within the
inclusion zone. As will be illustrated in the example of Section 5.3, defining a constructor function
for methods producing flat surfaces is trivial—essentially the estimate can be assigned en masse to
all cells within the inclusion zone using vectorization. On the other hand, for sampling methods
that produce variable height surfaces within an inclusion zone, the constructor algorithm must
visit each cell within the zone, and determine the estimate. In the case of several protocols for
sampling down woody debris, this entails determining measurements on the log conditional on the
individual sampling point locations. Because these measurements vary from point to point, they
produce different estimates at each grid center location. Any of the Monte Carlo based sampling
protocols will induce variable height surfaces and require more complex constructor functions for
some attributes of interest. Note that even in the case where sampling protocols can produce
variable estimates, often there are certain attributes under the protocol for which constant estimates
are also produced. For example, when using the crude Monte Carlo protocol for distance limited
sampling (Gove et al., 2012b) (“distanceLimitedMCIZ” class, Figure 2), estimating aggregate log
length or density (number of logs) will produce flat surfaces because the only log dimension that
enters into the estimator for these attributes is the individual log length, which is not spatially
dependent on the sample point location; estimates of all other attributes require a measurement
of log diameter (or a function thereof) that will depend on the location of the sample point,
generating variable height surfaces. Other examples of protocols generating variable height surfaces
are discussed in Ducey et al. (2008), Gove et al. (2005), Gove and Van Deusen (2011), and Gove
et al. (2012b) for down logs, while Lynch and Gove (2013) provide a discussion for standing trees
under various CHS protocols.

The concepts described above for this class can be aptly illustrated using the crude Monte Carlo
protocol for the distance limited sampling method just discussed. In the following an “Inclusion-
ZoneGrid” class object is created for this protocol. . .
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R> dl = distanceLimited(3)

R> dlmc.iz = distanceLimitedMCIZ(dlog, dls = dl)

R> (dlmc.izg = izGrid(dlmc.iz, buffTr))

Object of class: InclusionZoneGrid

------------------------------------------------------------

distanceLimitedMCIZ inclusion zone grid object

------------------------------------------------------------

InclusionZone class: distanceLimitedMCIZ

units of measurement: metric

Grid class: RasterLayer

Number of grid cells = 462

Cell dimensions: (nrows=21, ncol=22)

Grid cell values**...

gridValues Freq

1 0 187

2 <NA> 275

**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...

volume Density Length surfaceArea coverageArea biomass carbon depth

Min. 24.94 208.3 1667 722.8 230.1 543.8 271.9 1

1st Qu. 62.56 208.3 1667 1144.7 364.4 1363.9 681.9 1

Median 91.68 208.3 1667 1385.7 441.1 1998.6 999.3 1

Mean 91.98 208.3 1667 1356.3 431.7 2005.1 1002.5 1

3rd Qu. 123.49 208.3 1667 1608.2 511.9 2692.0 1346.0 1

Max. 148.61 208.3 1667 1764.2 561.6 3239.7 1619.8 1

Encapulating bounding box...

min max

x 4.5 15.5

y 10.0 20.5

Note in the summary for the object that the full surface of values is stored for each attribute within
a “dataframe” object; and it is easily verified from this information that the surface is constant
for length and density estimation, but variable for all other attributes as noted above. The actual
grid values within the “RasterLayer” slot of the object are either zero for cells within the inclusion
zone, or NA for those outside the zone. When the object is used, say for plotting as below, the
desired attribute values get swapped into the “RasterLayer” object. Thus, in the following plot,
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we must specify the attribute for the surface to be rendered using the estimate argument to the
plot method for this class. The representation in Figure 4 clearly shows the variable height surface
within the log’s inclusion zone under this sampling protocol.

R> plot(dlmc.izg, estimate = 'carbon', gridCenters = TRUE)
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Figure 4: Graphical representation of a “InclusionZoneGrid” subclass object under the crude Monte
Carlo protocol for distance limited sampling “distanceLimitedMCIZ”; the attribute surface is for
carbon content.

The grid cell centers have been displayed in Figure 4 to illustrate that only those grid cells whose
centers fall within the inclusion zone receive values for the particular attribute estimate. The offset
to the polygon from the underlying grid might at first appear as a ‘misalignment’ problem, but it
is not. The extent to which this visual effect appears depends on the underlying grid resolution,
the shape of the inclusion zone for a given sampling method, and the orientation of the zone with
respect to the grid; it can in some cases also depend on the location of the object (log or tree)
center, which can be anywhere within a cell, and is never ‘snapped’ to the cell center. It is clear in
Figure 4 that the effect is due to these factors, and that, e.g., increasing the grid resolution would
lessen the effect, because more grid cell centers would fall within the zone at finer resolutions. This
subject will be revisited again in Section 5.
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Finally, it is very important to note that the estimate values stored in objects of class “Inclusion-
ZoneGrid” are per unit area (per hectare or acre) estimates, ρk(x, y), not totals. The reason for
this is that even though the objects are rectified to a “Tract” object in terms of alignment and
resolution, the full “Tract” object is still disassociated from the “InclusionZoneGrid” object at this
point, that association comes in the next section when building the sampling surface for the tract.
Further details on the “InclusionZoneGrid” class are provided in the class vignette (Gove, 2011b).

2.8 The “sampSurf” class

The “sampSurf” class (Gove, 2012c) brings together all of the component classes discussed thus far
into the formation of the sampling surface. Briefly the steps to building the surface are (note that
appropriate subclasses are substituted as necessary) (i) construct a tract on which everything will
reside using the “Tract” class, (ii) populate the tract with a collection of “Stem” objects, (iii)
create the appropriate “ArealSampling” class object and (iv) combine the “Stem” objects with the
desired sampling method through the appropriate “InclusionZone” class, (v) and finally construct
the “sampSurf” class object. A careful reading of these steps will reveal that the generation of
“InclusionZoneGrid” objects is missing. As noted in Section 2.7, it is unnecessary in general to
construct these objects, the task is left to the actual “sampSurf” constructors. For each inclusion
zone in the population, the appropriate “InclusionZoneGrid” constructor method for the izGrid

generic is applied by the sampSurf constructor. In this case, the underlying “Tract” object is
available, and the surface is built by ‘heaping’ the individual “InclusionZoneGrid” objects using
simple raster addition. Note that in applying these steps for building the sampling surface the
background grid cells (sample points) that are not covered by inclusion zones need not be visited
in the simulation, producing a relatively efficient graphical method for surface creation.

Two constructor methods are available for generating sampling surfaces. The first relies on the user
to apply the individual steps outlined in the previous paragraph, and is detailed in the following
sections. The second, allows the generation of sampling surfaces ‘on the fly’ by specifying some
simple information on the type of sampling method desired. An example of the latter follows using
the same crude Monte Carlo protocol as in the last section, but for aggregate log length, which will
produce constant surface height within individual inclusion zones as noted above10. . .

R> nlogs = 40

R> dlmc.ss = sampSurf(nlogs, buffTr, iZone = 'distanceLimitedMCIZ',

+ dls = dl, estimate = 'Length', runQuiet = TRUE,

+ description = 'constant internal surface heights',

+ startSeed = 9872)

R> sampSurf::summary(dlmc.ss)

10Normally, one can simply type summary(dlmc.ss) to get the summary shown—and this will work for you. I
believe that the knitr environment in which the commands are processed has not registered the summary method
correctly for “sampSurf” objects (the reason escapes me), hence the sampSurf::summary qualification used here.
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Object of class: sampSurf

------------------------------------------------------------

constant internal surface heights

------------------------------------------------------------

Inclusion zone objects: distanceLimitedMCIZ

Measurement units = metric

Number of logs = 40

True log volume = 7.0982121 cubic meters

True log length = 208.31 meters

True log surface area = 123.97157 square meters

True log coverage area = 39.439462 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: Length

Surface statistics...

mean = 208.33333

bias = 0.023333333

bias percent = 0.011201255

sum = 4200833.3

var = 205506.79

st. dev. = 453.32857

cv % = 217.59771

surface max = 3360.6667

total # grid cells = 20164

grid cell resolution (x & y) = 0.5 meters

# of background cells (zero) = 16114

# of inclusion zone cells = 4050

R> plot(dlmc.ss)

The summary result records the slight ‘apparent bias’ that was alluded to previously in Section 1.2.1.
There it was noted that this bias arises simply from the fact that it is not possible to sample
infinitely many points on the tract. To put it in context, the 0.023333 m of length is just 2.3333 cm
distributed over a population of logs totaling 208.31 m, or 0.0112 percent, and is on the order to
be expected by any numerical approximation of this resolution (0.5 m).11 Note that because this is
a probability proportional to length method, all inclusion zone estimates are the same so a count
of the “in” logs (logs whose inclusion zones overlap the grid point) on any grid point yields an
estimate of aggregate length (Figure 5).

11The result here is actually quite low, a change in the population will change this result; try running the above
with a different random seed, startSeed, to verify this. You may get an order of magnitude higher in ‘bias percent’,
which is still quite acceptable.
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Figure 5: A sampling surface simulation using the crude Monte Carlo protocol of distance limited
sampling for the estimation of aggregate log length in the population.

Lastly, “sampSurf” objects store the attribute estimate values for the surface within the object as
the attribute total, %(x, y), for each grid cell. While working with the individual “InclusionZone-
Grid” objects, the conversion is made from per hectare (or acre) to total within the constructor
methods.

3 Survey design and comparison

Now that the basic structure and some examples of the components of the sampSurf package have
been demonstrated, it is time to turn attention to some of the more useful aspects of the package.
In general, as mentioned earlier, when either designing a new sampling method or when comparing
extant methods for the design of a field inventory, one is presented with similar questions to be
addressed. For new methods, this includes determining whether the method is unbiased. This can
often be shown analytically and, therefore, may not require simulation. However, a second and no
less important question concerns the efficiency of the method in terms of variance. This is often a
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more difficult question to answer without resorting to some form of simulation experiment, and it
is where a tool like sampSurf can be of some benefit.

The previous sections presented examples of the components of sampSurf that were often unrelated
through the progression of objects in order to demonstrate a small number of the options and
capabilities in the overall package. In this section, we turn our attention to a comparison of just
two sampling methods from the standpoint of survey design. The same population of logs is used
on the same tract to facilitate comparison of the two sampling methods. Inclusion zones are then
determined for the population of logs and the corresponding sampling methods, and sampling
surfaces developed. Two related methods are presented; the first seeks to equilibrate the sampling
effort between methods being compared, while the second uses graphical comparisons. Both are
useful in their own right, though the second is arguably simpler to implement in practice.

3.1 Equalizing overall sampling effort

There is a subtle but import point in the execution of a simulation experiment such as this that
needs to be considered. It is what shall be termed the ‘effective sample size’ and will be defined
as the number of grid cells covered by inclusion zones under a given sampling method—the overall
sampling effort underlying the surface. The effective sample size is different for each population of
“Stem” objects (including their sizes and possibly orientations), grid cell resolution, and sampling
method. For example, note that in scrutinizing Figure 5 and the summary for the object, that
only a small percentage (4050 out of 20164) of grid cells is sampled, having been covered by the
inclusion zones for the objects. Adjusting something as simple as the limiting search distance design
parameter under this sampling method would change this figure for the same population of logs and
tract. Indeed, the point we are after is to try to determine fairly commensurate effective sample sizes
between the methods that are being compared, in order to have approximately the same sampling
effort over the tract for each method. The reason for this is the fact that the variance of the surface
will decrease as the inclusion zones for individual objects increase (Williams, 2001a,b). This follows
because the surface will tend to become smoother as the attribute density is spread over a larger
area. As mentioned earlier, the variance of the surface is simply the grid cell variability around
the mean surface plane and will decrease as the effective sample size (area covered by inclusion
zones) increases. This has been demonstrated for fixed-area circular plots (Williams, 2001a) and
distance limited sampling (DLS) (Gove et al., 2012b). The concept is analogous to the relationship
of variance to plot size as first pointed out by Smith (1938), and corroborated by others in related
fields (e.g., Freese, 1961; Swallow and Wehner, 1986).

Adjusting the effective sample size is normally accomplished by adjusting the design parameters for
the sampling methods, which in turn affect the areas of the individual inclusion zones. Assume in
what follows that the tract resolution and population are fixed. In some cases, such as comparing
protocols within the same sampling method, no adjustment is necessary. This is the case, for
example, when comparing the two protocols for distance limited sampling, since, for a given distance
limit, the inclusion zones are the same regardless of which of the two measurement protocols are used
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(Gove et al., 2012b). A similar argument can be made for comparing measurement protocols under
perpendicular distance sampling for a given selection protocol (Gove et al., 2012a).12 However, when
comparing the same measurement protocol under different selection protocols for perpendicular
distance sampling, the design parameters would require adjustment to arrive at similar effective
sample sizes (Gove et al., 2012a). Comparing unrelated methods, such as distance limited sampling
and perpendicular distance sampling can be problematic, because the shapes of the inclusion zones
are quite different, the latter depending on log taper. An alternative way to approach this problem
might be to apply a modeling approach similar to Smith (1938) to inclusion zones, rather than
plots (e.g., Wensel and John, 1969) as described in the following section (§ 3.2).

In the examples that follow the above concepts are illustrated using two closely related sampling
methods that are by now somewhat familiar. The distance limited sampling method forms a
rectangular inclusion zone around a downed log as shown in Figures 4 and 5 with width equal to
Dl m on either side of the log’s needle,13 yielding inclusion area akd = 2DlLk, where Lk is the length
of the kth log. The sausage sampling method adds a half circle with radius R ≡ Dl m to each end
of the rectangle to form the inclusion zone (Figure 1); the inclusion area for this method is therefore
aks = 2RLk + πR2. Setting aks equal to the inclusion zone area for the log of average length in
the population under distance limited sampling and solving for R will give design parameters that
yield effective sample sizes that are resonably comparable when comparing the two methods (Gove
et al., 2012b).

The following code snippet creates the population of logs that will be used in the simulations. It
then creates the “distanceLimited” (“ArealSampling” subclass) object and combines the two to
generate a population of distance limited sampling inclusion zones (“distanceLimitedIZ”) on the
buffered tract created in Section 2.3. The collection of logs is then coerced to a “data.frame” and
both the average length and inclusion zone area are determined in order to find the effective sample
size for the sausage method. Lastly, the radius, R, for sausage sampling that will yield an effective
sampling effort similar to that of distance limited sampling with a distance limit of Dl m is found
by solving the quadratic given above for R; viz.,

R> nlogs = 25

R> dlogs = downLogs(nlogs, buffTr, buttDiams = c(20, 40), logLens = c(2, 10),

+ startSeed = 12354)

R> dl = distanceLimited(distanceLimit = 5)

R> dls.izs = downLogIZs(dlogs, iZone = 'distanceLimitedIZ', dls = dl)

R> logs = as(dlogs, 'data.frame')

R> avgLen = mean(logs[,'logLen'])

R> avgArea = mean(unlist(lapply(dls.izs@iZones, area)))

R> avgArea - 2*dl@distanceLimit*avgLen #both are equivalent

12Under perpendicular distance sampling logs can be selected into the sample with probability proportional to
volume, coverage, or surface area, and the inclusion zones are different for each protocol.

13The term ‘needle’ refers to a straight longitudinal axis that is determined in crooked or branch logs, often from
the most proximal point (of previous limb attachment, or stump) at the large end, to the most distal tip on the small
end. On straight logs, it corresponds directly to the pith of the log (for examples, see de Vries, 1986, p. 269).

Monday 8th January, 2018 1:42pm



sampSurf Guide. . . §3 Survey design and comparison Gove 31

[1] 0

R> a = pi

R> b = 2 * avgLen

R> c = -avgArea

R> D = b^2 - 4 * a * c

R> R = (-b + sqrt(D)) / (2 * a)

R> R

[1] 2.8579466

A reasonable plot radius under sausage sampling corresponding to a distance limit of Dl = 5 m is
therefore approximately 2.9 m for this population of logs14. The population of inclusion zones for
sausage sampling can now be constructed as. . .

R> saus.izs = downLogIZs(dlogs, iZone = 'sausageIZ', plotRadius = R)

R> c(avgArea, mean(unlist(lapply(saus.izs@iZones, area))))

[1] 59.896 59.896

The average inclusion zone sizes are indeed the same, and should, therefore, lead to similar effective
sample sizes for comparison of the methods. But it should be noted that the distribution of inclusion
areas will be different for the two methods, so this type of analysis yields only a reasonably close,
not perfect, sampling effort for comparisons. The respective sampling surface can now be created
as. . .

R> dls.ssv = sampSurf(dls.izs, buffTr, estimate = 'volume')

Number of logs in collection = 25

Heaping log: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

R> saus.ssv = sampSurf(saus.izs, buffTr, estimate = 'volume')

Number of logs in collection = 25

Heaping log: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

14In practice, one would probably opt for using a radius of 3 m for simplicity in the field.
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R> sampSurf::summary(dls.ssv)

Object of class: sampSurf

------------------------------------------------------------

sampling surface object

------------------------------------------------------------

Inclusion zone objects: distanceLimitedIZ

Measurement units = metric

Number of logs = 25

True log volume = 7.5427602 cubic meters

True log length = 149.74 meters

True log surface area = 115.73779 square meters

True log coverage area = 36.816255 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 7.5551136

bias = 0.012353352

bias percent = 0.16377761

sum = 152341.31

var = 253.67651

st. dev. = 15.927226

cv % = 210.81385

surface max = 119.3505

total # grid cells = 20164

grid cell resolution (x & y) = 0.5 meters

# of background cells (zero) = 15587

# of inclusion zone cells = 4577

R> sampSurf::summary(saus.ssv)

Object of class: sampSurf

------------------------------------------------------------

sampling surface object

------------------------------------------------------------

Inclusion zone objects: sausageIZ

Measurement units = metric
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Number of logs = 25

True log volume = 7.5427602 cubic meters

True log length = 149.74 meters

True log surface area = 115.73779 square meters

True log coverage area = 36.816255 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 7.5285768

bias = -0.014183409

bias percent = -0.18804004

sum = 151806.22

var = 255.09389

st. dev. = 15.971659

cv % = 212.14712

surface max = 90.946799

total # grid cells = 20164

grid cell resolution (x & y) = 0.5 meters

# of background cells (zero) = 15631

# of inclusion zone cells = 4533

Plotting the results is trivial. . .

R> plot(dls.ssv, useImage=FALSE, cex.axis = 1.4, cex.lab = 1.4,

+ xlab = 'x', ylab = 'y')

R> plot(saus.izs, add = TRUE, showLog = FALSE, izColor = NA)

R> plot(saus.ssv, useImage=FALSE, cex.axis = 1.4, cex.lab = 1.4,

+ xlab = 'x', ylab = 'y')

R> plot(dls.izs, add = TRUE, showLog = FALSE, izColor = NA)

Approximately 22.7 percent of the cells were covered for distance limited and 22.5 percent for the
sausage method, showing a comparable sampling effort for the two simulations. Regardless of the
statistic used for comparison, the two methods appear to be indistinguishable for this particular
population of logs. One interesting point to consider in visually comparing the methods in Figure 6
is simply the way the total attribute density gets spread over the respective inclusion zones between
the two methods. This difference results in different surfaces, not only because the estimators are
slightly different, but because of the way the total attribute density accumulates over the tract.
Even though both methods are essentially equal in sampling effort, the juxtaposition of the major
axis of the zones relative to the logs (on average, perpendicular to the log for distance limited,
parallel for sausage), creates a considerably different surface visually, but again with very similar
overall statistics.
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Figure 6: Left: A sampling surface simulation using the default Horvitz-Thompson protocol of
distance limited sampling for the estimation of aggregate volume in the population with Dl = 5 m.
Inclusion zones for sausage sampling with a plot radius of R = 2.9 m are shown for comparison.
Right: The sausage sampling surface has been plotted with outlines of distance limited inclusion
zones.

3.2 The Smith plot: sampling effort made simple

Smith (1938) was evidently the first to discover what may be considered a universal ‘empirical law’
describing the relationship between sample plot size and variance, which can be described by a
simple model.15 Denote the average inclusion zone area to be ā, then the general variance function
for Smith’s law is

Var (ā) = V ā−β (11)

where Var (ā) is the variance in volume (or other attribute; e.g., length, basal area) among plots
of size ā, while V , a scaled variance whose definition depends on that of plot size, and 0 ≤ β ≤ 1
the slope parameter, are both constants that can be estimated if desired. The model, (11) can be
used to model variance functions for different sampling methods (not limited to trees or logs), but
for the current application it simply serves to illustrate that the variance will decline in a close to
exponential manner as the average plot—or inclusion zone—area increases for each given sampling
method. Recent comprehensive reviews of the literature pertaining mostly to the law’s application
in forestry are given by Lynch (2017a,b) and Yang et al. (2017). Also, Gove (2017a) reviewed the

15It is interesting to note that while Deming (1950, p. 206) mentions Smith, he apparently attributes the principle
discovery of the variance function (11) to a set of unpublished studies by Mahalanobis, evidently culminating in
Mahalanobis (1940) and extended in Mahalanobis (1944).

Monday 8th January, 2018 1:42pm



sampSurf Guide. . . §3 Survey design and comparison Gove 35

usefulness of this relationship by way of graphical application only for comparing sampling methods,
and extended its use to the application of wavelet analysis (§ 6) to sampling surface results.

To demonstrate the usefuleness of the Smith plot, the population of down logs created in § 3.1 is
again used with DLS and sausage sampling, but this time a total of four ‘plot’ (average inclusion
zone) sizes are used. Thus, there are four simulations for each sampling method, one for each plot
size, all on the same population. In the following example, we have again equalized the sampling
effort as in § 3.1; however, this was done only to make a nice looking plot where all the points
align, and is by no means necessary for the use of Smith’s relation (11) or the Smith plot.16 The
R method makeHFSPlot used below simply creates these sets of four simulations for both sampling
methods. In the first line, the results are for volume, while in the second, length. The routine calls
the sampSurf routine smithPlot to generate the lattice plot objects. . .

R> hfs.v = makeHFSPlot(nlog = 25, estimate='volume', Dl = c(2,3,6,8,10),

+ showPlot = FALSE, startSeed = 12354)

R> hfs.l = makeHFSPlot(nlog = 25, estimate='Length', Dl = c(2,3,6,8,10),

+ showPlot = FALSE, startSeed = 12354)
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Figure 7: The Smith plots for (a) volume and (b) length.

The documentation for smithPlot17 notes that two objects are returned (invisibly) from the call
to the method. One, as just mentioned, is the lattice plot object, which may be plotted as in

16If non-equalized ‘plot’ sizes are used, then it is possible for the lines to cross as an artifact, when they would not
otherwise. This can also be due to too few simulations per method.

17Type ?smithPlot for this information.
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Figure 7. The other is the data frame object that was used to create the plot; this is shown in the
following for volume only. . .

R> hfs.v$hfs.plt$df

sampMeth id mean var sd izArea

Dl.2 dls Dl.2 7.5392786 599.33502 24.481320 23.9584

Dl.3 dls Dl.3 7.5348431 410.89357 20.270510 35.9376

Dl.6 dls Dl.6 7.5551961 211.86871 14.555711 71.8752

Dl.8 dls Dl.8 7.5476569 158.97343 12.608466 95.8336

Dl.10 dls Dl.10 7.5487018 127.75650 11.302942 119.7920

plotRad.1.4 saus plotRad.1.4 7.5398181 614.56947 24.790512 23.9584

plotRad.2 saus plotRad.2 7.5651835 416.20177 20.401024 35.9376

plotRad.3.2 saus plotRad.3.2 7.5361459 214.47686 14.645028 71.8752

plotRad.3.9 saus plotRad.3.9 7.5330131 162.81084 12.759735 95.8336

plotRad.4.6 saus plotRad.4.6 7.5452096 133.87877 11.570599 119.7920

Notice that the average inclusion zone areas are indeed equalized (see the izArea) column between
the two methods. In addition, both the row names and the id column in the data frame show
the design parameter values that produced these average inclusion zone sizes. For example, a DLS
parameter of Dl = 2 m in the first row, corresponds to a plot radius of 1.4 m under sausage
sampling, and both share ā = 23.9584 m2.

3.3 When is n sufficiently large?

One approach that can be of some help in comparing sampling methods is to look at the number
of samples required for nominal confidence interval coverage of the sample mean. It is well-known
from the Central Limit Theorem that under random sampling, the distribution of sample means
converges to a Gaussian distribution as the sample size increases, regardless of the shape of the
underlying population sampling distribution (Barrett and Goldsmith, 1976; Barrett and Nutt, 1979,
p. 38). The sampling surface grid cell estimates stored within a “sampSurf” object provides the
population sampling distribution necessary to perform convergence analysis for a given attribute
and stem population. The “monte” class was designed to handle such simulation experiments for
“sampSurf” as well as more general objects (Gove, 2012d).

In the example of the last section, the population sampling distributions for aggregate volume for
each of the two sampling surface objects can be visualized using the hist method for the class. . .

R> dls.hist = hist(dls.ssv, cex.axis = 1.4, cex.lab = 1.4)

Histogram is zero-truncated: 15587 zeros excluded.
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R> hist(saus.ssv, breaks = dls.hist$breaks, cex.axis = 1.4, cex.lab = 1.4)

Histogram is zero-truncated: 15631 zeros excluded.
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Figure 8: The zero-truncated sampling distributions for the surfaces shown in Figure 6 under
distance limited (left) and sausage sampling (right).

By default, hist shows the zero-truncated sampling distributions for “sampSurf” objects. The
reason for this is that the number of background cells (zero valued) can be large, and depends on
both the log population, grid cell resolution, and tract extents—all factors that can produce large
zero-inflation. So, while zero is a reasonable estimate (no logs selected on a sample point) and can
be included, they will be ignored here. Figure 8 presents the sampling distribution for volume for
both surface estimates. In both cases the distribution is mildly positively skewed, with the distance
limited method showing a few slightly larger estimates, which is in accord with the larger maximum
value of the surface for this method shown earlier in the object summary.

The Monte Carlo experiments of repeated sampling from the respective population distributions
can be accomplished using the monte constructor generic. The following examples draw 2500 Monte
Carlo samples from each population for different sample sizes (n = 10, 25, 50) and presents in terms
of capture rates for each method. . .

R> dlsv.monte = monte(dls.ssv, n = c(10, 25, 50), mcSamples = 2500,

+ type = 'normalTheory', startSeed = 38015)

R> dlsv.monte
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Estimate attribute = volume

Population...

Mean = 33.284097

Variance = 261.20903

Standard Deviation = 16.161963

Total = 152341.31

Size (N) = 4577

Zero-truncated = TRUE

Sample sizes (n) = 10, 25, 50

Finite population corrections = 0.9978, 0.9945, 0.9891

Variance of the mean = 26.063833, 10.391291, 5.1671107

Standard error of the mean = 5.1052751, 3.2235526, 2.273128

Normal theory results...

Number of Monte Carlo samples = 2500

Sample sizes: n = 10, 25, 50

Sample summary statistics (mean values)...

n.10 n.25 n.50

mean 33.3605519 33.2119185 33.3620688

var 265.1566816 261.1493005 262.9704523

stDev 15.5813876 15.8699587 16.0612071

VarMean 26.4577357 10.3889151 5.2019543

stErr 4.9218818 3.1653116 2.2589570

lowerCI 22.2264816 26.6790365 28.8225247

upperCI 44.4946221 39.7448005 37.9016129

Percentage of confidence intervals (95%) that caught the population mean...

n.10 n.25 n.50

94.08 94.48 95.12

Bootstrap results...

No bootstrap information available.

R> sausv.monte = monte(saus.ssv, n = c(10, 25, 50), mcSamples = 2500,

+ type = 'normalTheory', startSeed = 38015)

R> sausv.monte

Estimate attribute = volume

Population...

Mean = 33.489129
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Variance = 265.33203

Standard Deviation = 16.289015

Total = 151806.22

Size (N) = 4533

Zero-truncated = TRUE

Sample sizes (n) = 10, 25, 50

Finite population corrections = 0.9978, 0.9945, 0.9890

Variance of the mean = 26.474669, 10.554748, 5.2481071

Standard error of the mean = 5.1453541, 3.2488071, 2.2908747

Normal theory results...

Number of Monte Carlo samples = 2500

Sample sizes: n = 10, 25, 50

Sample summary statistics (mean values)...

n.10 n.25 n.50

mean 33.3887993 33.358711 33.4799880

var 262.1226674 264.200132 263.8309945

stDev 15.7076671 16.074307 16.1579622

VarMean 26.1544413 10.509722 5.2184176

stErr 4.9617185 3.205984 2.2724435

lowerCI 22.1646122 26.741885 28.9133418

upperCI 44.6129864 39.975537 38.0466342

Percentage of confidence intervals (95%) that caught the population mean...

n.10 n.25 n.50

93.44 93.64 94.68

Bootstrap results...

No bootstrap information available.

The results again show that the two sampling methods are very comparable and evidently converge
in terms of coverage at similar rates such that somewhere around n = 50 sample points would be
required. However, a couple caveats are in order with any analysis of this kind. First, the results
will depend on the number of Monte Carlo samples drawn for each sample size, and individual
runs can be quite variable, such that in many cases a larger number of Monte Carlo samples would
be reasonable. In repeated runs on these populations, a sample size of n = 50 produced the
desired nominal coverage on average for both methods, similar to those shown in the results above.
Second, these results are applicable only for populations with similar sampling distributions; even
though this is a half-hectare tract, the results would generalize to a larger area provided it had
similar variability. However, if there is much deviation from the population surface characteristics
(e.g., more highly skewed sampling distribution), then extrapolation to a larger population and
area would be inappropriate. In a more general context where the goal is to judge the overall
performance (i.e., covering a range of possible underlying sampling distributions) of one sampling
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method against another, it would be more appropriate to simulate multiple realizations of each
sampling surface with various different populations of logs and average the results to get a better
idea of the estimator performance when not conditioned on a particular log population. Lastly,
it should also be clear based on the discussion in the previous section that changing the design
parameters (Dl and R) will change the results, because the total attribute density will be spread
differently over the tract for the same log population.

There are many factors that complicate analyses like the ones performed here, which makes com-
parison of sampling methods and subsequent efficient inventory design a difficult problem for a
population with unknown characteristics. Log populations, grid resolution and associated tract
extents, and sampling methods with their respective design parameters to be compared all play
a central role. Several studies (Affleck, 2008; Gove et al., 2012a,b) have noted that the sampling
distributions for population attributes are often less well-behaved than those shown here and can
vary from negative exponential through multimodal; and in several PPS methods when sampling
for the design attribute, the sampling distributions are discrete at levels that are multiples of certain
design parameters.18 These realizations of the underlying sampling distribution led Affleck (2008)
to question whether even bootstrap intervals would be a more robust alternative in such cases. To
help answer this question in future studies, the “monte” class and associated constructor generic
provides the capability for bootstrap intervals to be calculated as desired in addition to, or in lieu
of the usual normal theory intervals. Finally, histograms showing the distribution of sample means
at each sample size can be displayed using the hist method on the respective “monte” objects as
follows. . .

R> hist(dlsv.monte)

R> hist(sausv.monte)

Note how the distribution of the sample mean for volume in Figure 9 gets progressively more
normally distributed as the sample size increases—lending added confidence to the normal theory
approach to sample size determination for this example.

4 Monte Carlo Subsampling

This section describes some features within sampSurf that apply on the individual “Stem” class
level. While we still refer to it as ‘Monte Carlo’ sampling, it is therefore different than what was
described in § 3.3, where Monte Carlo sampling was applied to a sampSurf object. In this section
Monte Carlo sampling is used to subsample a “standingTree” or “downLog” object at certain
points along the bole (or log) and record measurements such as diameter and height (length) at
those points. These samples then allow us to estimate the volume of the stem in an unbiased
fashion using Monte Carlo integration (MCI). sampSurf supports three main methods of Monte

18For example, perpendicular distance sampling with probability proportional to volume will produce sampling
distributions in discrete steps of the volume factor design parameter.
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Figure 9: The sampling distributions for mean volume from the Monte Carlo subsampling results
applied to the populations in Figure 6 under distance limited (left) and sausage sampling (right).

Carlo integration: crude Monte Carlo (CMC), importance sampling, and control variate sampling
(CVS). Each of these also has an antithetic sampling counterpart, which is also supported. These
methods are described in detail in Gregoire and Valentine (2008, p. 106). In addition, sampSurf
has several built-in ‘proxy’ functions for use with these methods that range from very simple for
crude Monte Carlo, to fairly complex for the proxy that employs the same taper function that is
used by default in sampSurf “Stem” class objects (Gove, 2011c, p. 8). The Monte Carlo integration
methods and their implementation in sampSurf, including details on available proxy functions (and
how to write your own) are thoroughly discussed in Gove (2013a).

4.1 Subsampling “Stem” class objects

This section demonstrates how the MCI subsampling methods can be employed in sampSurf in-
dependent of any areal sampling approach, while § 4.2 illustrates how these may be coupled with
areal sampling methods in sampSurf. The following example uses importance sampling to form
the MCI estimate for the stem to arrive at an estimate of tree volume. . .

R> stree = standingTree(dbh = 12, topDiam = 2, height = 30, solidType = 2.4,

+ units = 'English')

R> stree.is = importanceSampling(stree, n.s = 20, startSeed = 545)

R> stree.is
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Object of class: importanceSampling

------------------------------------------------------------

Importance Sampling

------------------------------------------------------------

Original Stem object class: standingTree

Proxy taper function: gvProxy

Full tree height = 30

Segment height bounds = 0 to 30

True volume = 12.787049

Volume estimate = 12.580296

Relative error % = -1.6168878

Variance estimate = 0.072020457

0.95% confidence Interval = 12 to 13.14

Number of samples n = 20

R> stree.is@hgt.s

[1] 13.04472276 20.75114463 13.34345096 7.59193508 3.47748327 13.69156283

[7] 2.13432361 8.03958754 4.06721210 15.12756008 0.50207012 17.97646001

[13] 15.03907246 12.14110829 10.30960091 13.91387687 8.53622240 11.45597947

[19] 16.46490212 2.81414273

Note that the n.s argument to importanceSampling specifies the number of subsample measure-
ments within the stem, in this case 20. Figure 10 presents a graphical portrayal of these results.
Notice that importance sampling concentrates the sample points within the tree to the lower part
of the bole with the maximum height sampled within the tree at 20.8 ft. The diameter range for
the sampled points is 13.3 to 6.29 in.19 Importance sampling gives a very close estimate to the
true volume of the tree. Use of a different proxy, fewer or different20 subsample points, antithetic
sampling, etc., will all change this estimate. The other MCI methods, CMC and CVS can be
employed on this stem in the same manner as importance sampling.

The following code was used to generate Figure 10. . .

R> plot(stree.is, axes = TRUE)

R> plot(stree.is, renderAs = 'crossSection')

R> axis(1)

19The diameters corresponding to the heights in the hgt.s slot are stored in the diam.s slot for the object.
20As specified by the startSeed function argument.
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Figure 10: Importance sampling applied to a single tree showing the sampling points in (a) profile
view, and (b) cross-sectional view.

4.2 Subsampling areal sampling methods

This section describes the methods available in sampSurf that allow combining the individual
stem subsampling protocols from § 4.1 with common areal sampling methods as a way to generate
unbiased estimates of volume, carbon and biomass. These methods will be termed ‘spatially un-
structured’ or ‘spatially unconstrained’ for reasons that will be described presently. Other Monte
Carlo integration methods are available in sampSurf, but they are different than what is described
in this section in the sense that the selection of the subsampling point on the stem depends on the
juxtaposition of the inventory sample point to the log or tree, based on distance or orientation,
or both. These methods are therefore ‘spatially constrained’ or ‘spatially structured,’ whereas the
MCI subsampling described in this section is independent of the inventory sample point’s location
with respect to the stem. For “downLog” objects, the ‘chainsaw’ method is perhaps the most
complicated in the sense that the MCI estimate for volume at any given inventory sample (i.e.,
raster cell) point is determined by the distance and orientation (e.g., at the ends) of the sample
point to stem (Gove and Van Deusen, 2011). A simpler method, where the estimate for volume
is determined only by the perpendicular distance of the sample point from the stem is the Monte
Carlo variant of distance limited sampling (Gove et al., 2012b). For “standingTree” class objects
within sampSurf, critical height sampling and its variants (Figure 2) are also spatially constrained
MCI sampling methods. They are again somewhat different from the methods discussed in this
section as the subsample point on the tree depends on the distance to the tree; interested readers
can refer to Lynch and Gove (2013) for more information and other references on the subject.
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One important point is that the spatially-constrained methods subsample the stem at only one
point so that MCI is based only on this point. In contrast, with the spatially unconstrained
methods discussed here, where the methods of § 4.1 are coupled with areal sampling methods, any
number of subsample points can be taken from a given inventory point location to develop the MCI
estimate for the stem on that inventory point. Both schemes might be envisioned as two-stage
sampling where the stem is selected in the first stage via areal sampling, and then subsampled for
measurements in the second; the second-stage MCI estimate of volume for the tree is then expanded
by the appropriate areal sampling factors.

Currently, there is only one set of two-stage estimators available within sampSurf as depicted in
Figure 2. However, it is straightforward to incorporate Monte Carlo subsampling with any of the
standard areal sampling methods, the code used to create the currently supported methods under
horizontal point sampling can be used as a guide for extending to other methods. The following
presents an example where horizontal point sampling with subsampling via CMC is used to generate
a sampling surface corresponding to the collection of trees in § 2.6.1. . .

R> hpscmc.izs = standingTreeIZs(trees, iZone = 'horizontalPointCMCIZ',

+ angleGauge = ag.as,

+ description = 'horizontal point sampling CMC IZs')

R> hpscmc.ss = sampSurf(hpscmc.izs, rPlot.btr)

Number of trees in collection = 10

Heaping tree: 1,2,3,4,5,6,7,8,9,10,

R> sampSurf::summary(hpscmc.ss)

Object of class: sampSurf

------------------------------------------------------------

sampling surface object

------------------------------------------------------------

Inclusion zone objects: horizontalPointCMCIZ

Measurement units = metric

Number of trees = 10

True tree volume = 5.4930582 cubic meters

True tree basal area = 0.6542992 square meters

True tree surface area = 83.118769 square meters

True tree biomass = NA

True tree carbon = NA

Estimate attribute: volume

Surface statistics...
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mean = 5.4776587

bias = -0.015399527

bias percent = -0.28034523

sum = 54776.587

var = 89.870933

st. dev. = 9.4800281

cv % = 173.06715

surface max = 53.671919

total # grid cells = 10000

grid cell resolution (x & y) = 0.5 meters

# of background cells (zero) = 6546

# of inclusion zone cells = 3454

The results above are for only one subsample point per tree, which makes it very similar to CHS,
again the difference between the two comes from the spatial structure in the latter. There is one
other potentially subtle point where the two differ. Under CHS the entire tree has a well distributed
set of diameters sampled from the ground to the tip within the inclusion zone as a consequence
of the spatial constraint of the sampling points. However, CMC subsampling at each inventory
point within the inclusion zone can select any point on the stem from any grid point within the
inclusion zone (spatially unconstrained). This means that there is no guarantee that a uniform
distribution of subsample points within the tree will arise from the inventory points within the
inclusion zone; indeed, some points on the tree may be selected more than once, and it could
happen just by chance, that all points are clustered near the tip of the tree, providing a poor,
though asymptotically unbiased MCI estimate. This situation is unlikely in practice, especially
with a reasonable grid resolution providing many estimates within the inclusion zone per stem.
Also, larger trees, where more complete coverage of the stem is important for volume estimation
will have more inventory points, and thus subsamples, due to the larger inclusion area under HPS
(of course this would not be true for, e.g., simple fixed area plot sampling).

A graphical representation of the sampling surface for HPS+CMC is shown in Figure 11. . .

R> plot(hpscmc.ss, useImage = FALSE)

Notice that the surface height (volume) is variable within each tree’s inclusion zone (independent
of the overlap areas). The variability within each tree’s inclusion zone represents the different
estimates for the tree’s volume at each grid point. A pure HPS sampling surface of the same
trees would be completely flat within each tree’s inclusion zone (again, independent of the overlap
areas).21

21It is very simple to verify this, and instructive to view both surfaces using the display capabilities mentioned in
§ 6.
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Figure 11: The sampling surface results for two-stage HPS with CMC subsampling.

5 Extending sampSurf

The S4 class-method structure of the package facilitates the extension of the package through the
addition of new sampling methods. The discussion in this section is limited to the addition of a new
sampling method, though extensions of other major classes such as “Stem” and “Tract” or their
subclasses are certainly possible. The essential steps necessary for adding a fixed-area square plot
method for sampling standing trees is developed. The code presented is a functional, but “bare
bones” version. No validity error checking is done on the new object or in the methods to conserve
space. There are ample examples of how these should be added to the code presented below in the
package code itself

The example for square plots adds the functionality to the user’s workspace (.GlobalEnv). A
consequence of this is that a number of new “hidden” objects are automatically created by R in
the workspace in order to keep track of the new S4 classes and methods and reconcile them with
the already existing code in the sampSurf package. The steps below are not exhaustive and more
is required if the code were to be added to the package proper; the full set of steps required for
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this, including documentation, is found in (Gove, 2012a). In some cases, methods such as summary
will work at least partially on new subclasses through inheritance. To save space these methods
are not extended here, there are many examples in the package illustrating their implementation.

The steps presented below are roughly in the order in which one would logically extend the package,
with the exception that some of the helper methods (e.g., plot, perimeter) are presented in the
final subsection. In the actual sequence of coding, it would be advantageous to define these methods
as their related objects are developed in order to be able to check the objects graphically.

5.1 Extending the “ArealSampling” class

The first logical step in adding a new sampling method or protocol is to add the required code
to implement the method as a subclass of “ArealSampling”. The “circularPlot” class that is in
sampSurf and the new class for sampling with square plots to be added are two examples of
probability proportional to frequency sampling methods that do not depend on some dimension
of the “Stem” object to be able to map the inclusion zone. Therefore, for these objects, we
can construct the graphical components of the object in the “ArealSampling” subclass in general,
though when it comes to actually constructing an inclusion zone, the plot location will depend on
the location of the associated “Stem” object. The class definition follows

R> require(sampSurf)

R> setClass('squarePlot',

+ representation(radius = 'numeric',

+ area = 'numeric',

+ perimeter = 'SpatialPolygons',

+ location = 'SpatialPoints'

+ ),

+ contains = 'ArealSampling', where = .GlobalEnv)

R> showClass('squarePlot')

Class "squarePlot" [in ".GlobalEnv"]

Slots:

Name: radius area perimeter location

Class: numeric numeric SpatialPolygons SpatialPoints

Name: description units

Class: character character

Extends: "ArealSampling"
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Note that these are not generalized square plots because they can take on only one orientation.
A subclass could be defined that would allow any orientation and also allow for differing radii for
rectangular plots.22

In addition to the units and description slots that the class inherits from the base class, the
following new slots are defined. . .

• radius The radius or half-width of the square plot.

• area The exact area of the plot.

• perimeter A “SpatialPolygons” object (Bivand et al., 2008, p. 41) available for plotting the
perimeter of the square plot.

• location The location of the center point of the plot as a “SpatialPoints” object (Bivand
et al., 2008, p. 30).

Each of the slots such as radius and area are in the appropriate units and should be consistent,
this is something validity checking would normally assure when creating an object.

The construction of objects of class “squarePlot” is best accomplished using a constructor function
as described previously, an example of which follows

R> setGeneric('squarePlot',

+ function(radius, ...) standardGeneric('squarePlot'),

+ signature = c('radius'), where = .GlobalEnv)

[1] "squarePlot"

R> setMethod('squarePlot', signature(radius = 'numeric'),

+ function(radius,

+ units = 'metric',

+ centerPoint = c(x = 0, y = 0),

+ spUnits = CRS(projargs = as.character(NA)),

+ spID = paste('sp', .StemEnv$randomID(), sep = ':'),

+ ... )

+ {
+ if(radius < 0)

22Note that the argument where=.GlobalEnv is not necessary in general, it is used here to make sure that the class
is assigned in the user’s workspace, thus circumventing knitr’s locked environment where code chunks normally get
processed—removing it will cause an error in the assignment of the class when this code is run in knitr, not at the
command line.
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+ radius = abs(radius)

+ area = 4 * radius * radius

+ sqPlot = matrix(c(centerPoint['x'] + radius*c(-1, -1, 1, 1, -1),

+ centerPoint['y'] + radius*c(-1, 1, 1, -1, -1)),

+ nrow = 5)

+ pgSqPlot = Polygon(sqPlot)

+ pgsSqPlot = Polygons(list(sqPlot = pgSqPlot), ID = spID)

+ spSqPlot = SpatialPolygons(list(pgsSqPlot = pgsSqPlot),

+ proj4string = spUnits)

+ loc = matrix(centerPoint, nrow = 1)

+ colnames(loc) = names(centerPoint)

+ location = SpatialPoints(loc, proj4string = spUnits)

+ return(new('squarePlot', radius = radius, area = area,

+ perimeter = spSqPlot, units = units, location = location))

+ },
+ where = .GlobalEnv)

[1] "squarePlot"

The function determines the size of the plot and its location, then goes on to build a “SpatialPoly-
gons” object from a matrix representation of the plot corners that is a closed polygon. Finally, the
“SpatialPoints” object for the center point is made and the object is created using the general new
method.23

5.2 Extending the “InclusionZone” class

Like circular plots, a square fixed-area plot should be aligned with its center at the pith of the tree
at ground level. The class definition for the construction of square plots is very simple as most of
the slots and behavior are inherited from the “StandingTreeIZ” class

R> setClass('squarePlotIZ', representation(squarePlot = 'squarePlot'),

+ contains = 'standingTreeIZ', where = .GlobalEnv)

The squarePlot slot is the only new slot, and holds an object of that class.24 The rest of the slots
are described in Gove (2012b).

23Again, using the where = .GlobalEnv is not necessary in practice, only within knitr.
24Use showClass(’squarePlotIZ’) to see the inherited slots as well for this class.
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A constructor function is again required to make new objects of class “squarePlotIZ”. First the
generic is defined and then the method itself; viz.,

R> setGeneric('squarePlotIZ',

+ function(standingTree, plotRadius, ...)

+ standardGeneric('squarePlotIZ'),

+ signature = c('standingTree', 'plotRadius'),

+ where = .GlobalEnv

+ )

[1] "squarePlotIZ"

R> setMethod('squarePlotIZ',

+ signature(standingTree = 'standingTree', plotRadius = 'numeric'),

+ function(standingTree, plotRadius, description = 'square plot IZ',

+ spID = paste('sp', .StemEnv$randomID(), sep = ':'),

+ spUnits = CRS(projargs = as.character(NA)), ...)

+ {
+ units = standingTree@units

+ loc = coordinates(standingTree@location)[1,]

+ squarePlot = squarePlot(plotRadius, units = units, centerPoint = loc,

+ spID = spID, spUnits = spUnits)

+ bbox = bbox(perimeter(squarePlot))

+ baFactor = ifelse(standingTree@units == .StemEnv$msrUnits$English,

+ .StemEnv$baFactor['English'],

+ .StemEnv$baFactor['metric'])

+ unitArea = ifelse(standingTree@units == .StemEnv$msrUnits$English,

+ .StemEnv$sfpAcre,

+ .StemEnv$smpHectare)

+ puaBlowup = unitArea / squarePlot@area

+ puaEstimates = list(standingTree@treeVol * puaBlowup,

+ puaBlowup,

+ standingTree@dbh^2 * baFactor * puaBlowup,

+ standingTree@surfaceArea * puaBlowup,

+ standingTree@biomass * puaBlowup,

+ standingTree@carbon * puaBlowup

+ )

+ names(puaEstimates) =

+ .StemEnv$puaEstimates[c('volume', 'Density', 'basalArea',

+ 'surfaceArea', 'biomass', 'carbon')]

+ return( new('squarePlotIZ', standingTree = standingTree,

+ squarePlot = squarePlot, bbox = bbox, spUnits = spUnits,

+ description = description, units = units,
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+ puaBlowup = puaBlowup, puaEstimates = puaEstimates) )

+ },
+ where = .GlobalEnv)

[1] "squarePlotIZ"

Several things are going on in the above method. First, note that the routine accepts a plotRadius

argument rather than an object of class “squarePlot”. The reason for this is the latter is created
from the tree location in appropriate units. Second, an overall graphical bounding box is calculated
for the object.25 To simplify the code, it is assumed that the square plot will always be larger than
the tree’s diameter. This is not, in general, a safe assumption and the “circularPlotIZ” constructor
adds the requisite code to safeguard against this assumption being violated. Next, the per unit
area estimates are calculated for several different attributes using constants and standardized names
from the internal .StemEnv environment, and finally the object is create with a call to new.

5.3 Extending the “InclusionZoneGrid” class

There will rarely be a need to define a new subclass to the “InclusionZoneGrid” base class. The
only sampling method that requires this in the package thus far is that for the “chainsaw” protocol
(Gove and Van Deusen, 2011) for sampling down woody debris with a fixed-area plot. It will,
however, be required to define a constructor function for this class for most new sampling methods.
Methods that have a flat sampling surface—where the estimates within an object’s inclusion zone
are all the same for any given attribute—will have a trivial definition. This is the case with the
“InclusionZoneGrid” constructor for “squarePlotIZ” objects. In other cases, where the inclusion
zone surface varies, it will be necessary to develop an algorithm that visits every grid point within
the zone and assign the appropriate estimate to each cell based on the protocol estimator. Examples
of methods where this is the case have been given earlier.

For any sampling method with a constant surface, the following function suffices as a model, so
that one can simply replicate this function with the appropriate signature to handle any such new
method. Examples in the code can be examined for varying-surface methods.

R> setMethod('izGrid', signature(izObject = 'squarePlotIZ', tract = 'Tract'),

+ function(izObject, tract, description = 'squarePlotIZ grid object',

+ wholeIZ = TRUE, ...)

+ {
+ return( izGridConstruct(izObject = izObject, tract = tract,

+ description = description,

+ wholeIZ = wholeIZ, ...) )

25See the perimeter method defined below.
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+ },
+ where = .GlobalEnv)

[1] "izGrid"

The method has one call to a function that creates the background grid and registers it to the
grid of the associated “Tract” object, while assigning every point within the inclusion zone a zero
value, with background cells assigned NA. A dataframe object contains the values for each of the
different attribute estimates; these can be swapped into the grid as desired for estimates of different
attributes.

5.4 Helper function extensions

The only functions that are extended here to the new sampling method are those that are actually
required by the methods above or by the sampSurf constructor itself. As mentioned previously,
methods like summary should also be extended for full functionality of the new objects.

5.4.1 Methods for plotting

The different plot methods build on each other and so, as mentioned above, would normally be
defined as the class structure and constructor methods are defined in the programming flow. Here
they are collected into one place to facilitate comparison. Note that suppressWarnings may be
required when arguments are passed that do not match any of those in the base graphics graphical
parameters list (par), which will throw a warning. We have illustrated its typical use in the first
method below. . .

R> setMethod('plot', signature(x = 'squarePlot', y = 'missing'),

+ function(x, axes = FALSE, ...) {
+ suppressWarnings(

+ plot(perimeter(x), axes = axes, border = .StemEnv$izBorderColor,

+ asp = 1, ...) )

+ callNextMethod(x, pchIZCenter = 3, ...)

+ return(invisible())

+ },
+ where = .GlobalEnv)

[1] "plot"
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This plot function draws the perimieter of the square plot in the default border color and then
calls the superclass method for displaying the center point. The method for “squarePlotIZ” uses
the previous function; viz.,

R> setMethod('plot', signature(x = 'squarePlotIZ', y = 'missing'),

+ function(x, axes = FALSE, add = FALSE, ... ) {
+ if(!add)

+ callNextMethod(x, axes = axes, asp = 1, ...)

+ plot(x@squarePlot, axes = axes, add = TRUE, ...)

+ plot(x@standingTree, add = TRUE, ...)

+ return(invisible())

+ },
+ where = .GlobalEnv)

[1] "plot"

The callNextMethod call sets up the extents for the plot from the overall bounding box if it is
a new plot. Otherwise, the square plot (inclusion zone) and then the tree are displayed. It is
reasonable to make, e.g., the display of the tree optional—this is done in other methods—but again
for succinctness, this option was not included here.

5.4.2 Other required methods

The only other required definitions are for perimeter and area methods for both “squarePlot”
and “squarePlotIZ” class objects, these are very simple. . .

R> setMethod('perimeter', signature(object = 'squarePlot'),

+ function(object, ...) return(object@perimeter), where = .GlobalEnv)

[1] "perimeter"

R> setMethod('perimeter', signature(object = 'squarePlotIZ'),

+ function(object, ...) return(perimeter(object@squarePlot)), where = .GlobalEnv)

[1] "perimeter"

R> setMethod('area', signature(x = 'squarePlot'),

+ function(x, ...) return(x@area), where = .GlobalEnv)
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[1] "area"

R> setMethod('area', signature(x = 'squarePlotIZ'),

+ function(x, ...) return(area(x@squarePlot)), where = .GlobalEnv)

[1] "area"

5.5 Remarks

The different methods that require extension will depend on the nature of the class hierarchy that
is established for the new sampling method. Some new subclasses do not add new slots that require
new methods. The horizontal point sampling class, “horizontalPointIZ”, is one such class. It is
closely related to sampling with fixed-area circular plots and the inheritance structure requires
little new functionality. This is because each inclusion zone object corresponding to each tree
in the population has a variable-sized circular plot associated with it that acts, for all intents
and purposes, like a regular fixed-area plot (Figure 3). So there is little to do when extending
the classes and methods for this sampling method. For example, the method for constructing
an “InclusionZoneGrid” object for horizontal point sampling is the exact same as for the fixed-
area “circularPlotIZ” superclass, so that superclass method is automatically dispatched on via
inheritance, requiring no new coding. It should be clear then that a little thought in defining future
class structures could save much work in coding new methods.

Finally, no new methods should ever be required for generating objects of class “sampSurf” itself.
The sampSurf constructors know how to work with any sampling method that applies to standing
trees or downed logs.

5.6 An example

Having defined all of the necessary components for sampling standing trees with fixed-area square
plots, a simple illustration of how to use the classes follows. First, make a collection of large diameter
trees on a small plot (“Tract”) so the trees will resolve in the figure. The other steps follow as in
the previous examples. Recall that the sampling surface default is for volume estimation.

R> stract = Tract(c(x = 25, y = 25), cellSize = 0.5)

R> sbuffTr = bufferedTract(5, stract)

R> strees = standingTrees(4, sbuffTr, dbhs = c(30, 60), startSeed = 98921)

R> sp.izs = standingTreeIZs(strees, iZone = 'squarePlotIZ', plotRadius = 4)

R> spv.ss = sampSurf(sp.izs, sbuffTr)
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Number of trees in collection = 4

Heaping tree: 1,2,3,4,

R> sampSurf::summary(spv.ss)

Object of class: sampSurf

------------------------------------------------------------

sampling surface object

------------------------------------------------------------

Inclusion zone objects: squarePlotIZ

Measurement units = metric

Number of trees = 4

True tree volume = 6.0132777 cubic meters

True tree basal area = 0.71954 square meters

True tree surface area = 55.229433 square meters

True tree biomass = NA

True tree carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 6.0132777

bias = 0

bias percent = 0

sum = 15033.194

var = 94.458785

st. dev. = 9.7189909

cv % = 161.62551

surface max = 34.427044

total # grid cells = 2500

grid cell resolution (x & y) = 0.5 meters

# of background cells (zero) = 1664

# of inclusion zone cells = 836

Note that the simple sampSurf constructor could also be used, but the long way provides an
illustration of all the main component functions. Plotting the surface is then trivial. . .

R> plot(spv.ss, gridLines = TRUE, useImage = FALSE)

Finally, Figure 12 presents the two-dimensional rendering of the sampling surface generated in the
example above. As mentioned in Section 2.7, the figure shows what might be misconstrued as a

Monday 8th January, 2018 1:42pm



sampSurf Guide. . . §6 Conclusions Gove 56

0 5 10 15 20 25

0
5

10
15

20
25

0

5

10

15

20

25

30

Figure 12: A volume estimation sampling surface example for square fixed-area plots with standing
trees.

registration problem between the polygon and the underlying grid-based inclusion zones for several
of the objects. In this case, it appears more obvious than in Figure 4 because of the square polygonal
inclusion zones that conform to the underlying grid. The apparent misalignment of inclusion zone
polygon to underlying grid occurs solely because the center of the tree is not exactly aligned with
one of the of the grid cell intersections; the background grid has been shown in this example to
more clearly illustrate the phenomenon. As in the “InclusionZoneGrid” example (Section 2.7), if
the grid cell resolution were increased, the two would eventually align for all trees in the figure.

6 Conclusions

The sampSurf package was designed and implemented using the powerful S4 class-methods paradigm,
which allows great flexibility and extensibility within the R framework. The package also draws
heavily from the sp and raster packages, both written largely in S4, providing more opportunities
for class extensions in the future. The main classes and flow of the system for conducting simula-
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tions has been reviewed here. An example of extending the package for a new sampling method
has also been presented to demonstrate the flexibility of the design under S4. Other components to
sampSurf exist that have not been discussed here. The extensive online help system can be accessed
from the R prompt with package?sampSurf, and provides a mechanism for accessing documenta-
tion on all of the components of the system including those not discussed here. In addition, there
are several vignettes available in the package that have also been cited. These provided examples
and more details on class structure and creation.

The fact that sampSurf is built upon the feature-rich sp and raster spatial packages, which provide
many of the graphical and spatial capabilities, is an asset that can not be overemphasized, as the
package was conceived to be one where graphical presentation plays an important role not only for
research, but also for teaching these different sampling methods. Additional graphical capabilities
also exist through the suggested package rgl (Alder and Murdoch, 2017), which provides real-
time three-dimensional rendering of several of the object classes (e.g., “InclusionZoneGrid” and
“sampSurf”) through an extension to raster’s plot3D method.

A companion package, ssWavelets (Gove, 2017b), increases the potential usefulness of the sampSurf
package. Wavelets can be used to decompose the sampling surface variance by scale (distance/area)
in a sort of analysis of variance manner. The package provides a useful graphical analysis frame-
work, again based on the sp and raster packages (and, of course, sampSurf) for visual presentation.
Analytical summaries are also provided, much like those in sampSurf. An introduction to the use
of wavelets in areal sampling is found in Gove (2017a). The R-Forge web site provides vignettes
further illustrating the use of the package.

The supported sampling methods and protocols (Table 1 and Figure 2) includes a number of
different techniques, but the current list of 34 (including the different protocols associated with
some methods) is still modest considering the breadth of existing areal sampling methods that have
been developed to date in forestry, ecology, and related fields. As the package matures further and
includes more methods, it has the potential to become a platform for a comprehensive collection
of sampling methods that can be used for method comparison, and as an aid in the design of
inventories and other new methods in the future.
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